#include #include #include "bme280_dht.h" #define BME280_CONCAT_BYTES(msb, lsb) (((uint16_t)msb << 8) | (uint16_t)lsb) bme280_ret_t _bme280_read_trim_data(bme280_t *bme); double _bme280_compensate_T(bme280_t *bme, int32_t adc_T); double _bme280_compensate_P(bme280_t *bme, int32_t adc_P); double _bme280_compensate_H(bme280_t *bme, int32_t adc_H); static bme280_ret_t _bme280_reset(bme280_t *bme) { return bme->cb.write_register_cb(bme->user_data, 0xE0, 0xB6); } bme280_ret_t bme280_init(bme280_t *bme) { if(!bme) return BME_FAIL; if(_bme280_reset(bme) == BME_FAIL) return BME_FAIL; bme->cb.delay_cb(bme->user_data, 100); if(_bme280_read_trim_data(bme) == BME_FAIL) return BME_FAIL; return BME_OK; } bme280_ret_t bme280_preset_config(bme280_config_t *config, bme280_mode_preset_t preset) { switch(preset) { case BME_PRESET_WEATHER: config->mode = BME_MODE_FORCED; config->osrs_t = BME_OS_1; config->osrs_p = BME_OS_1; config->osrs_h = BME_OS_1; config->filter = BME_FILTER_OFF; break; case BME_PRESET_HUMIDITY: config->mode = BME_MODE_FORCED; config->osrs_t = BME_OS_1; config->osrs_p = BME_OS_SKIP; config->osrs_h = BME_OS_1; config->filter = BME_FILTER_OFF; break; case BME_PRESET_INDOOR_NAV: config->mode = BME_MODE_NORMAL; config->osrs_t = BME_OS_2; config->osrs_p = BME_OS_16; config->osrs_h = BME_OS_1; config->filter = BME_FILTER_16; break; case BME_PRESET_GAMING: config->mode = BME_MODE_NORMAL; config->osrs_t = BME_OS_1; config->osrs_p = BME_OS_4; config->osrs_h = BME_OS_SKIP; config->filter = BME_FILTER_4; break; } return BME_OK; } bme280_ret_t bme280_apply_config(bme280_t *bme, bme280_config_t *config) { uint8_t reg_config = config->filter << 0x02; uint8_t reg_ctrl_measure = (uint8_t)((config->osrs_t << 0x05) | (config->osrs_p << 0x02) | config->mode); uint8_t reg_ctrl_hum = config->osrs_h; bme->cb.write_register_cb(bme->user_data, 0xF5, reg_config); bme->cb.write_register_cb(bme->user_data, 0xF2, reg_ctrl_hum); bme->cb.write_register_cb(bme->user_data, 0xF4, reg_ctrl_measure); return BME_OK; } bme280_ret_t bme280_measure(bme280_t *bme, bme280_result_t *result) { uint32_t raw_P = 0x00; uint32_t raw_T = 0x00; uint32_t raw_H = 0x00; uint8_t measure_data[8]; uint8_t status = 0; uint8_t ctrl_meas; uint8_t loop_count = 0; if(bme->cb.read_register_cb(bme->user_data, 0xF4, &ctrl_meas, 0x01) != BME_OK) return BME_FAIL; bme->cb.write_register_cb(bme->user_data, 0xF4, ctrl_meas | BME_MODE_FORCED); do { if(bme->cb.read_register_cb(bme->user_data, 0xF3, &status, 0x01) != BME_OK) return BME_FAIL; loop_count++; bme->cb.delay_cb(bme->user_data, 100); } while(status & 0x08 && (loop_count < 12)); if(bme->cb.read_register_cb(bme->user_data, 0xF7, measure_data, 0x08) != BME_OK) return BME_FAIL; raw_P = ((uint32_t)measure_data[0] << 12) | ((uint32_t)measure_data[1] << 0x04) | ((uint32_t)measure_data[2] >> 0x04); raw_T = ((uint32_t)measure_data[3] << 12) | ((uint32_t)measure_data[4] << 0x04) | ((uint32_t)measure_data[5] >> 0x04); raw_H = ((uint32_t)measure_data[6] << 8) | ((uint32_t)measure_data[7]); result->temperature = _bme280_compensate_T(bme, raw_T); result->pressure = _bme280_compensate_P(bme, raw_P); result->humidity = _bme280_compensate_H(bme, raw_H); return BME_OK; } bme280_ret_t _bme280_read_trim_data(bme280_t *bme) { bme280_ret_t ret; uint8_t rx_buf[2]; ret = bme->cb.read_register_cb(bme->user_data, 0x88, rx_buf, 0x02); // T1 if(ret == BME_FAIL) return ret; bme->trim.dig_T1 = BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = bme->cb.read_register_cb(bme->user_data, 0x8A, rx_buf, 0x02); // T2 if(ret == BME_FAIL) return ret; bme->trim.dig_T2 = (int16_t)BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = bme->cb.read_register_cb(bme->user_data, 0x8C, rx_buf, 0x02); // T3 if(ret == BME_FAIL) return ret; bme->trim.dig_T3 = (int16_t)BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = bme->cb.read_register_cb(bme->user_data, 0x8E, rx_buf, 0x02); // P1 if(ret == BME_FAIL) return ret; bme->trim.dig_P1 = BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = bme->cb.read_register_cb(bme->user_data, 0x90, rx_buf, 0x02); // P2 if(ret == BME_FAIL) return ret; bme->trim.dig_P2 = (int16_t)BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = bme->cb.read_register_cb(bme->user_data, 0x92, rx_buf, 0x02); // P3 if(ret == BME_FAIL) return ret; bme->trim.dig_P3 = (int16_t)BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = bme->cb.read_register_cb(bme->user_data, 0x94, rx_buf, 0x02); // P4 if(ret == BME_FAIL) return ret; bme->trim.dig_P4 = (int16_t)BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = bme->cb.read_register_cb(bme->user_data, 0x96, rx_buf, 0x02); // P5 if(ret == BME_FAIL) return ret; bme->trim.dig_P5 = (int16_t)BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = bme->cb.read_register_cb(bme->user_data, 0x98, rx_buf, 0x02); // P5 if(ret == BME_FAIL) return ret; bme->trim.dig_P6 = (int16_t)BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = bme->cb.read_register_cb(bme->user_data, 0x9A, rx_buf, 0x02); // P7 if(ret == BME_FAIL) return ret; bme->trim.dig_P7 = (int16_t)BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = bme->cb.read_register_cb(bme->user_data, 0x9C, rx_buf, 0x02); // P8 if(ret == BME_FAIL) return ret; bme->trim.dig_P8 = (int16_t)BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = bme->cb.read_register_cb(bme->user_data, 0x9E, rx_buf, 0x02); // P9 if(ret == BME_FAIL) return ret; bme->trim.dig_P9 = (int16_t)BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = bme->cb.read_register_cb(bme->user_data, 0xA1, rx_buf, 0x01); // H1 if(ret == BME_FAIL) return ret; bme->trim.dig_H1 = rx_buf[0]; ret = bme->cb.read_register_cb(bme->user_data, 0xE1, rx_buf, 0x02); // H2 if(ret == BME_FAIL) return ret; bme->trim.dig_H2 = (int16_t)BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = bme->cb.read_register_cb(bme->user_data, 0xE3, rx_buf, 0x01); // H3 if(ret == BME_FAIL) return ret; bme->trim.dig_H3 = (uint8_t)rx_buf[0]; ret = bme->cb.read_register_cb(bme->user_data, 0xE4, rx_buf, 0x02); // H4 if(ret == BME_FAIL) return ret; bme->trim.dig_H4 = (int16_t)(((int8_t)rx_buf[0] << 0x04) | (rx_buf[1] & 0x0F)); ret = bme->cb.read_register_cb(bme->user_data, 0xE5, rx_buf, 0x02); // H5 if(ret == BME_FAIL) return ret; bme->trim.dig_H5 = (int16_t)(((int8_t)rx_buf[1] << 0x04) | (rx_buf[0] >> 0x04)); ret = bme->cb.read_register_cb(bme->user_data, 0xE7, rx_buf, 0x01); // H6 if(ret == BME_FAIL) return ret; bme->trim.dig_H6 = (int8_t)rx_buf[0]; return BME_OK; } double _bme280_compensate_T(bme280_t *bme, int32_t adc_T) { double var1, var2, T; var1 = (((double)adc_T) / 16384.0 - ((double)bme->trim.dig_T1) / 1024.0) * ((double)bme->trim.dig_T2); var2 = ((((double)adc_T) / 131072.0 - ((double)bme->trim.dig_T1) / 8192.0) * (((double)adc_T) / 131072.0 - ((double)bme->trim.dig_T1) / 8192.0)) * ((double)bme->trim.dig_T3); bme->t_fine = (int32_t)(var1 + var2); T = (var1 + var2) / 5120.0; return T; } double _bme280_compensate_P(bme280_t *bme, int32_t adc_P) { double var1, var2, p; var1 = ((double)bme->t_fine / 2.0) - 64000.0; var2 = var1 * var1 * ((double)bme->trim.dig_P6) / 32768.0; var2 = var2 + var1 * ((double)bme->trim.dig_P5) * 2.0; var2 = (var2 / 4.0) + (((double)bme->trim.dig_P4) * 65536.0); var1 = (((double)bme->trim.dig_P3) * var1 * var1 / 524288.0 + ((double)bme->trim.dig_P2) * var1) / 524288.0; var1 = (1.0 + var1 / 32768.0) * ((double)bme->trim.dig_P1); if(var1 == 0.0) { return 0; // avoid exception caused by division by zero } p = 1048576.0 - (double)adc_P; p = (p - (var2 / 4096.0)) * 6250.0 / var1; var1 = ((double)bme->trim.dig_P9) * p * p / 2147483648.0; var2 = p * ((double)bme->trim.dig_P8) / 32768.0; p = p + (var1 + var2 + ((double)bme->trim.dig_P7)) / 16.0; return p; } double _bme280_compensate_H(bme280_t *bme, int32_t adc_H) { double var_H; var_H = (((double)bme->t_fine) - 76800.0); var_H = (adc_H - (((double)bme->trim.dig_H4) * 64.0 + ((double)bme->trim.dig_H5) / 16384.0 * var_H)) * (((double)bme->trim.dig_H2) / 65536.0 * (1.0 + ((double)bme->trim.dig_H6) / 67108864.0 * var_H * (1.0 + ((double)bme->trim.dig_H3) / 67108864.0 * var_H))); var_H = var_H * (1.0 - ((double)bme->trim.dig_H1) * var_H / 524288.0); if(var_H > 100.0) var_H = 100.0; else if(var_H < 0.0) var_H = 0.0; return var_H; }