u-boot/drivers/clk/stm32/clk-stm32-core.c
Gabriel Fernandez c8df960c8d clk: stm32mp13: introduce STM32MP13 RCC driver
STM32MP13 RCC driver uses Common Clock Framework and also a
'clk-stm32-core' API. Then STM32MPx RCC driver will contain only data
configuration (gates, mux, dividers and the way to check security)
or some specific clocks.
This API will be used by all new other generations of ST Socs.

Signed-off-by: Gabriel Fernandez <gabriel.fernandez@foss.st.com>
Reviewed-by: Patrick Delaunay <patrick.delaunay@foss.st.com>
Reviewed-by: Sean Anderson <seanga2@gmail.com>
Tested-by: Patrick Delaunay <patrick.delaunay@foss.st.com>
Reviewed-by: Patrice Chotard <patrice.chotard@foss.st.com>
2022-12-07 16:49:35 +01:00

269 lines
6.2 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later OR BSD-3-Clause
/*
* Copyright (C) 2022, STMicroelectronics - All Rights Reserved
* Author: Gabriel Fernandez <gabriel.fernandez@foss.st.com> for STMicroelectronics.
*/
#define LOG_CATEGORY UCLASS_CLK
#include <common.h>
#include <clk-uclass.h>
#include <dm.h>
#include <log.h>
#include <asm/io.h>
#include <dm/device_compat.h>
#include <linux/clk-provider.h>
#include "clk-stm32-core.h"
int stm32_rcc_init(struct udevice *dev,
const struct stm32_clock_match_data *data)
{
int i;
u8 *cpt;
struct stm32mp_rcc_priv *priv = dev_get_priv(dev);
fdt_addr_t base = dev_read_addr(dev->parent);
const struct clk_stm32_clock_data *clock_data = data->clock_data;
if (base == FDT_ADDR_T_NONE)
return -EINVAL;
priv->base = (void __iomem *)base;
/* allocate the counter of user for internal RCC gates, common for several user */
cpt = kzalloc(clock_data->num_gates, GFP_KERNEL);
if (!cpt)
return -ENOMEM;
priv->gate_cpt = cpt;
priv->data = clock_data;
for (i = 0; i < data->num_clocks; i++) {
const struct clock_config *cfg = &data->tab_clocks[i];
struct clk *clk = ERR_PTR(-ENOENT);
if (data->check_security && data->check_security(priv->base, cfg))
continue;
if (cfg->setup) {
clk = cfg->setup(dev, cfg);
clk->id = cfg->id;
} else {
dev_err(dev, "failed to register clock %s\n", cfg->name);
return -ENOENT;
}
}
return 0;
}
ulong clk_stm32_get_rate_by_name(const char *name)
{
struct udevice *dev;
if (!uclass_get_device_by_name(UCLASS_CLK, name, &dev)) {
struct clk *clk = dev_get_clk_ptr(dev);
return clk_get_rate(clk);
}
return 0;
}
const struct clk_ops stm32_clk_ops = {
.enable = ccf_clk_enable,
.disable = ccf_clk_disable,
.get_rate = ccf_clk_get_rate,
.set_rate = ccf_clk_set_rate,
};
#define RCC_MP_ENCLRR_OFFSET 4
static void clk_stm32_gate_set_state(void __iomem *base,
const struct clk_stm32_clock_data *data,
u8 *cpt, u16 gate_id, int enable)
{
const struct stm32_gate_cfg *gate_cfg = &data->gates[gate_id];
void __iomem *addr = base + gate_cfg->reg_off;
u8 set_clr = gate_cfg->set_clr ? RCC_MP_ENCLRR_OFFSET : 0;
if (enable) {
if (cpt[gate_id]++ > 0)
return;
if (set_clr)
writel(BIT(gate_cfg->bit_idx), addr);
else
writel(readl(addr) | BIT(gate_cfg->bit_idx), addr);
} else {
if (--cpt[gate_id] > 0)
return;
if (set_clr)
writel(BIT(gate_cfg->bit_idx), addr + set_clr);
else
writel(readl(addr) & ~BIT(gate_cfg->bit_idx), addr);
}
}
static int clk_stm32_gate_enable(struct clk *clk)
{
struct clk_stm32_gate *stm32_gate = to_clk_stm32_gate(clk);
struct stm32mp_rcc_priv *priv = stm32_gate->priv;
clk_stm32_gate_set_state(priv->base, priv->data, priv->gate_cpt,
