u-boot/boot/bootm.c
Marek Vasut a4df06e41f boot: fdt: Change type of env_get_bootm_low() to phys_addr_t
Change type of ulong env_get_bootm_low() to phys_addr_t env_get_bootm_low().
The PPC/LS systems already treat env_get_bootm_low() result as phys_addr_t,
while the function itself still returns ulong. This is potentially dangerous
on 64bit systems, where ulong might not be large enough to hold the content
of "bootm_low" environment variable. Fix it by using phys_addr_t, similar to
what env_get_bootm_size() does, which returns phys_size_t .

Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reported-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Marek Vasut <marek.vasut+renesas@mailbox.org>
2024-04-11 09:38:57 -06:00

1284 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2000-2009
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*/
#ifndef USE_HOSTCC
#include <common.h>
#include <bootm.h>
#include <bootstage.h>
#include <cli.h>
#include <command.h>
#include <cpu_func.h>
#include <env.h>
#include <errno.h>
#include <fdt_support.h>
#include <irq_func.h>
#include <lmb.h>
#include <log.h>
#include <malloc.h>
#include <mapmem.h>
#include <net.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <linux/sizes.h>
#include <tpm-v2.h>
#if defined(CONFIG_CMD_USB)
#include <usb.h>
#endif
#else
#include "mkimage.h"
#endif
#include <bootm.h>
#include <image.h>
#define MAX_CMDLINE_SIZE SZ_4K
#define IH_INITRD_ARCH IH_ARCH_DEFAULT
#ifndef USE_HOSTCC
DECLARE_GLOBAL_DATA_PTR;
struct bootm_headers images; /* pointers to os/initrd/fdt images */
__weak void board_quiesce_devices(void)
{
}
#if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
/**
* image_get_kernel - verify legacy format kernel image
* @img_addr: in RAM address of the legacy format image to be verified
* @verify: data CRC verification flag
*
* image_get_kernel() verifies legacy image integrity and returns pointer to
* legacy image header if image verification was completed successfully.
*
* returns:
* pointer to a legacy image header if valid image was found
* otherwise return NULL
*/
static struct legacy_img_hdr *image_get_kernel(ulong img_addr, int verify)
{
struct legacy_img_hdr *hdr = (struct legacy_img_hdr *)img_addr;
if (!image_check_magic(hdr)) {
puts("Bad Magic Number\n");
bootstage_error(BOOTSTAGE_ID_CHECK_MAGIC);
return NULL;
}
bootstage_mark(BOOTSTAGE_ID_CHECK_HEADER);
if (!image_check_hcrc(hdr)) {
puts("Bad Header Checksum\n");
bootstage_error(BOOTSTAGE_ID_CHECK_HEADER);
return NULL;
}
bootstage_mark(BOOTSTAGE_ID_CHECK_CHECKSUM);
image_print_contents(hdr);
if (verify) {
puts(" Verifying Checksum ... ");
if (!image_check_dcrc(hdr)) {
printf("Bad Data CRC\n");
bootstage_error(BOOTSTAGE_ID_CHECK_CHECKSUM);
return NULL;
}
puts("OK\n");
}
bootstage_mark(BOOTSTAGE_ID_CHECK_ARCH);
if (!image_check_target_arch(hdr)) {
printf("Unsupported Architecture 0x%x\n", image_get_arch(hdr));
bootstage_error(BOOTSTAGE_ID_CHECK_ARCH);
return NULL;
}
return hdr;
}
#endif
/**
* boot_get_kernel() - find kernel image
*
* @addr_fit: first argument to bootm: address, fit configuration, etc.
* @os_data: pointer to a ulong variable, will hold os data start address
* @os_len: pointer to a ulong variable, will hold os data length
* address and length, otherwise NULL
* pointer to image header if valid image was found, plus kernel start
* @kernp: image header if valid image was found, otherwise NULL
*
* boot_get_kernel() tries to find a kernel image, verifies its integrity
* and locates kernel data.
