#include #include "sensors_common.h" #include "dht_bme280.h" #define IMS_BME280_CONCAT_BYTES(msb, lsb) (((uint16_t)msb << 8) | (uint16_t)lsb) #ifdef IMS_CFG_DHT_BME280_ENABLE_FLOAT static double ims_bme280_compensate_T_double(ims_bme280_t *bme, int32_t adc_T); static double ims_bme280_compensate_P_double(ims_bme280_t *bme, int32_t adc_P); static double ims_bme280_compensate_H_double(ims_bme280_t *bme, int32_t adc_H); #else static int32_t ims_bme280_compensate_T_int32(ims_bme280_t *bme, int32_t adc_T); static uint32_t ims_bme280_compensate_P_int64(ims_bme280_t *bme, int32_t adc_P); static uint32_t ims_bme280_compensate_H_int32(ims_bme280_t *bme, int32_t adc_H); #endif static ims_ret_t ims_bme280_read_register(ims_bme280_t *bme, uint8_t reg, uint8_t *data, uint16_t len) { ims_i2c_xfer_desc_t xfer_desc = { .tx_size = 1U, .tx_data = ®, .rx_size = len, .rx_data = data, }; return bme->cb.i2c_xfer(bme->user_data, bme->i2c_addr, &xfer_desc); } static ims_ret_t ims_bme280_write_register(ims_bme280_t *bme, uint8_t reg, uint8_t data) { uint8_t tx_buf[2] = {reg, data}; ims_i2c_xfer_desc_t xfer_desc = { .tx_size = 2U, .tx_data = tx_buf, .rx_size = 0U, .rx_data = NULL, }; return bme->cb.i2c_xfer(bme->user_data, bme->i2c_addr, &xfer_desc); } static ims_ret_t ims_bme280_reset(ims_bme280_t *bme) { return ims_bme280_write_register(bme, 0xE0, 0xB6); } static ims_ret_t ims_bme280_read_trim_data(ims_bme280_t *bme) { ims_ret_t ret; uint8_t rx_buf[2]; ret = ims_bme280_read_register(bme, 0x88, rx_buf, 0x02); // T1 if (ret == IMS_FAIL) return ret; bme->trim.dig_T1 = IMS_BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = ims_bme280_read_register(bme, 0x8A, rx_buf, 0x02); // T2 if (ret == IMS_FAIL) return ret; bme->trim.dig_T2 = (int16_t)IMS_BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = ims_bme280_read_register(bme, 0x8C, rx_buf, 0x02); // T3 if (ret == IMS_FAIL) return ret; bme->trim.dig_T3 = (int16_t)IMS_BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = ims_bme280_read_register(bme, 0x8E, rx_buf, 0x02); // P1 if (ret == IMS_FAIL) return ret; bme->trim.dig_P1 = IMS_BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = ims_bme280_read_register(bme, 0x90, rx_buf, 0x02); // P2 if (ret == IMS_FAIL) return ret; bme->trim.dig_P2 = (int16_t)IMS_BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = ims_bme280_read_register(bme, 0x92, rx_buf, 0x02); // P3 if (ret == IMS_FAIL) return ret; bme->trim.dig_P3 = (int16_t)IMS_BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = ims_bme280_read_register(bme, 0x94, rx_buf, 0x02); // P4 if (ret == IMS_FAIL) return ret; bme->trim.dig_P4 = (int16_t)IMS_BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = ims_bme280_read_register(bme, 0x96, rx_buf, 0x02); // P5 if (ret == IMS_FAIL) return ret; bme->trim.dig_P5 = (int16_t)IMS_BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = ims_bme280_read_register(bme, 0x98, rx_buf, 0x02); // P5 if (ret == IMS_FAIL) return ret; bme->trim.dig_P6 = (int16_t)IMS_BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = ims_bme280_read_register(bme, 0x9A, rx_buf, 0x02); // P7 if (ret == IMS_FAIL) return ret; bme->trim.dig_P7 = (int16_t)IMS_BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = ims_bme280_read_register(bme, 0x9C, rx_buf, 0x02); // P8 if (ret == IMS_FAIL) return ret; bme->trim.dig_P8 = (int16_t)IMS_BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = ims_bme280_read_register(bme, 0x9E, rx_buf, 0x02); // P9 if (ret == IMS_FAIL) return ret; bme->trim.dig_P9 = (int16_t)IMS_BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = ims_bme280_read_register(bme, 0xA1, rx_buf, 0x01); // H1 if (ret == IMS_FAIL) return ret; bme->trim.dig_H1 = rx_buf[0]; ret = ims_bme280_read_register(bme, 0xE1, rx_buf, 0x02); // H2 if (ret == IMS_FAIL) return ret; bme->trim.dig_H2 = (int16_t)IMS_BME280_CONCAT_BYTES(rx_buf[1], rx_buf[0]); ret = ims_bme280_read_register(bme, 0xE3, rx_buf, 0x01); // H3 if (ret == IMS_FAIL) return ret; bme->trim.dig_H3 = (uint8_t)rx_buf[0]; ret = ims_bme280_read_register(bme, 0xE4, rx_buf, 0x02); // H4 if (ret == IMS_FAIL) return ret; bme->trim.dig_H4 = (int16_t)(((int8_t)rx_buf[0] << 0x04) | (rx_buf[1] & 0x0F)); ret = ims_bme280_read_register(bme, 0xE5, rx_buf, 0x02); // H5 if (ret == IMS_FAIL) return ret; bme->trim.dig_H5 = (int16_t)(((int8_t)rx_buf[1] << 0x04) | (rx_buf[0] >> 0x04)); ret = ims_bme280_read_register(bme, 0xE7, rx_buf, 0x01); // H6 if (ret == IMS_FAIL) return ret; bme->trim.dig_H6 = (int8_t)rx_buf[0]; return IMS_SUCCESS; } static ims_ret_t ims_bme280_measure_raw(ims_bme280_t *bme, uint32_t *raw_t, uint32_t *raw_p, uint32_t *raw_h) { uint8_t measure_data[8]; uint8_t status = 0; uint8_t ctrl_meas; uint8_t loop_count = 0; if (ims_bme280_read_register(bme, 0xF4, &ctrl_meas, 0x01) != IMS_SUCCESS) return IMS_FAIL; ims_bme280_write_register(bme, 0xF4, ctrl_meas | IMS_BME280_MODE_FORCED); do { if (ims_bme280_read_register(bme, 0xF3, &status, 0x01) != IMS_SUCCESS) return IMS_FAIL; loop_count++; bme->cb.delay(bme->user_data, 100); } while (status & 0x08 && (loop_count < 12)); if (ims_bme280_read_register(bme, 0xF7, measure_data, 0x08) != IMS_SUCCESS) return IMS_FAIL; *raw_p = ((uint32_t)measure_data[0] << 12) | ((uint32_t)measure_data[1] << 0x04) | ((uint32_t)measure_data[2] >> 0x04); *raw_t = ((uint32_t)measure_data[3] << 12) | ((uint32_t)measure_data[4] << 0x04) | ((uint32_t)measure_data[5] >> 0x04); *raw_h = ((uint32_t)measure_data[6] << 8) | ((uint32_t)measure_data[7]); return IMS_SUCCESS; } ims_ret_t ims_bme280_init(ims_bme280_t *bme) { if (!bme) return IMS_FAIL; if (ims_bme280_reset(bme) == IMS_FAIL) return IMS_FAIL; bme->cb.delay(bme->user_data, 100); if (ims_bme280_read_trim_data(bme) == IMS_FAIL) return IMS_FAIL; return IMS_SUCCESS; } ims_ret_t ims_bme280_preset_config(ims_bme280_config_t *config, ims_bme280_mode_preset_t preset) { switch (preset) { case IMS_BME280_PRESET_WEATHER: config->mode = IMS_BME280_MODE_FORCED; config->osrs_t = IMS_BME280_OSRS_1; config->osrs_p = IMS_BME280_OSRS_1; config->osrs_h = IMS_BME280_OSRS_1; config->filter = IMS_BME280_FILTER_OFF; break; case IMS_BME280_PRESET_HUMIDITY: config->mode = IMS_BME280_MODE_FORCED; config->osrs_t = IMS_BME280_OSRS_1; config->osrs_p = IMS_BME280_OSRS_SKIP; config->osrs_h = IMS_BME280_OSRS_1; config->filter = IMS_BME280_FILTER_OFF; break; case IMS_BME280_PRESET_INDOOR_NAV: config->mode = IMS_BME280_MODE_NORMAL; config->osrs_t = IMS_BME280_OSRS_2; config->osrs_p = IMS_BME280_OSRS_16; config->osrs_h = IMS_BME280_OSRS_1; config->filter = IMS_BME280_FILTER_16; break; case IMS_BME280_PRESET_GAMING: config->mode = IMS_BME280_MODE_NORMAL; config->osrs_t = IMS_BME280_OSRS_1; config->osrs_p = IMS_BME280_OSRS_4; config->osrs_h = IMS_BME280_OSRS_SKIP; config->filter = IMS_BME280_FILTER_4; break; } return IMS_SUCCESS; } ims_ret_t ims_bme280_apply_config(ims_bme280_t *bme, ims_bme280_config_t *config) { uint8_t reg_config = config->filter << 0x02; uint8_t reg_ctrl_measure = (uint8_t)((config->osrs_t << 0x05) | (config->osrs_p << 0x02) | config->mode); uint8_t reg_ctrl_hum = config->osrs_h; ims_bme280_write_register(bme, 0xF5, reg_config); ims_bme280_write_register(bme, 0xF2, reg_ctrl_hum); ims_bme280_write_register(bme, 0xF4, reg_ctrl_measure); return IMS_SUCCESS; } #ifdef IMS_CFG_DHT_BME280_ENABLE_FLOAT ims_ret_t ims_bme280_measure_float(ims_bme280_t *bme, ims_bme280_result_float_t *result) { uint32_t raw_P = 0x00; uint32_t raw_T = 0x00; uint32_t raw_H = 0x00; if (ims_bme280_measure_raw(bme, &raw_T, &raw_P, &raw_H) != IMS_SUCCESS) { return IMS_FAIL; } result->temperature = ims_bme280_compensate_T_double(bme, raw_T); result->pressure = ims_bme280_compensate_P_double(bme, raw_P); result->humidity = ims_bme280_compensate_H_double(bme, raw_H); return IMS_SUCCESS; } static double ims_bme280_compensate_T_double(ims_bme280_t *bme, int32_t adc_T) { double var1, var2, T; var1 = (((double)adc_T) / 16384.0 - ((double)bme->trim.dig_T1) / 1024.0) * ((double)bme->trim.dig_T2); var2 = ((((double)adc_T) / 131072.0 - ((double)bme->trim.dig_T1) / 8192.0) * (((double)adc_T) / 131072.0 - ((double)bme->trim.dig_T1) / 8192.0)) * ((double)bme->trim.dig_T3); bme->t_fine = (int32_t)(var1 + var2); T = (var1 + var2) / 5120.0; return T; } static double ims_bme280_compensate_P_double(ims_bme280_t *bme, int32_t adc_P) { double var1, var2, p; var1 = ((double)bme->t_fine / 2.0) - 64000.0; var2 = var1 * var1 * ((double)bme->trim.dig_P6) / 32768.0; var2 = var2 + var1 * ((double)bme->trim.dig_P5) * 2.0; var2 = (var2 / 4.0) + (((double)bme->trim.dig_P4) * 65536.0); var1 = (((double)bme->trim.dig_P3) * var1 * var1 / 524288.0 + ((double)bme->trim.dig_P2) * var1) / 524288.0; var1 = (1.0 + var1 / 32768.0) * ((double)bme->trim.dig_P1); if (var1 == 0.0) { return 0; // avoid exception caused by division by zero } p = 1048576.0 - (double)adc_P; p = (p - (var2 / 4096.0)) * 6250.0 / var1; var1 = ((double)bme->trim.dig_P9) * p * p / 2147483648.0; var2 = p * ((double)bme->trim.dig_P8) / 32768.0; p = p + (var1 + var2 + ((double)bme->trim.dig_P7)) / 16.0; return