/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2022 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "cmsis_os.h" #include "fatfs.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include #include "mruby.h" #include "mruby/compile.h" #include "mruby/dump.h" #include "mruby/string.h" #include "mruby/variable.h" #include "mruby/presym.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ SD_HandleTypeDef hsd1; UART_HandleTypeDef huart1; /* Definitions for mrbTask */ osThreadId_t mrbTaskHandle; const osThreadAttr_t mrbTask_attributes = { .name = "mrbTask", .stack_size = 4096 * 4, .priority = (osPriority_t) osPriorityNormal, }; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART1_UART_Init(void); static void MX_SDMMC1_SD_Init(void); void RunMRBTask(void *argument); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_USART1_UART_Init(); MX_SDMMC1_SD_Init(); MX_FATFS_Init(); /* USER CODE BEGIN 2 */ /* USER CODE END 2 */ /* Init scheduler */ osKernelInitialize(); /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* creation of mrbTask */ mrbTaskHandle = osThreadNew(RunMRBTask, NULL, &mrbTask_attributes); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ /* USER CODE BEGIN RTOS_EVENTS */ /* add events, ... */ /* USER CODE END RTOS_EVENTS */ /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Supply configuration update enable */ HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY); /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE3); while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {} /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 2; RCC_OscInitStruct.PLL.PLLN = 100; RCC_OscInitStruct.PLL.PLLP = 2; RCC_OscInitStruct.PLL.PLLQ = 4; RCC_OscInitStruct.PLL.PLLR = 2; RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_2; RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE; RCC_OscInitStruct.PLL.PLLFRACN = 0; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2 |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV1; RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { Error_Handler(); } /** Enables the Clock Security System */ HAL_RCC_EnableCSS(); } /** * @brief SDMMC1 Initialization Function * @param None * @retval None */ static void MX_SDMMC1_SD_Init(void) { /* USER CODE BEGIN SDMMC1_Init 0 */ /* USER CODE END SDMMC1_Init 0 */ /* USER CODE BEGIN SDMMC1_Init 1 */ /* USER CODE END SDMMC1_Init 1 */ hsd1.Instance = SDMMC1; hsd1.Init.ClockEdge = SDMMC_CLOCK_EDGE_RISING; hsd1.Init.ClockPowerSave = SDMMC_CLOCK_POWER_SAVE_DISABLE; hsd1.Init.BusWide = SDMMC_BUS_WIDE_4B; hsd1.Init.HardwareFlowControl = SDMMC_HARDWARE_FLOW_CONTROL_DISABLE; hsd1.Init.ClockDiv = 1; /* USER CODE BEGIN SDMMC1_Init 2 */ /* USER CODE END SDMMC1_Init 2 */ } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 921600; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); /*Configure GPIO pin : SDMMC1_DET_Pin */ GPIO_InitStruct.Pin = SDMMC1_DET_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(SDMMC1_DET_GPIO_Port, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ static void report_card_info(void) { HAL_SD_CardInfoTypeDef cinfo; BSP_SD_GetCardInfo(&cinfo); char *card_type = "SDSC"; switch(cinfo.CardType) { case CARD_SDHC_SDXC: card_type = "SDHC/SDXC"; break; case CARD_SECURED: card_type = "secured"; break; default: break; } char *card_speed = "normal"; switch(cinfo.CardSpeed) { case CARD_HIGH_SPEED: card_speed = "HS"; break; case CARD_ULTRA_HIGH_SPEED: card_speed = "UHS"; break; default: break; } printf("This is an %s card, speed %s, size %ldMiB\r\n", card_type, card_speed, cinfo.BlockNbr / 1048576 * cinfo.BlockSize ); } /** * @brief Load a script called boot.rb from SD card * It's caller free. * * @return char* string contains script. */ static char *load_boot_script(void) { if(f_mount(&SDFatFS, SDPath, 1) != FR_OK) { printf("FS mount failed.\r\n"); return NULL; } report_card_info(); char *ret = NULL; FIL boot_file; if(f_open(&boot_file, "0:/boot.rb", FA_READ) != FR_OK) { printf("boot.rb not found.\r\n"); goto out_umount; } UINT boot_file_size = f_size(&boot_file); ret = pvPortMalloc(boot_file_size + 1); if(ret == NULL) { printf("Failed to allocate memory for script.\r\n"); goto out_close; } UINT read_size; if(f_read(&boot_file, ret, boot_file_size, &read_size) != FR_OK) { printf("Failed to read script.\r\n"); vPortFree(ret); ret = NULL; } else { ret[read_size] = '\0'; } out_close: f_close(&boot_file); out_umount: /* Unmount filesystem by passing NULL to drive path. */ f_mount(NULL, SDPath, 0); return ret; } /* USER CODE END 4 */ /* USER CODE BEGIN Header_RunMRBTask */ /** * @brief Function implementing the mrbTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_RunMRBTask */ void RunMRBTask(void *argument) { /* USER CODE BEGIN 5 */ mrb_state *mrb = mrb_open(); if(mrb == NULL) { printf("Failed to open mruby core.\r\n"); goto dead_loop; } mrbc_context *cxt = mrbc_context_new(mrb); if(cxt == NULL) { printf("Failed to create compiler.\r\n"); goto cleanup_mrb; } char *boot_script = load_boot_script(); if(boot_script != NULL) { printf("Loaded boot.rb from SD card.\r\n"); struct mrb_parser_state *parser_state = mrb_parse_string(mrb, boot_script, cxt); if(parser_state == NULL) { printf("Failed to parse main script.\r\n"); vPortFree(boot_script); mrb_parser_free(parser_state); } else { vPortFree(boot_script); mrb_load_exec(mrb, parser_state, cxt); if(mrb->exc) { printf("Exception occured, script not finished.\r\n"); } } } printf("Boot script exited, cleaning up.\r\n"); cleanup_mrb: mrb_close(mrb); dead_loop: /* Infinite loop */ for(;;) { osThreadSuspend(mrbTaskHandle); } /* USER CODE END 5 */ } /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM7 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ /* USER CODE END Callback 0 */ if (htim->Instance == TIM7) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */