phy: zynqmp: Add serdes/psgtr driver

Add PSGTR driver for Xilinx ZynqMP.
The most of configurations are taken from Linux kernel psgtr driver.

USB3.0 and SGMII configurations are tested on SOM. In SGMII case also
IOU_SLCR reg is updated to get proper clock setup and signal detection
configuration.

Signed-off-by: Michal Simek <michal.simek@xilinx.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Link: https://lore.kernel.org/r/36e6e9d3baf8511af1916e91e4887032ca2b6c20.1641458978.git.michal.simek@xilinx.com
This commit is contained in:
Michal Simek 2022-01-06 09:49:41 +01:00
parent 28880b68d4
commit 1d78d68349
4 changed files with 763 additions and 0 deletions

View File

@ -611,6 +611,7 @@ F: drivers/mmc/zynq_sdhci.c
F: drivers/mtd/nand/raw/zynq_nand.c
F: drivers/net/phy/xilinx_phy.c
F: drivers/net/zynq_gem.c
F: drivers/phy/phy-zynqmp.c
F: drivers/serial/serial_zynq.c
F: drivers/reset/reset-zynqmp.c
F: drivers/rtc/zynqmp_rtc.c

View File

@ -281,6 +281,13 @@ config PHY_IMX8MQ_USB
help
Support the USB3.0 PHY in NXP i.MX8MQ SoC
config PHY_XILINX_ZYNQMP
tristate "Xilinx ZynqMP PHY driver"
depends on PHY && ARCH_ZYNQMP
help
Enable this to support ZynqMP High Speed Gigabit Transceiver
that is part of ZynqMP SoC.
source "drivers/phy/rockchip/Kconfig"
source "drivers/phy/cadence/Kconfig"
source "drivers/phy/ti/Kconfig"

View File

@ -38,5 +38,6 @@ obj-$(CONFIG_MT76X8_USB_PHY) += mt76x8-usb-phy.o
obj-$(CONFIG_PHY_DA8XX_USB) += phy-da8xx-usb.o
obj-$(CONFIG_PHY_MTK_TPHY) += phy-mtk-tphy.o
obj-$(CONFIG_PHY_IMX8MQ_USB) += phy-imx8mq-usb.o
obj-$(CONFIG_PHY_XILINX_ZYNQMP) += phy-zynqmp.o
obj-y += cadence/
obj-y += ti/