p; } static double ims_bme280_compensate_H_double(ims_bme280_t *bme, int32_t adc_H) { double var_H; var_H = (((double)bme->t_fine) - 76800.0); var_H = (adc_H - (((double)bme->trim.dig_H4) * 64.0 + ((double)bme->trim.dig_H5) / 16384.0 * var_H)) * (((double)bme->trim.dig_H2) / 65536.0 * (1.0 + ((double)bme->trim.dig_H6) / 67108864.0 * var_H * (1.0 + ((double)bme->trim.dig_H3) / 67108864.0 * var_H))); var_H = var_H * (1.0 - ((double)bme->trim.dig_H1) * var_H / 524288.0); if (var_H > 100.0) var_H = 100.0; else if (var_H < 0.0) var_H = 0.0; return var_H; } #else ims_ret_t ims_bme280_measure_int32(ims_bme280_t *bme, ims_bme280_result_int32_t *result) { uint32_t raw_P = 0x00; uint32_t raw_T = 0x00; uint32_t raw_H = 0x00; if (ims_bme280_measure_raw(bme, &raw_T, &raw_P, &raw_H) != IMS_SUCCESS) { return IMS_FAIL; } result->temperature = ims_bme280_compensate_T_int32(bme, raw_T); result->pressure = ims_bme280_compensate_P_int64(bme, raw_P); result->humidity = ims_bme280_compensate_H_int32(bme, raw_H); return IMS_SUCCESS; } static int32_t ims_bme280_compensate_T_int32(ims_bme280_t *bme, int32_t adc_T) { int32_t var1, var2, T; var1 = ((((adc_T >> 3) - ((int32_t)bme->trim.dig_T1 << 1))) * ((int32_t)bme->trim.dig_T2)) >> 11; var2 = (((((adc_T >> 4) - ((int32_t)bme->trim.dig_T1)) * ((adc_T >> 4) - ((int32_t)bme->trim.dig_T1))) >> 12) * ((int32_t)bme->trim.dig_T3)) >> 14; bme->t_fine = var1 + var2; T = (bme->t_fine * 5 + 128) >> 8; return T; } static uint32_t ims_bme280_compensate_P_int64(ims_bme280_t *bme, int32_t adc_P) { int64_t var1, var2, p; var1 = ((int64_t)bme->t_fine) - 128000; var2 = var1 * var1 * (int64_t)bme->trim.dig_P6; var2 = var2 + ((var1 * (int64_t)bme->trim.dig_P5) << 17); var2 = var2 + (((int64_t)bme->trim.dig_P4) << 35); var1 = ((var1 * var1 * (int64_t)bme->trim.dig_P3) >> 8) + ((var1 * (int64_t)bme->trim.dig_P2) << 12); var1 = (((((int64_t)1) << 47) + var1)) * ((int64_t)bme->trim.dig_P1) >> 33; if (var1 == 0) { return 0; // avoid exception caused by division by zero } p = 1048576 - adc_P; p = (((p << 31) - var2) * 3125) / var1; var1 = (((int64_t)bme->trim.dig_P9) * (p >> 13) * (p >> 13)) >> 25; var2 = (((int64_t)bme->trim.dig_P8) * p) >> 19; p = ((p + var1 + var2) >> 8) + (((int64_t)bme->trim.dig_P7) << 4); return (uint32_t)p; } static uint32_t ims_bme280_compensate_H_int32(ims_bme280_t *bme, int32_t adc_H) { int32_t v_x1_u32r; v_x1_u32r = (bme->t_fine - ((int32_t)76800)); v_x1_u32r = (((((adc_H << 14) - (((int32_t)bme->trim.dig_H4) << 20) - (((int32_t)bme->trim.dig_H5) * v_x1_u32r)) + ((int32_t)16384)) >> 15) * (((((((v_x1_u32r * ((int32_t)bme->trim.dig_H6)) >> 10) * (((v_x1_u32r * ((int32_t)bme->trim.dig_H3)) >> 11) + ((int32_t)32768))) >> 10) + ((int32_t)2097152)) * ((int32_t)bme->trim.dig_H2) + 8192) >> 14)); v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((int32_t)bme->trim.dig_H1)) >> 4)); v_x1_u32r = (v_x1_u32r < 0 ? 0 : v_x1_u32r); v_x1_u32r = (v_x1_u32r > 419430400 ? 419430400 : v_x1_u32r); return (uint32_t)(v_x1_u32r >> 12); } #endif