/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *

© Copyright (c) 2021 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under Ultimate Liberty license * SLA0044, the "License"; You may not use this file except in compliance with * the License. You may obtain a copy of the License at: * www.st.com/SLA0044 * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "cmsis_os.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "user_tasks.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ DMA2D_HandleTypeDef hdma2d; LTDC_HandleTypeDef hltdc; RTC_HandleTypeDef hrtc; TIM_HandleTypeDef htim2; TIM_HandleTypeDef htim3; UART_HandleTypeDef huart1; DMA_HandleTypeDef hdma_usart1_tx; DMA_HandleTypeDef hdma_memtomem_dma1_stream0; SDRAM_HandleTypeDef hsdram1; /* Definitions for defaultTask */ osThreadId_t defaultTaskHandle; const osThreadAttr_t defaultTask_attributes = { .name = "defaultTask", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityNormal, }; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void PeriphCommonClock_Config(void); static void MPU_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_RTC_Init(void); static void MX_TIM3_Init(void); static void MX_TIM2_Init(void); static void MX_FMC_Init(void); static void MX_USART1_UART_Init(void); static void MX_LTDC_Init(void); static void MX_DMA2D_Init(void); void StartDefaultTask(void *argument); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MPU Configuration--------------------------------------------------------*/ MPU_Config(); /* Enable I-Cache---------------------------------------------------------*/ SCB_EnableICache(); /* Enable D-Cache---------------------------------------------------------*/ SCB_EnableDCache(); /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* Configure the peripherals common clocks */ PeriphCommonClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_RTC_Init(); MX_TIM3_Init(); MX_TIM2_Init(); MX_FMC_Init(); MX_USART1_UART_Init(); MX_LTDC_Init(); MX_DMA2D_Init(); /* USER CODE BEGIN 2 */ /* USER CODE END 2 */ /* Init scheduler */ osKernelInitialize(); /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* creation of defaultTask */ defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ /* USER CODE BEGIN RTOS_EVENTS */ /* add events, ... */ CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk; DWT->CYCCNT = 0; DWT->CTRL |= DWT_CTRL_CYCCNTENA_Msk; SEGGER_SYSVIEW_Conf(); /* USER CODE END RTOS_EVENTS */ /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Supply configuration update enable */ HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY); /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {} /** Macro to configure the PLL clock source */ __HAL_RCC_PLL_PLLSOURCE_CONFIG(RCC_PLLSOURCE_HSE); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.LSIState = RCC_LSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 5; RCC_OscInitStruct.PLL.PLLN = 48; RCC_OscInitStruct.PLL.PLLP = 2; RCC_OscInitStruct.PLL.PLLQ = 2; RCC_OscInitStruct.PLL.PLLR = 2; RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_2; RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE; RCC_OscInitStruct.PLL.PLLFRACN = 0; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2 |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV1; RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } /** Enables the Clock Security System */ HAL_RCC_EnableCSS(); } /** * @brief Peripherals Common Clock Configuration * @retval None */ void