754
drivers/phy/phy-zynqmp.c Normal file
View File

@ -0,0 +1,754 @@
// SPDX-License-Identifier: GPL-2.0
/*
* phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
*
* Copyright (C) 2018-2021 Xilinx Inc.
*
* Author: Anurag Kumar Vulisha <anuragku@xilinx.com>
* Author: Subbaraya Sundeep <sundeep.lkml@gmail.com>
* Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
*/
#include <common.h>
#include <clk-uclass.h>
#include <dm.h>
#include <generic-phy.h>
#include <log.h>
#include <power-domain.h>
#include <regmap.h>
#include <syscon.h>
#include <asm/io.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/hardware.h>
#include <dm/device.h>
#include <dm/device_compat.h>
#include <dm/lists.h>
#include <dt-bindings/phy/phy.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>
/*
* Lane Registers
*/
/* TX De-emphasis parameters */
#define L0_TX_ANA_TM_18 0x0048
#define L0_TX_ANA_TM_118 0x01d8
#define L0_TX_ANA_TM_118_FORCE_17_0 BIT(0)
/* DN Resistor calibration code parameters */
#define L0_TXPMA_ST_3 0x0b0c
#define L0_DN_CALIB_CODE 0x3f
/* PMA control parameters */
#define L0_TXPMD_TM_45 0x0cb4
#define L0_TXPMD_TM_48 0x0cc0
#define L0_TXPMD_TM_45_OVER_DP_MAIN BIT(0)
#define L0_TXPMD_TM_45_ENABLE_DP_MAIN BIT(1)
#define L0_TXPMD_TM_45_OVER_DP_POST1 BIT(2)
#define L0_TXPMD_TM_45_ENABLE_DP_POST1 BIT(3)
#define L0_TXPMD_TM_45_OVER_DP_POST2 BIT(4)
#define L0_TXPMD_TM_45_ENABLE_DP_POST2 BIT(5)
/* PCS control parameters */
#define L0_TM_DIG_6 0x106c
#define L0_TM_DIS_DESCRAMBLE_DECODER 0x0f
#define L0_TX_DIG_61 0x00f4
#define L0_TM_DISABLE_SCRAMBLE_ENCODER 0x0f
/* PLL Test Mode register parameters */
#define L0_TM_PLL_DIG_37 0x2094
#define L0_TM_COARSE_CODE_LIMIT 0x10
/* PLL SSC step size offsets */
#define L0_PLL_SS_STEPS_0_LSB 0x2368
#define L0_PLL_SS_STEPS_1_MSB 0x236c
#define L0_PLL_SS_STEP_SIZE_0_LSB 0x2370
#define L0_PLL_SS_STEP_SIZE_1 0x2374
#define L0_PLL_SS_STEP_SIZE_2 0x2378
#define L0_PLL_SS_STEP_SIZE_3_MSB 0x237c
#define L0_PLL_STATUS_READ_1 0x23e4
/* SSC step size parameters */
#define STEP_SIZE_0_MASK 0xff
#define STEP_SIZE_1_MASK 0xff
#define STEP_SIZE_2_MASK 0xff
#define STEP_SIZE_3_MASK 0x3
#define STEP_SIZE_SHIFT 8
#define FORCE_STEP_SIZE 0x10
#define FORCE_STEPS 0x20
#define STEPS_0_MASK 0xff
#define STEPS_1_MASK 0x07
/* Reference clock selection parameters */
#define L0_Ln_REF_CLK_SEL(n) (0x2860 + (n) * 4)
#define L0_REF_CLK_SEL_MASK 0x8f
/* Calibration digital logic parameters */
#define L3_TM_CALIB_DIG19 0xec4c
#define L3_CALIB_DONE_STATUS 0xef14
#define L3_TM_CALIB_DIG18 0xec48
#define L3_TM_CALIB_DIG19_NSW 0x07
#define L3_TM_CALIB_DIG18_NSW 0xe0
#define L3_TM_OVERRIDE_NSW_CODE 0x20
#define L3_CALIB_DONE 0x02
#define L3_NSW_SHIFT 5
#define L3_NSW_PIPE_SHIFT 4
#define L3_NSW_CALIB_SHIFT 3
#define PHY_REG_OFFSET 0x4000
/*
* Global Registers
*/
/* Refclk selection parameters */
#define PLL_REF_SEL(n) (0x10000 + (n) * 4)
#define PLL_FREQ_MASK 0x1f
#define PLL_STATUS_LOCKED 0x10
/* Inter Connect Matrix parameters */
#define ICM_CFG0 0x10010
#define ICM_CFG1 0x10014
#define ICM_CFG0_L0_MASK 0x07
#define ICM_CFG0_L1_MASK 0x70
#define ICM_CFG1_L2_MASK 0x07
#define ICM_CFG2_L3_MASK 0x70
#define ICM_CFG_SHIFT 4
/* Inter Connect Matrix allowed protocols */
#define ICM_PROTOCOL_PD 0x0
#define ICM_PROTOCOL_PCIE 0x1
#define ICM_PROTOCOL_SATA 0x2
#define ICM_PROTOCOL_USB 0x3
#define ICM_PROTOCOL_DP 0x4
#define ICM_PROTOCOL_SGMII 0x5
/* Test Mode common reset control parameters */
#define TM_CMN_RST 0x10018
#define TM_CMN_RST_EN 0x1
#define TM_CMN_RST_SET 0x2
#define TM_CMN_RST_MASK 0x3