*
* Return: 0 on success, -ve on error. -EPROTOTYPE means that the image is in
* a wrong or unsupported format
*/
static int boot_get_kernel(const char *addr_fit, struct bootm_headers *images,
ulong *os_data, ulong *os_len, const void **kernp)
{
#if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
struct legacy_img_hdr *hdr;
#endif
ulong img_addr;
const void *buf;
const char *fit_uname_config = NULL, *fit_uname_kernel = NULL;
#if CONFIG_IS_ENABLED(FIT)
int os_noffset;
#endif
#ifdef CONFIG_ANDROID_BOOT_IMAGE
const void *boot_img;
const void *vendor_boot_img;
#endif
img_addr = genimg_get_kernel_addr_fit(addr_fit, &fit_uname_config,
&fit_uname_kernel);
if (IS_ENABLED(CONFIG_CMD_BOOTM_PRE_LOAD))
img_addr += image_load_offset;
bootstage_mark(BOOTSTAGE_ID_CHECK_MAGIC);
/* check image type, for FIT images get FIT kernel node */
*os_data = *os_len = 0;
buf = map_sysmem(img_addr, 0);
switch (genimg_get_format(buf)) {
#if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
case IMAGE_FORMAT_LEGACY:
printf("## Booting kernel from Legacy Image at %08lx ...\n",
img_addr);
hdr = image_get_kernel(img_addr, images->verify);
if (!hdr)
return -EINVAL;
bootstage_mark(BOOTSTAGE_ID_CHECK_IMAGETYPE);
/* get os_data and os_len */
switch (image_get_type(hdr)) {
case IH_TYPE_KERNEL:
case IH_TYPE_KERNEL_NOLOAD:
*os_data = image_get_data(hdr);
*os_len = image_get_data_size(hdr);
break;
case IH_TYPE_MULTI:
image_multi_getimg(hdr, 0, os_data, os_len);
break;
case IH_TYPE_STANDALONE:
*os_data = image_get_data(hdr);
*os_len = image_get_data_size(hdr);
break;
default:
bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE);
return -EPROTOTYPE;
}
/*
* copy image header to allow for image overwrites during
* kernel decompression.
*/
memmove(&images->legacy_hdr_os_copy, hdr,
sizeof(struct legacy_img_hdr));
/* save pointer to image header */
images->legacy_hdr_os = hdr;
images->legacy_hdr_valid = 1;
bootstage_mark(BOOTSTAGE_ID_DECOMP_IMAGE);
break;
#endif
#if CONFIG_IS_ENABLED(FIT)
case IMAGE_FORMAT_FIT:
os_noffset = fit_image_load(images, img_addr,
&fit_uname_kernel, &fit_uname_config,
IH_ARCH_DEFAULT, IH_TYPE_KERNEL,
BOOTSTAGE_ID_FIT_KERNEL_START,
FIT_LOAD_IGNORED, os_data, os_len);
if (os_noffset < 0)
return -ENOENT;
images->fit_hdr_os = map_sysmem(img_addr, 0);
images->fit_uname_os = fit_uname_kernel;
images->fit_uname_cfg = fit_uname_config;
images->fit_noffset_os = os_noffset;
break;
#endif
#ifdef CONFIG_ANDROID_BOOT_IMAGE
case IMAGE_FORMAT_ANDROID: {
int ret;
boot_img = buf;
vendor_boot_img = NULL;
if (IS_ENABLED(CONFIG_CMD_ABOOTIMG)) {
boot_img = map_sysmem(get_abootimg_addr(), 0);
vendor_boot_img = map_sysmem(get_avendor_bootimg_addr(), 0);
}
printf("## Booting Android Image at 0x%08lx ...\n", img_addr);
ret = android_image_get_kernel(boot_img, vendor_boot_img,
images->verify, os_data, os_len);
if (IS_ENABLED(CONFIG_CMD_ABOOTIMG)) {
unmap_sysmem(vendor_boot_img);
unmap_sysmem(boot_img);
}
if (ret)
return ret;
break;
}
#endif
default:
bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE);
return -EPROTOTYPE;