stm32_gate->gate_id, 1);
return 0;
}
static int clk_stm32_gate_disable(struct clk *clk)
{
struct clk_stm32_gate *stm32_gate = to_clk_stm32_gate(clk);
struct stm32mp_rcc_priv *priv = stm32_gate->priv;
clk_stm32_gate_set_state(priv->base, priv->data, priv->gate_cpt,
stm32_gate->gate_id, 0);
return 0;
}
static const struct clk_ops clk_stm32_gate_ops = {
.enable = clk_stm32_gate_enable,
.disable = clk_stm32_gate_disable,
.get_rate = clk_generic_get_rate,
};
#define UBOOT_DM_CLK_STM32_GATE "clk_stm32_gate"
U_BOOT_DRIVER(clk_stm32_gate) = {
.name = UBOOT_DM_CLK_STM32_GATE,
.id = UCLASS_CLK,
.ops = &clk_stm32_gate_ops,
};
struct clk *clk_stm32_gate_register(struct udevice *dev,
const struct clock_config *cfg)
{
struct stm32mp_rcc_priv *priv = dev_get_priv(dev);
struct stm32_clk_gate_cfg *clk_cfg = cfg->clock_cfg;
struct clk_stm32_gate *stm32_gate;
struct clk *clk;
int ret;
stm32_gate = kzalloc(sizeof(*stm32_gate), GFP_KERNEL);
if (!stm32_gate)
return ERR_PTR(-ENOMEM);
stm32_gate->priv = priv;
stm32_gate->gate_id = clk_cfg->gate_id;
clk = &stm32_gate->clk;
clk->flags = cfg->flags;
ret = clk_register(clk, UBOOT_DM_CLK_STM32_GATE,
cfg->name, cfg->parent_name);
if (ret) {
kfree(stm32_gate);
return ERR_PTR(ret);
}
return clk;
}
struct clk *
clk_stm32_register_composite(struct udevice *dev,
const struct clock_config *cfg)
{
struct stm32_clk_composite_cfg *composite = cfg->clock_cfg;
const char *const *parent_names;
int num_parents;
struct clk *clk = ERR_PTR(-ENOMEM);
struct clk_mux *mux = NULL;
struct clk_stm32_gate *gate = NULL;
struct clk_divider *div = NULL;
struct clk *mux_clk = NULL;
const struct clk_ops *mux_ops = NULL;
struct clk *gate_clk = NULL;
const struct clk_ops *gate_ops = NULL;
struct clk *div_clk = NULL;
const struct clk_ops *div_ops = NULL;
struct stm32mp_rcc_priv *priv = dev_get_priv(dev);
const struct clk_stm32_clock_data *data = priv->data;
if (composite->mux_id != NO_STM32_MUX) {
const struct stm32_mux_cfg *mux_cfg;
mux = kzalloc(sizeof(*mux), GFP_KERNEL);
if (!mux)
goto fail;
mux_cfg = &data->muxes[composite->mux_id];
mux->reg = priv->base + mux_cfg->reg_off;
mux->shift = mux_cfg->shift;
mux->mask = BIT(mux_cfg->width) - 1;
mux->num_parents = mux_cfg->num_parents;
mux->flags = 0;
mux->parent_names = mux_cfg->parent_names;
mux_clk = &mux->clk;
mux_ops = &clk_mux_ops;
parent_names = mux_cfg->parent_names;
num_parents = mux_cfg->num_parents;
} else {
parent_names = &cfg->parent_name;
num_parents = 1;
}
if (composite->div_id != NO_STM32_DIV) {
const struct stm32_div_cfg *div_cfg;
div = kzalloc(sizeof(*div), GFP_KERNEL);
if (!div)
goto fail;
div_cfg = &data->dividers[composite->div_id];
div->reg = priv->base + div_cfg->reg_off;
div->shift = div_cfg->shift;
div->width = div_cfg->width;
div->width = div_cfg->width;
div->flags = div_cfg->div_flags;
div->table = div_cfg->table;
div_clk = &div->clk;
div_ops = &clk_divider_ops;
}
if (composite->gate_id != NO_STM32_GATE) {
gate = kzalloc(sizeof(*gate), GFP_KERNEL);
if (!gate)
goto fail;
gate->priv = priv;
gate->gate_id = composite->gate_id;
gate_clk = &gate->clk;
gate_ops = &clk_stm32_gate_ops;
}
clk = clk_register_composite(NULL, cfg->name,
parent_names, num_parents,
mux_clk, mux_ops,
div_clk, div_ops,
gate_clk, gate_ops,
cfg->flags);
if (IS_ERR(clk))
goto fail;
return clk;
fail:
kfree(gate);
kfree(div);
kfree(mux);
return ERR_CAST(clk);
}