/* Bus width parameters */
#define TX_PROT_BUS_WIDTH 0x10040
#define RX_PROT_BUS_WIDTH 0x10044
#define PROT_BUS_WIDTH_10 0x0
#define PROT_BUS_WIDTH_20 0x1
#define PROT_BUS_WIDTH_40 0x2
#define PROT_BUS_WIDTH_MASK 0x3
#define PROT_BUS_WIDTH_SHIFT 2
/* Number of GT lanes */
#define NUM_LANES 4
/* SIOU SATA control register */
#define SATA_CONTROL_OFFSET 0x0100
/* Total number of controllers */
#define CONTROLLERS_PER_LANE 5
/* Protocol Type parameters */
enum {
XPSGTR_TYPE_USB0 = 0, /* USB controller 0 */
XPSGTR_TYPE_USB1 = 1, /* USB controller 1 */
XPSGTR_TYPE_SATA_0 = 2, /* SATA controller lane 0 */
XPSGTR_TYPE_SATA_1 = 3, /* SATA controller lane 1 */
XPSGTR_TYPE_PCIE_0 = 4, /* PCIe controller lane 0 */
XPSGTR_TYPE_PCIE_1 = 5, /* PCIe controller lane 1 */
XPSGTR_TYPE_PCIE_2 = 6, /* PCIe controller lane 2 */
XPSGTR_TYPE_PCIE_3 = 7, /* PCIe controller lane 3 */
XPSGTR_TYPE_DP_0 = 8, /* Display Port controller lane 0 */
XPSGTR_TYPE_DP_1 = 9, /* Display Port controller lane 1 */
XPSGTR_TYPE_SGMII0 = 10, /* Ethernet SGMII controller 0 */
XPSGTR_TYPE_SGMII1 = 11, /* Ethernet SGMII controller 1 */
XPSGTR_TYPE_SGMII2 = 12, /* Ethernet SGMII controller 2 */
XPSGTR_TYPE_SGMII3 = 13, /* Ethernet SGMII controller 3 */
};
/* Timeout values */
#define TIMEOUT_US 1000
#define IOU_SLCR_GEM_CLK_CTRL 0x308
#define GEM_CTRL_GEM_SGMII_MODE BIT(2)
#define GEM_CTRL_GEM_REF_SRC_SEL BIT(1)
#define IOU_SLCR_GEM_CTRL 0x360
#define GEM_CTRL_GEM_SGMII_SD BIT(0)
/**
* struct xpsgtr_ssc - structure to hold SSC settings for a lane
* @refclk_rate: PLL reference clock frequency
* @pll_ref_clk: value to be written to register for corresponding ref clk rate
* @steps: number of steps of SSC (Spread Spectrum Clock)
* @step_size: step size of each step
*/
struct xpsgtr_ssc {
u32 refclk_rate;
u8 pll_ref_clk;
u32 steps;
u32 step_size;
};
/**
* struct xpsgtr_phy - representation of a lane
* @dev: pointer to the xpsgtr_dev instance
* @refclk: reference clock index
* @type: controller which uses this lane
* @lane: lane number
* @protocol: protocol in which the lane operates
*/
struct xpsgtr_phy {
struct xpsgtr_dev *dev;
unsigned int refclk;
u8 type;
u8 lane;
u8 protocol;
};
/**
* struct xpsgtr_dev - representation of a ZynMP GT device
* @dev: pointer to device
* @serdes: serdes base address
* @siou: siou base address
* @phys: PHY lanes
* @refclk_sscs: spread spectrum settings for the reference clocks
* @clk: reference clocks
*/
struct xpsgtr_dev {
struct udevice *dev;
u8 *serdes;
u8 *siou;
struct xpsgtr_phy phys[NUM_LANES];
const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
struct clk clk[NUM_LANES];
};
/* Configuration Data */
/* lookup table to hold all settings needed for a ref clock frequency */
static const struct xpsgtr_ssc ssc_lookup[] = {
{ 19200000, 0x05, 608, 264020 },
{ 20000000, 0x06, 634, 243454 },
{ 24000000, 0x07, 760, 168973 },
{ 26000000, 0x08, 824, 143860 },
{ 27000000, 0x09, 856, 86551 },
{ 38400000, 0x0a, 1218, 65896 },
{ 40000000, 0x0b, 634, 243454 },
{ 52000000, 0x0c, 824, 143860 },
{ 100000000, 0x0d, 1058, 87533 },
{ 108000000, 0x0e, 856, 86551 },
{ 125000000, 0x0f, 992, 119497 },
{ 135000000, 0x10, 1070, 55393 },
{ 150000000, 0x11, 792, 187091 }
};
/* I/O Accessors */
static u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
{
return readl(gtr_dev->serdes + reg);
}
static void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
{
writel(value, gtr_dev->serdes + reg);
}
static void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
u32 clr, u32 set)
{
u32 value = xpsgtr_read(gtr_dev, reg);
value &= ~clr;
value |= set;
xpsgtr_write(gtr_dev, reg, value);
}
static u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
{
void __iomem *addr = gtr_phy->dev->serdes
+ gtr_phy->lane * PHY_REG_OFFSET + reg;
return readl(addr);
}
static void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
u32 reg, u32 value)
{
void __iomem *addr = gtr_phy->dev->serdes
+ gtr_phy->lane * PHY_REG_OFFSET + reg;
writel(value, addr);
}
static void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
u32 reg, u32 clr, u32 set)
{
void __iomem *addr = gtr_phy->dev->serdes
+ gtr_phy->lane * PHY_REG_OFFSET + reg;
writel((readl(addr) & ~clr) | set, addr);
}
/* Configure PLL and spread-sprectrum clock. */
static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
{
const struct xpsgtr_ssc *ssc;
u32 step_size;
ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
step_size = ssc->step_size;
xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
PLL_FREQ_MASK, ssc->pll_ref_clk);
/* Enable lane clock sharing, if required */
if (gtr_phy->refclk != gtr_phy->lane) {
/* Lane3 Ref Clock Selection Register */
xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk);
}
/* SSC step size [7:0] */
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK);
/* SSC step size [15:8] */
step_size >>= STEP_SIZE_SHIFT;
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK);
/* SSC step size [23:16] */
step_size >>= STEP_SIZE_SHIFT;
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK);
/* SSC steps [7:0] */
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
STEPS_0_MASK, ssc->steps & STEPS_0_MASK);
/* SSC steps [10:8] */
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
STEPS_1_MASK,
(ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);
/* SSC step size [24:25] */
step_size >>= STEP_SIZE_SHIFT;
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) |
FORCE_STEP_SIZE | FORCE_STEPS);
}
/* Configure the lane protocol. */
static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
{
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
u8 protocol = gtr_phy->protocol;
switch (gtr_phy->lane) {
case 0:
xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol);
break;
case 1:
xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
protocol << ICM_CFG_SHIFT);
break;
case 2:
xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol);
break;
case 3:
xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
protocol << ICM_CFG_SHIFT);
break;
default:
/* We already checked 0 <= lane <= 3 */
break;
}
}
/* Bypass (de)scrambler and 8b/10b decoder and encoder. */
static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
{
xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
}
/* SGMII-specific initialization. */
static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
{
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
u32 shift = gtr_phy->lane * PROT_BUS_WIDTH_SHIFT;
/* Set SGMII protocol TX and RX bus width to 10 bits. */
xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, PROT_BUS_WIDTH_MASK << shift,
PROT_BUS_WIDTH_10 << shift);
xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, PROT_BUS_WIDTH_MASK << shift,
PROT_BUS_WIDTH_10 << shift);
xpsgtr_bypass_scrambler_8b10b(gtr_phy);
/*
* Below code is just temporary solution till we have a way how to
* do it via firmware interface in sync with Linux. Till that happen
* this is the most sensible thing to do here.
*/
/* GEM I/O Clock Control */
clrsetbits_le32(ZYNQMP_IOU_SLCR_BASEADDR + IOU_SLCR_GEM_CLK_CTRL,
0xf << shift,
(GEM_CTRL_GEM_SGMII_MODE | GEM_CTRL_GEM_REF_SRC_SEL) <<
shift);