}
debug(" kernel data at 0x%08lx, len = 0x%08lx (%ld)\n",
*os_data, *os_len, *os_len);
*kernp = buf;
return 0;
}
#ifdef CONFIG_LMB
static void boot_start_lmb(struct bootm_headers *images)
{
phys_addr_t mem_start;
phys_size_t mem_size;
mem_start = env_get_bootm_low();
mem_size = env_get_bootm_size();
lmb_init_and_reserve_range(&images->lmb, mem_start,
mem_size, NULL);
}
#else
#define lmb_reserve(lmb, base, size)
static inline void boot_start_lmb(struct bootm_headers *images) { }
#endif
static int bootm_start(void)
{
memset((void *)&images, 0, sizeof(images));
images.verify = env_get_yesno("verify");
boot_start_lmb(&images);
bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start");
images.state = BOOTM_STATE_START;
return 0;
}
static ulong bootm_data_addr(const char *addr_str)
{
ulong addr;
if (addr_str)
addr = hextoul(addr_str, NULL);
else
addr = image_load_addr;
return addr;
}
/**
* bootm_pre_load() - Handle the pre-load processing
*
* This can be used to do a full signature check of the image, for example.
* It calls image_pre_load() with the data address of the image to check.
*
* @addr_str: String containing load address in hex, or NULL to use
* image_load_addr
* Return: 0 if OK, CMD_RET_FAILURE on failure
*/
static int bootm_pre_load(const char *addr_str)
{
ulong data_addr = bootm_data_addr(addr_str);
int ret = 0;
if (IS_ENABLED(CONFIG_CMD_BOOTM_PRE_LOAD))
ret = image_pre_load(data_addr);
if (ret)
ret = CMD_RET_FAILURE;
return ret;
}
/**
* bootm_find_os(): Find the OS to boot
*
* @cmd_name: Command name that started this boot, e.g. "bootm"
* @addr_fit: Address and/or FIT specifier (first arg of bootm command)
* Return: 0 on success, -ve on error
*/
static int bootm_find_os(const char *cmd_name, const char *addr_fit)
{
const void *os_hdr;
#ifdef CONFIG_ANDROID_BOOT_IMAGE
const void *vendor_boot_img;
const void *boot_img;
#endif
bool ep_found = false;
int ret;
/* get kernel image header, start address and length */
ret = boot_get_kernel(addr_fit, &images, &images.os.image_start,
&images.os.image_len, &os_hdr);
if (ret) {
if (ret == -EPROTOTYPE)
printf("Wrong Image Type for %s command\n", cmd_name);
printf("ERROR %dE: can't get kernel image!\n", ret);
return 1;
}
/* get image parameters */
switch (genimg_get_format(os_hdr)) {
#if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
case IMAGE_FORMAT_LEGACY:
images.os.type = image_get_type(os_hdr);
images.os.comp = image_get_comp(os_hdr);
images.os.os = image_get_os(os_hdr);
images.os.end = image_get_image_end(os_hdr);
images.os.load = image_get_load(os_hdr);
images.os.arch = image_get_arch(os_hdr);
break;
#endif
#if CONFIG_IS_ENABLED(FIT)
case IMAGE_FORMAT_FIT:
if (fit_image_get_type(images.fit_hdr_os,
images.fit_noffset_os,
&images.os.type)) {
puts("Can't get image type!\n");
bootstage_error(BOOTSTAGE_ID_FIT_TYPE);
return 1;
}
if (fit_image_get_comp(images.fit_hdr_os,
images.fit_noffset_os,
&images.os.comp)) {
puts("Can't get image compression!\n");
bootstage_error(BOOTSTAGE_ID_FIT_COMPRESSION);
return 1;
}
if (fit_image_get_os(images.fit_hdr_os, images.fit_noffset_os,
&images.os.os)) {
puts("Can't get image OS!\n");
bootstage_error(BOOTSTAGE_ID_FIT_OS);
return 1;
}
if (fit_image_get_arch(images.fit_hdr_os,
images.fit_noffset_os,
&images.os.arch)) {
puts("Can't get image ARCH!\n");
return 1;
}
images.os.end = fit_get_end(images.fit_hdr_os);
if (fit_image_get_load(images.fit_hdr_os, images.fit_noffset_os,
&images.os.load)) {
puts("Can't get image load address!\n");
bootstage_error(BOOTSTAGE_ID_FIT_LOADADDR);
return 1;
}
break;
#endif
#ifdef CONFIG_ANDROID_BOOT_IMAGE
case IMAGE_FORMAT_ANDROID:
boot_img = os_hdr;
vendor_boot_img = NULL;
if (IS_ENABLED(CONFIG_CMD_ABOOTIMG)) {
boot_img = map_sysmem(get_abootimg_addr(), 0);
vendor_boot_img = map_sysmem(get_avendor_bootimg_addr(), 0);
}
images.os.type = IH_TYPE_KERNEL;
images.os.comp = android_image_get_kcomp(boot_img, vendor_boot_img);
images.os.os = IH_OS_LINUX;
images.os.end = android_image_get_end(boot_img, vendor_boot_img);
images.os.load = android_image_get_kload(boot_img, vendor_boot_img);
images.ep = images.os.load;
ep_found = true;
if (IS_ENABLED(CONFIG_CMD_ABOOTIMG)) {
unmap_sysmem(vendor_boot_img);
unmap_sysmem(boot_img);
}
break;
#endif
default:
puts("ERROR: unknown image format type!\n");
return 1;
}
/* If we have a valid setup.bin, we will use that for entry (x86) */
if (images.os.arch == IH_ARCH_I386 ||
images.os.arch == IH_ARCH_X86_64) {
ulong len;
ret = boot_get_setup(&images, IH_ARCH_I386, &images.ep, &len);
if (ret < 0 && ret != -ENOENT) {
puts("Could not find a valid setup.bin for x86\n");
return 1;
}
/* Kernel entry point is the setup.bin */
} else if (images.legacy_hdr_valid) {
images.ep = image_get_ep(&images.legacy_hdr_os_copy);
#if CONFIG_IS_ENABLED(FIT)
} else if (images.fit_uname_os) {
int ret;
ret = fit_image_get_entry(images.fit_hdr_os,
images.fit_noffset_os, &images.ep);
if (ret) {
puts("Can't get entry point property!\n");
return 1;
}
#endif
} else if (!ep_found) {
puts("Could not find kernel entry point!\n");
return 1;
}
if (images.os.type == IH_TYPE_KERNEL_NOLOAD) {
images.os.load = images.os.image_start;
images.ep += images.os.image_start;
}
images.os.start = map_to_sysmem(os_hdr);
return 0;
}
/**
* check_overlap() - Check if an image overlaps the OS
*
* @name: Name of image to check (used to print error)
* @base: Base address of image
* @end: End address of image (+1)
* @os_start: Start of OS
* @os_size: Size of OS in bytes
* Return: 0 if OK, -EXDEV if the image overlaps the OS
*/
static int check_overlap(const char *name, ulong base, ulong end,
ulong os_start, ulong os_size)
{
ulong os_end;
if (!base)
return 0;
os_end = os_start + os_size;
if ((base >= os_start && base < os_end) ||
(end > os_start && end <= os_end) ||
(base < os_start && end >= os_end)) {
printf("ERROR: %s image overlaps OS image (OS=%lx..%lx)\n",
name, os_start, os_end);
return -EXDEV;
}
return 0;
}
int bootm_find_images(ulong img_addr, const char *conf_ramdisk,
const char *conf_fdt, ulong start, ulong size)
{
const char *select = conf_ramdisk;
char addr_str[17];
void *buf;
int ret;
if (IS_ENABLED(CONFIG_ANDROID_BOOT_IMAGE)) {
/* Look for an Android boot image */
buf = map_sysmem(images.os.start, 0);
if (buf && genimg_get_format(buf) == IMAGE_FORMAT_ANDROID) {
strcpy(addr_str, simple_xtoa(img_addr));
select = addr_str;
}
}
if (conf_ramdisk)
select = conf_ramdisk;
/* find ramdisk */
ret = boot_get_ramdisk(select, &images, IH_INITRD_ARCH,
&images.rd_start, &images.rd_end);
if (ret) {
puts("Ramdisk image is corrupt or invalid\n");
return 1;
}
/* check if ramdisk overlaps OS image */
if (check_overlap("RD", images.rd_start, images.rd_end, start, size))
return 1;
if (CONFIG_IS_ENABLED(OF_LIBFDT)) {
buf = map_sysmem(img_addr, 0);
/* find flattened device tree */
ret = boot_get_fdt(buf, conf_fdt, IH_ARCH_DEFAULT, &images,
&images.ft_addr, &images.ft_len);
if (ret) {
puts("Could not find a valid device tree\n");
return 1;
}
/* check if FDT overlaps OS image */
if (check_overlap("FDT", map_to_sysmem(images.ft_addr),
images.ft_len, start, size))
return 1;
if (IS_ENABLED(CONFIG_CMD_FDT))
set_working_fdt_addr(map_to_sysmem(images.ft_addr));
}
#if CONFIG_IS_ENABLED(FIT)
if (IS_ENABLED(CONFIG_FPGA)) {
/* find bitstreams */
ret = boot_get_fpga(&images);
if (ret) {
printf("FPGA image is corrupted or invalid\n");
return 1;
}
}
/* find all of the loadables */
ret = boot_get_loadable(&images);
if (ret) {
printf("Loadable(s) is corrupt or invalid\n");
return 1;
}
#endif
return 0;
}
static int bootm_find_other(ulong img_addr, const char *conf_ramdisk,
const char *conf_fdt)
{
if ((images.os.type == IH_TYPE_KERNEL ||
images.os.type == IH_TYPE_KERNEL_NOLOAD ||
images.os.type == IH_TYPE_MULTI) &&
(images.os.os == IH_OS_LINUX || images.os.os == IH_OS_VXWORKS ||
images.os.os == IH_OS_EFI || images.os.os == IH_OS_TEE)) {
return bootm_find_images(img_addr, conf_ramdisk, conf_fdt, 0,
0);
}
return 0;
}
#endif /* USE_HOSTC */
#if !defined(USE_HOSTCC) || defined(CONFIG_FIT_SIGNATURE)
/**
* handle_decomp_error() - display a decompression error
*
* This function tries to produce a useful message. In the case where the
* uncompressed size is the same as the available space, we can assume that
* the image is too large for the buffer.
*
* @comp_type: Compression type being used (IH_COMP_...)
* @uncomp_size: Number of bytes uncompressed
* @buf_size: Number of bytes the decompresion buffer was
* @ret: errno error code received from compression library
* Return: Appropriate BOOTM_ERR_ error code
*/
static int handle_decomp_error(int comp_type, size_t uncomp_size,
size_t buf_size, int ret)
{
const char *name = genimg_get_comp_name(comp_type);
/* ENOSYS means unimplemented compression type, don't reset. */
if (ret == -ENOSYS)
return BOOTM_ERR_UNIMPLEMENTED;
if (uncomp_size >= buf_size)
printf("Image too large: increase CONFIG_SYS_BOOTM_LEN\n");
else
printf("%s: uncompress error %d\n", name, ret);
/*
* The decompression routines are now safe, so will not write beyond
* their bounds. Probably it is not necessary to reset, but maintain
* the current behaviour for now.
*/
printf("Must RESET board to recover\n");
#ifndef USE_HOSTCC
bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
#endif
return BOOTM_ERR_RESET;
}
#endif
#ifndef USE_HOSTCC
static int bootm_load_os(struct bootm_headers *images, int boot_progress)
{
struct image_info os = images->os;
ulong load = os.load;
ulong load_end;
ulong blob_start = os.start;
ulong blob_end = os.end;
ulong image_start = os.image_start;
ulong image_len = os.image_len;
ulong flush_start = ALIGN_DOWN(load, ARCH_DMA_MINALIGN);
bool no_overlap;
void *load_buf, *image_buf;
int err;
/*
* For a "noload" compressed kernel we need to allocate a buffer large
* enough to decompress in to and use that as the load address now.
* Assume that the kernel compression is at most a factor of 4 since
* zstd almost achieves that.
* Use an alignment of 2MB since this might help arm64
*/
if (os.type == IH_TYPE_KERNEL_NOLOAD && os.comp != IH_COMP_NONE) {
ulong req_size = ALIGN(image_len * 4, SZ_1M);
load = lmb_alloc(&images->lmb, req_size, SZ_2M);
if (!load)
return 1;
os.load = load;
images->ep = load;
debug("Allocated %lx bytes at %lx for kernel (size %lx) decompression\n",
req_size, load, image_len);
}
load_buf = map_sysmem(load, 0);
image_buf = map_sysmem(os.image_start, image_len);
err = image_decomp(os.comp, load, os.image_start, os.type,
load_buf, image_buf, image_len,
CONFIG_SYS_BOOTM_LEN, &load_end);
if (err) {
err = handle_decomp_error(os.comp, load_end - load,
CONFIG_SYS_BOOTM_LEN, err);
bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
return err;
}
/* We need the decompressed image size in the next steps */
images->os.image_len = load_end - load;
flush_cache(flush_start, ALIGN(load_end, ARCH_DMA_MINALIGN) - flush_start);
debug(" kernel loaded at 0x%08lx, end = 0x%08lx\n", load, load_end);
bootstage_mark(BOOTSTAGE_ID_KERNEL_LOADED);
no_overlap = (os.comp == IH_COMP_NONE && load == image_start);
if (!no_overlap && load < blob_end && load_end > blob_start) {
debug("images.os.start = 0x%lX, images.os.end = 0x%lx\n",
blob_start, blob_end);
debug("images.os.load = 0x%lx, load_end = 0x%lx\n", load,
load_end);
/* Check what type of image this is. */
if (images->legacy_hdr_valid) {
if (image_get_type(&images->legacy_hdr_os_copy)
== IH_TYPE_MULTI)
puts("WARNING: legacy format multi component image overwritten\n");
return BOOTM_ERR_OVERLAP;
} else {
puts("ERROR: new format image overwritten - must RESET the board to recover\n");
bootstage_error(BOOTSTAGE_ID_OVERWRITTEN);
return BOOTM_ERR_RESET;
}
}
if (IS_ENABLED(CONFIG_CMD_BOOTI) && images->os.arch == IH_ARCH_ARM64 &&
images->os.os == IH_OS_LINUX) {
ulong relocated_addr;
ulong image_size;
int ret;
ret = booti_setup(load, &relocated_addr, &image_size, false);
if (ret) {
printf("Failed to prep arm64 kernel (err=%d)\n", ret);
return BOOTM_ERR_RESET;
}
/* Handle BOOTM_STATE_LOADOS */
if (relocated_addr != load) {
printf("Moving Image from 0x%lx to 0x%lx, end=%lx\n",
load, relocated_addr,
relocated_addr + image_size);
memmove((void *)relocated_addr, load_buf, image_size);
}
images->ep = relocated_addr;
images->os.start = relocated_addr;
images->os.end = relocated_addr + image_size;
}
lmb_reserve(&images->lmb, images->os.load, (load_end -
images->os.load));
return 0;
}
/**
* bootm_disable_interrupts() - Disable interrupts in preparation for load/boot
*
* Return: interrupt flag (0 if interrupts were disabled, non-zero if they were
* enabled)
*/
ulong bootm_disable_interrupts(void)
{
ulong iflag;
/*
* We have reached the point of no return: we are going to
* overwrite all exception vector code, so we cannot easily
* recover from any failures any more...
*/
iflag = disable_interrupts();
#ifdef CONFIG_NETCONSOLE
/* Stop the ethernet stack if NetConsole could have left it up */
eth_halt();
#endif
#if defined(CONFIG_CMD_USB)
/*
* turn off USB to prevent the host controller from writing to the
* SDRAM while Linux is booting. This could happen (at least for OHCI
* controller), because the HCCA (Host Controller Communication Area)
* lies within the SDRAM and the host controller writes continously to
* this area (as busmaster!). The HccaFrameNumber is for example
* updated every 1 ms within the HCCA structure in SDRAM! For more
* details see the OpenHCI specification.
*/
usb_stop();
#endif
return iflag;
}
#define CONSOLE_ARG "console="
#define NULL_CONSOLE (CONSOLE_ARG "ttynull")
#define CONSOLE_ARG_SIZE sizeof(NULL_CONSOLE)
/**
* fixup_silent_linux() - Handle silencing the linux boot if required
*
* This uses the silent_linux envvar to control whether to add/set a "console="
* parameter to the command line
*
* @buf: Buffer containing the string to process
* @maxlen: Maximum length of buffer
* Return: 0 if OK, -ENOSPC if @maxlen is too small
*/
static int fixup_silent_linux(char *buf, int maxlen)
{
int want_silent;
char *cmdline;
int size;
/*
* Move the input string to the end of buffer. The output string will be
* built up at the start.
*/
size = strlen(buf) + 1;
if (size * 2 > maxlen)
return -ENOSPC;
cmdline = buf + maxlen - size;
memmove(cmdline, buf, size);
/*
* Only fix cmdline when requested. The environment variable can be:
*
* no - we never fixup
* yes - we always fixup
* unset - we rely on the console silent flag
*/
want_silent = env_get_yesno("silent_linux");
if (want_silent == 0)
return 0;
else if (want_silent == -1 && !(gd->flags & GD_FLG_SILENT))
return 0;
debug("before silent fix-up: %s\n", cmdline);
if (*cmdline) {
char *start = strstr(cmdline, CONSOLE_ARG);
/* Check space for maximum possible new command line */
if (size + CONSOLE_ARG_SIZE > maxlen)
return -ENOSPC;
if (start) {
char *end = strchr(start, ' ');
int start_bytes;
start_bytes = start - cmdline;
strncpy(buf, cmdline, start_bytes);
strncpy(buf + start_bytes, NULL_CONSOLE, CONSOLE_ARG_SIZE);
if (end)
strcpy(buf + start_bytes + CONSOLE_ARG_SIZE - 1, end);
else
buf[start_bytes + CONSOLE_ARG_SIZE] = '\0';
} else {
sprintf(buf, "%s %s", cmdline, NULL_CONSOLE);
}
if (buf + strlen(buf) >= cmdline)
return -ENOSPC;
} else {
if (maxlen < CONSOLE_ARG_SIZE)
return -ENOSPC;
strcpy(buf, NULL_CONSOLE);
}
debug("after silent fix-up: %s\n", buf);
return 0;
}
/**
* process_subst() - Handle substitution of ${...} fields in the environment
*
* Handle variable substitution in the provided buffer
*
* @buf: Buffer containing the string to process
* @maxlen: Maximum length of buffer
* Return: 0 if OK, -ENOSPC if @maxlen is too small
*/