PeriphCommonClock_Config(void) { RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0}; /** Initializes the peripherals clock */ PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_FMC|RCC_PERIPHCLK_USART1; PeriphClkInitStruct.PLL2.PLL2M = 5; PeriphClkInitStruct.PLL2.PLL2N = 50; PeriphClkInitStruct.PLL2.PLL2P = 2; PeriphClkInitStruct.PLL2.PLL2Q = 5; PeriphClkInitStruct.PLL2.PLL2R = 1; PeriphClkInitStruct.PLL2.PLL2RGE = RCC_PLL2VCIRANGE_2; PeriphClkInitStruct.PLL2.PLL2VCOSEL = RCC_PLL2VCOWIDE; PeriphClkInitStruct.PLL2.PLL2FRACN = 0; PeriphClkInitStruct.FmcClockSelection = RCC_FMCCLKSOURCE_PLL2; PeriphClkInitStruct.Usart16ClockSelection = RCC_USART16CLKSOURCE_PLL2; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) { Error_Handler(); } } /** * @brief DMA2D Initialization Function * @param None * @retval None */ static void MX_DMA2D_Init(void) { /* USER CODE BEGIN DMA2D_Init 0 */ /* USER CODE END DMA2D_Init 0 */ /* USER CODE BEGIN DMA2D_Init 1 */ /* USER CODE END DMA2D_Init 1 */ hdma2d.Instance = DMA2D; hdma2d.Init.Mode = DMA2D_M2M_BLEND; hdma2d.Init.ColorMode = DMA2D_OUTPUT_ARGB8888; hdma2d.Init.OutputOffset = 0; hdma2d.LayerCfg[1].InputOffset = 0; hdma2d.LayerCfg[1].InputColorMode = DMA2D_INPUT_ARGB8888; hdma2d.LayerCfg[1].AlphaMode = DMA2D_REPLACE_ALPHA; hdma2d.LayerCfg[1].InputAlpha = 255; hdma2d.LayerCfg[1].AlphaInverted = DMA2D_REGULAR_ALPHA; hdma2d.LayerCfg[1].RedBlueSwap = DMA2D_RB_REGULAR; hdma2d.LayerCfg[1].ChromaSubSampling = DMA2D_NO_CSS; hdma2d.LayerCfg[0].InputOffset = 0; hdma2d.LayerCfg[0].InputColorMode = DMA2D_INPUT_ARGB8888; hdma2d.LayerCfg[0].AlphaMode = DMA2D_REPLACE_ALPHA; hdma2d.LayerCfg[0].InputAlpha = 255; hdma2d.LayerCfg[0].AlphaInverted = DMA2D_REGULAR_ALPHA; hdma2d.LayerCfg[0].RedBlueSwap = DMA2D_RB_REGULAR; if (HAL_DMA2D_Init(&hdma2d) != HAL_OK) { Error_Handler(); } if (HAL_DMA2D_ConfigLayer(&hdma2d, 0) != HAL_OK) { Error_Handler(); } if (HAL_DMA2D_ConfigLayer(&hdma2d, 1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN DMA2D_Init 2 */ /* USER CODE END DMA2D_Init 2 */ } /** * @brief LTDC Initialization Function * @param None * @retval None */ static void MX_LTDC_Init(void) { /* USER CODE BEGIN LTDC_Init 0 */ /* USER CODE END LTDC_Init 0 */ LTDC_LayerCfgTypeDef pLayerCfg = {0}; /* USER CODE BEGIN LTDC_Init 1 */ /* USER CODE END LTDC_Init 1 */ hltdc.Instance = LTDC; hltdc.Init.HSPolarity = LTDC_HSPOLARITY_AL; hltdc.Init.VSPolarity = LTDC_VSPOLARITY_AL; hltdc.Init.DEPolarity = LTDC_DEPOLARITY_AL; hltdc.Init.PCPolarity = LTDC_PCPOLARITY_IPC; hltdc.Init.HorizontalSync = 19; hltdc.Init.VerticalSync = 9; hltdc.Init.AccumulatedHBP = 65; hltdc.Init.AccumulatedVBP = 32; hltdc.Init.AccumulatedActiveW = 865; hltdc.Init.AccumulatedActiveH = 512; hltdc.Init.TotalWidth = 1075; hltdc.Init.TotalHeigh = 534; hltdc.Init.Backcolor.Blue = 0; hltdc.Init.Backcolor.Green = 0; hltdc.Init.Backcolor.Red = 0; if (HAL_LTDC_Init(&hltdc) != HAL_OK) { Error_Handler(); } pLayerCfg.WindowX0 = 0; pLayerCfg.WindowX1 = 799; pLayerCfg.WindowY0 = 0; pLayerCfg.WindowY1 = 479; pLayerCfg.PixelFormat = LTDC_PIXEL_FORMAT_ARGB8888; pLayerCfg.Alpha = 255; pLayerCfg.Alpha0 = 255; pLayerCfg.BlendingFactor1 = LTDC_BLENDING_FACTOR1_PAxCA; pLayerCfg.BlendingFactor2 = LTDC_BLENDING_FACTOR2_PAxCA; pLayerCfg.FBStartAdress = 0xD0100000; pLayerCfg.ImageWidth = 800; pLayerCfg.ImageHeight = 480; pLayerCfg.Backcolor.Blue = 0; pLayerCfg.Backcolor.Green = 0; pLayerCfg.Backcolor.Red = 0; if (HAL_LTDC_ConfigLayer(&hltdc, &pLayerCfg, 0) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN LTDC_Init 2 */ /* USER CODE END LTDC_Init 2 */ } /** * @brief RTC Initialization Function * @param None * @retval None */ static void MX_RTC_Init(void) { /* USER CODE BEGIN RTC_Init 0 */ /* USER CODE END RTC_Init 0 */ RTC_TimeTypeDef sTime = {0}; RTC_DateTypeDef sDate = {0}; /* USER CODE BEGIN RTC_Init 1 */ /* USER CODE END RTC_Init 1 */ /** Initialize RTC Only */ hrtc.Instance = RTC; hrtc.Init.HourFormat = RTC_HOURFORMAT_24; hrtc.Init.AsynchPrediv = 127; hrtc.Init.SynchPrediv = 255; hrtc.Init.OutPut = RTC_OUTPUT_DISABLE; hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; hrtc.Init.OutPutRemap = RTC_OUTPUT_REMAP_NONE; if (HAL_RTC_Init(&hrtc) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN Check_RTC_BKUP */ /* USER CODE END Check_RTC_BKUP */ /** Initialize RTC and set the Time and Date */ sTime.Hours = 0x0; sTime.Minutes = 0x0; sTime.Seconds = 0x0; sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE; sTime.StoreOperation = RTC_STOREOPERATION_RESET; if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK) { Error_Handler(); } sDate.WeekDay = RTC_WEEKDAY_MONDAY; sDate.Month = RTC_MONTH_JANUARY; sDate.Date = 0x1; sDate.Year = 0x0; if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BCD) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN RTC_Init 2 */ /* USER CODE END RTC_Init 2 */ } /** * @brief TIM2 Initialization Function * @param None * @retval None */ static void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 1000 - 1; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 1000 - 1; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_Init(&htim2) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 400 - 1; sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ HAL_TIM_MspPostInit(&htim2); } /** * @brief TIM3 Initialization Function * @param None * @retval None */ static void MX_TIM3_Init(void) { /* USER CODE BEGIN TIM3_Init 0 */ /* USER CODE END TIM3_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; /* USER CODE BEGIN TIM3_Init 1 */ /* USER CODE END TIM3_Init 1 */ htim3.Instance = TIM3; htim3.Init.Prescaler = 90 - 1; htim3.Init.CounterMode = TIM_COUNTERMODE_UP; htim3.Init.Period = 1000 - 1; htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim3) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_Init(&htim3) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 200 - 1; sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_3) != HAL_OK) { Error_Handler(); } sConfigOC.Pulse = 300 - 1; if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_4) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM3_Init 2 */ /* USER CODE END TIM3_Init 2 */ HAL_TIM_MspPostInit(&htim3); } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 921600; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_4) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_4) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_EnableFifoMode(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /** * Enable DMA controller clock * Configure DMA for memory to memory transfers * hdma_memtomem_dma1_stream0 */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); /* Configure DMA request hdma_memtomem_dma1_stream0 on DMA1_Stream0 */ hdma_memtomem_dma1_stream0.Instance = DMA1_Stream0; hdma_memtomem_dma1_stream0.Init.Request = DMA_REQUEST_MEM2MEM; hdma_memtomem_dma1_stream0.Init.Direction = DMA_MEMORY_TO_MEMORY; hdma_memtomem_dma1_stream0.Init.PeriphInc = DMA_PINC_ENABLE; hdma_memtomem_dma1_stream0.Init.MemInc = DMA_MINC_ENABLE; hdma_memtomem_dma1_stream0.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; hdma_memtomem_dma1_stream0.Init.MemDataAlignment = DMA_MDATAALIGN_WORD; hdma_memtomem_dma1_stream0.Init.Mode = DMA_NORMAL; hdma_memtomem_dma1_stream0.Init.Priority = DMA_PRIORITY_LOW; hdma_memtomem_dma1_stream0.Init.FIFOMode = DMA_FIFOMODE_ENABLE; hdma_memtomem_dma1_stream0.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; hdma_memtomem_dma1_stream0.Init.MemBurst = DMA_MBURST_SINGLE; hdma_memtomem_dma1_stream0.Init.PeriphBurst = DMA_PBURST_SINGLE; if (HAL_DMA_Init(&hdma_memtomem_dma1_stream0) != HAL_OK) { Error_Handler( ); } /* DMA interrupt init */ /* DMA1_Stream0_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Stream0_IRQn, 5, 0); HAL_NVIC_EnableIRQ(DMA1_Stream0_IRQn); /* DMA1_Stream1_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Stream1_IRQn, 5, 0); HAL_NVIC_EnableIRQ(DMA1_Stream1_IRQn); } /* FMC initialization function */ static void MX_FMC_Init(void) { /* USER CODE BEGIN FMC_Init 0 */ /* USER CODE END FMC_Init 0 */ FMC_SDRAM_TimingTypeDef SdramTiming = {0}; /* USER CODE BEGIN FMC_Init 1 */ /* USER CODE END FMC_Init 1 */ /** Perform the SDRAM1 memory initialization sequence */ hsdram1.Instance = FMC_SDRAM_DEVICE; /* hsdram1.Init */ hsdram1.Init.SDBank = FMC_SDRAM_BANK2; hsdram1.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_9; hsdram1.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_13; hsdram1.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_32; hsdram1.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4; hsdram1.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_2; hsdram1.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE; hsdram1.Init.SDClockPeriod = FMC_SDRAM_CLOCK_PERIOD_2; hsdram1.Init.ReadBurst = FMC_SDRAM_RBURST_ENABLE; hsdram1.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_1; /* SdramTiming */ SdramTiming.LoadToActiveDelay = 2; SdramTiming.ExitSelfRefreshDelay = 9; SdramTiming.SelfRefreshTime = 6; SdramTiming.RowCycleDelay = 8; SdramTiming.WriteRecoveryTime = 2; SdramTiming.RPDelay = 2; SdramTiming.RCDDelay = 4; if (HAL_SDRAM_Init(&hsdram1, &SdramTiming) != HAL_OK) { Error_Handler( ); } /* USER CODE BEGIN FMC_Init 2 */ FMC_SDRAM_CommandTypeDef cmd; // Enable CLK cmd.CommandMode = FMC_SDRAM_CMD_CLK_ENABLE; cmd.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK2; cmd.AutoRefreshNumber = 1; cmd.ModeRegisterDefinition = 0; HAL_SDRAM_SendCommand(&hsdram1, &cmd, 1000); // Precharge all cmd.CommandMode = FMC_SDRAM_CMD_PALL; HAL_SDRAM_SendCommand(&hsdram1, &cmd, 1000); // Auto refresh cmd.CommandMode = FMC_SDRAM_CMD_AUTOREFRESH_MODE; cmd.AutoRefreshNumber = 8; HAL_SDRAM_SendCommand(&hsdram1, &cmd, 1000); // Mode register cmd.CommandMode = FMC_SDRAM_CMD_LOAD_MODE; cmd.AutoRefreshNumber = 1; cmd.ModeRegisterDefinition = 0x220; // Sequential burst length 1, CL2, single write HAL_SDRAM_SendCommand(&hsdram1, &cmd, 1000); // Refresh counter. 8192 Lines in 64ms, 7.8125us/Line, Freq = 125MHz HAL_SDRAM_ProgramRefreshRate(&hsdram1, 848); /* USER CODE END FMC_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOI_CLK_ENABLE(); __HAL_RCC_GPIOK_CLK_ENABLE(); __HAL_RCC_GPIOE_CLK_ENABLE(); __HAL_RCC_GPIOJ_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOG_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LTDC_BL_GPIO_Port, LTDC_BL_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : LTDC_BL_Pin */ GPIO_InitStruct.Pin = LTDC_BL_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LTDC_BL_GPIO_Port, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ #define RED_STEP 3 #define BLUE_STEP 5 #define GREEN_STEP 7 #define MAX_VALUE 100 /* USER CODE END 4 */ /* USER CODE BEGIN Header_StartDefaultTask */ /** * @brief Function implementing the defaultTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartDefaultTask */ void StartDefaultTask(void *argument) { /* USER CODE BEGIN 5 */ // Enable LCD backlight HAL_GPIO_WritePin(LTDC_BL_GPIO_Port, LTDC_BL_Pin, GPIO_PIN_SET); user_tasks_init(); HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_3); HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_4); HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_4); int32_t red_value = 0; uint8_t red_incr = 1; int32_t green_value = 0; uint8_t green_incr = 1; int32_t blue_value = 0; int8_t blue_incr = 1; /* Infinite loop */ for(;;) { if(red_incr) { red_value += RED_STEP; if(red_value > MAX_VALUE) { red_incr = 0; red_value = MAX_VALUE; } } else { red_value -= RED_STEP; if(red_value < 0) { red_incr = 1; red_value = 0; } } if(green_incr) { green_value += GREEN_STEP; if(green_value > MAX_VALUE) { green_incr = 0; green_value = MAX_VALUE; } } else { green_value -= GREEN_STEP; if(green_value < 0) { green_incr = 1; green_value = 0; } } if(blue_incr) { blue_value += BLUE_STEP; if(blue_value > MAX_VALUE) { blue_incr = 0; blue_value = MAX_VALUE; } } else { blue_value -= BLUE_STEP; if(blue_value < 0) { blue_incr = 1; blue_value = 0; } } __HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_3, red_value); __HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_4, green_value); __HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_4, blue_value); osDelay(30); } /* USER CODE END 5 */ } /* MPU Configuration */ void MPU_Config(void) { MPU_Region_InitTypeDef MPU_InitStruct = {0}; /* Disables the MPU */ HAL_MPU_Disable(); /** Initializes and configures the Region and the memory to be protected */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER0; MPU_InitStruct.BaseAddress = 0x0; MPU_InitStruct.Size = MPU_REGION_SIZE_4GB; MPU_InitStruct.SubRegionDisable = 0x0; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /** Initializes and configures the Region and the memory to be protected */ MPU_InitStruct.Number = MPU_REGION_NUMBER1; MPU_InitStruct.BaseAddress = 0x20000000; MPU_InitStruct.Size = MPU_REGION_SIZE_128KB; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /** Initializes and configures the Region and the memory to be protected */ MPU_InitStruct.Number = MPU_REGION_NUMBER2; MPU_InitStruct.BaseAddress = 0x24000000; MPU_InitStruct.Size = MPU_REGION_SIZE_512KB; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /** Initializes and configures the Region and the memory to be protected */ MPU_InitStruct.Number = MPU_REGION_NUMBER3; MPU_InitStruct.BaseAddress = 0xD0000000; MPU_InitStruct.Size = MPU_REGION_SIZE_64MB; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /** Initializes and configures the Region and the memory to be protected */ MPU_InitStruct.Number = MPU_REGION_NUMBER4; MPU_InitStruct.BaseAddress = 30000000; MPU_InitStruct.Size = MPU_REGION_SIZE_512KB; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* Enables the MPU */ HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT); } /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM7 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ /* USER CODE END Callback 0 */ if (htim->Instance == TIM7) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/