/* Setup signal detect */
clrsetbits_le32(ZYNQMP_IOU_SLCR_BASEADDR + IOU_SLCR_GEM_CTRL,
PROT_BUS_WIDTH_MASK << shift,
GEM_CTRL_GEM_SGMII_SD << shift);
}
static int xpsgtr_init(struct phy *x)
{
struct xpsgtr_dev *gtr_dev = dev_get_priv(x->dev);
struct xpsgtr_phy *gtr_phy;
u32 phy_lane = x->id;
gtr_phy = &gtr_dev->phys[phy_lane];
/* Enable coarse code saturation limiting logic. */
xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);
/*
* Configure the PLL, the lane protocol, and perform protocol-specific
* initialization.
*/
xpsgtr_configure_pll(gtr_phy);
xpsgtr_lane_set_protocol(gtr_phy);
switch (gtr_phy->protocol) {
case ICM_PROTOCOL_SGMII:
xpsgtr_phy_init_sgmii(gtr_phy);
break;
case ICM_PROTOCOL_DP:
case ICM_PROTOCOL_SATA:
return -EINVAL;
}
dev_dbg(gtr_dev->dev, "lane %u (type %u, protocol %u): init done\n",
gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
return 0;
}
/* Wait for the PLL to lock (with a timeout). */
static int xpsgtr_wait_pll_lock(struct phy *phy)
{
struct xpsgtr_dev *gtr_dev = dev_get_priv(phy->dev);
struct xpsgtr_phy *gtr_phy;
u32 phy_lane = phy->id;
int ret = 0;
unsigned int timeout = TIMEOUT_US;
gtr_phy = &gtr_dev->phys[phy_lane];
dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");
while (1) {
u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
ret = 0;
break;
}
if (--timeout == 0) {
ret = -ETIMEDOUT;
break;
}
udelay(1);
}
if (ret == -ETIMEDOUT)
dev_err(gtr_dev->dev,
"lane %u (type %u, protocol %u): PLL lock timeout\n",
gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
return ret;
}
static int xpsgtr_power_on(struct phy *phy)
{
struct xpsgtr_dev *gtr_dev = dev_get_priv(phy->dev);
struct xpsgtr_phy *gtr_phy;
u32 phy_lane = phy->id;
int ret = 0;
gtr_phy = &gtr_dev->phys[phy_lane];
/*
* Wait for the PLL to lock. For DP, only wait on DP0 to avoid
* cumulating waits for both lanes. The user is expected to initialize
* lane 0 last.
*/
if (gtr_phy->protocol != ICM_PROTOCOL_DP ||
gtr_phy->type == XPSGTR_TYPE_DP_0)
ret = xpsgtr_wait_pll_lock(phy);
return ret;
}
/*
* OF Xlate Support
*/
/* Set the lane type and protocol based on the PHY type and instance number. */
static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
unsigned int phy_instance)
{
unsigned int num_phy_types;
const int *phy_types;
switch (phy_type) {
case PHY_TYPE_SATA: {
static const int types[] = {
XPSGTR_TYPE_SATA_0,
XPSGTR_TYPE_SATA_1,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_SATA;
break;
}
case PHY_TYPE_USB3: {
static const int types[] = {
XPSGTR_TYPE_USB0,
XPSGTR_TYPE_USB1,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_USB;
break;
}
case PHY_TYPE_DP: {
static const int types[] = {
XPSGTR_TYPE_DP_0,
XPSGTR_TYPE_DP_1,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_DP;
break;
}
case PHY_TYPE_PCIE: {
static const int types[] = {
XPSGTR_TYPE_PCIE_0,
XPSGTR_TYPE_PCIE_1,
XPSGTR_TYPE_PCIE_2,
XPSGTR_TYPE_PCIE_3,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_PCIE;
break;
}
case PHY_TYPE_SGMII: {
static const int types[] = {
XPSGTR_TYPE_SGMII0,
XPSGTR_TYPE_SGMII1,
XPSGTR_TYPE_SGMII2,
XPSGTR_TYPE_SGMII3,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_SGMII;
break;
}
default:
return -EINVAL;
}
if (phy_instance >= num_phy_types)
return -EINVAL;
gtr_phy->type = phy_types[phy_instance];
return 0;
}
/*
* Valid combinations of controllers and lanes (Interconnect Matrix).
*/
static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
{ XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 },
{ XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0,
XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 },
{ XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 },
{ XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1,
XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 }
};
/* Translate OF phandle and args to PHY instance. */
static int xpsgtr_of_xlate(struct phy *x,
struct ofnode_phandle_args *args)
{
struct xpsgtr_dev *gtr_dev = dev_get_priv(x->dev);
struct xpsgtr_phy *gtr_phy;
struct udevice *dev = x->dev;
unsigned int phy_instance;
unsigned int phy_lane;
unsigned int phy_type;
unsigned int refclk;
unsigned int i;
int ret;
if (args->args_count != 4) {
dev_err(dev, "Invalid number of cells in 'phy' property\n");
return -EINVAL;
}
/*
* Get the PHY parameters from the OF arguments and derive the lane
* type.
*/
phy_lane = args->args[0];
if (phy_lane >= NUM_LANES) {
dev_err(dev, "Invalid lane number %u\n", phy_lane);
return -EINVAL;
}
gtr_phy = &gtr_dev->phys[phy_lane];
phy_type = args->args[1];
phy_instance = args->args[2];
ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
if (ret) {
dev_err(dev, "Invalid PHY type and/or instance\n");
return ret;
}
refclk = args->args[3];
if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
!gtr_dev->refclk_sscs[refclk]) {
dev_err(dev, "Invalid reference clock number %u\n", refclk);
return -EINVAL;
}
gtr_phy->refclk = refclk;
/* This is difference compare to Linux */
gtr_phy->dev = gtr_dev;
gtr_phy->lane = phy_lane;
/*
* Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
* is allowed to operate on the lane.
*/
for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
if (icm_matrix[phy_lane][i] == gtr_phy->type) {
x->id = phy_lane;
return 0;
}
}
return -EINVAL;
}
/*
* Probe & Platform Driver
*/
static int xpsgtr_get_ref_clocks(struct udevice *dev)
{
unsigned int refclk;
struct xpsgtr_dev *gtr_dev = dev_get_priv(dev);
int ret;
for (refclk = 0; refclk < NUM_LANES; ++refclk) {
int i;
u32 rate;
char name[8];
struct clk *clk = &gtr_dev->clk[refclk];
snprintf(name, sizeof(name), "ref%u", refclk);
dev_dbg(dev, "Checking name: %s\n", name);
ret = clk_get_by_name(dev, name, clk);
if (ret == -ENODATA) {
dev_dbg(dev, "%s clock not specified (err %d)\n",
name, ret);
continue;
} else if (ret) {
dev_dbg(dev, "couldn't get clock %s (err %d)\n",
name, ret);
return ret;
}
rate = clk_get_rate(clk);
dev_dbg(dev, "clk rate %d\n", rate);
ret = clk_enable(clk);
if (ret) {
dev_err(dev, "failed to enable refclk %d clock\n",
refclk);
return ret;
}
for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
if (rate == ssc_lookup[i].refclk_rate) {
gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
dev_dbg(dev, "Found rate %d\n", i);
break;
}
}
if (i == ARRAY_SIZE(ssc_lookup)) {
dev_err(dev,
"Invalid rate %u for reference clock %u\n",
rate, refclk);
return -EINVAL;
}
}
return 0;
}
static int xpsgtr_probe(struct udevice *dev)
{
struct xpsgtr_dev *gtr_dev = dev_get_priv(dev);
gtr_dev->serdes = dev_remap_addr_name(dev, "serdes");
if (!gtr_dev->serdes)
return -EINVAL;
gtr_dev->siou = dev_remap_addr_name(dev, "siou");
if (!gtr_dev->siou)
return -EINVAL;
gtr_dev->dev = dev;
return xpsgtr_get_ref_clocks(dev);
}
static const struct udevice_id xpsgtr_phy_ids[] = {
{ .compatible = "xlnx,zynqmp-psgtr-v1.1", },
{ }
};
static const struct phy_ops xpsgtr_phy_ops = {
.init = xpsgtr_init,
.of_xlate = xpsgtr_of_xlate,
.power_on = xpsgtr_power_on,
};
U_BOOT_DRIVER(psgtr_phy) = {
.name = "psgtr_phy",
.id = UCLASS_PHY,
.of_match = xpsgtr_phy_ids,
.ops = &xpsgtr_phy_ops,
.probe = xpsgtr_probe,
.priv_auto = sizeof(struct xpsgtr_dev),
};