static int process_subst(char *buf, int maxlen)
{
char *cmdline;
int size;
int ret;
/* Move to end of buffer */
size = strlen(buf) + 1;
cmdline = buf + maxlen - size;
if (buf + size > cmdline)
return -ENOSPC;
memmove(cmdline, buf, size);
ret = cli_simple_process_macros(cmdline, buf, cmdline - buf);
return ret;
}
int bootm_process_cmdline(char *buf, int maxlen, int flags)
{
int ret;
/* Check config first to enable compiler to eliminate code */
if (IS_ENABLED(CONFIG_SILENT_CONSOLE) &&
!IS_ENABLED(CONFIG_SILENT_U_BOOT_ONLY) &&
(flags & BOOTM_CL_SILENT)) {
ret = fixup_silent_linux(buf, maxlen);
if (ret)
return log_msg_ret("silent", ret);
}
if (IS_ENABLED(CONFIG_BOOTARGS_SUBST) && IS_ENABLED(CONFIG_CMDLINE) &&
(flags & BOOTM_CL_SUBST)) {
ret = process_subst(buf, maxlen);
if (ret)
return log_msg_ret("subst", ret);
}
return 0;
}
int bootm_process_cmdline_env(int flags)
{
const int maxlen = MAX_CMDLINE_SIZE;
bool do_silent;
const char *env;
char *buf;
int ret;
/* First check if any action is needed */
do_silent = IS_ENABLED(CONFIG_SILENT_CONSOLE) &&
!IS_ENABLED(CONFIG_SILENT_U_BOOT_ONLY) && (flags & BOOTM_CL_SILENT);
if (!do_silent && !IS_ENABLED(CONFIG_BOOTARGS_SUBST))
return 0;
env = env_get("bootargs");
if (env && strlen(env) >= maxlen)
return -E2BIG;
buf = malloc(maxlen);
if (!buf)
return -ENOMEM;
if (env)
strcpy(buf, env);
else
*buf = '\0';
ret = bootm_process_cmdline(buf, maxlen, flags);
if (!ret) {
ret = env_set("bootargs", buf);
/*
* If buf is "" and bootargs does not exist, this will produce
* an error trying to delete bootargs. Ignore it
*/
if (ret == -ENOENT)
ret = 0;
}
free(buf);
if (ret)
return log_msg_ret("env", ret);
return 0;
}
int bootm_measure(struct bootm_headers *images)
{
int ret = 0;
/* Skip measurement if EFI is going to do it */
if (images->os.os == IH_OS_EFI &&
IS_ENABLED(CONFIG_EFI_TCG2_PROTOCOL) &&
IS_ENABLED(CONFIG_BOOTM_EFI))
return ret;
if (IS_ENABLED(CONFIG_MEASURED_BOOT)) {
struct tcg2_event_log elog;
struct udevice *dev;
void *initrd_buf;
void *image_buf;
const char *s;
u32 rd_len;
bool ign;
elog.log_size = 0;
ign = IS_ENABLED(CONFIG_MEASURE_IGNORE_LOG);
ret = tcg2_measurement_init(&dev, &elog, ign);
if (ret)
return ret;
image_buf = map_sysmem(images->os.image_start,
images->os.image_len);
ret = tcg2_measure_data(dev, &elog, 8, images->os.image_len,
image_buf, EV_COMPACT_HASH,
strlen("linux") + 1, (u8 *)"linux");
if (ret)
goto unmap_image;
rd_len = images->rd_end - images->rd_start;
initrd_buf = map_sysmem(images->rd_start, rd_len);
ret = tcg2_measure_data(dev, &elog, 9, rd_len, initrd_buf,
EV_COMPACT_HASH, strlen("initrd") + 1,
(u8 *)"initrd");
if (ret)
goto unmap_initrd;
if (IS_ENABLED(CONFIG_MEASURE_DEVICETREE)) {
ret = tcg2_measure_data(dev, &elog, 0, images->ft_len,
(u8 *)images->ft_addr,
EV_TABLE_OF_DEVICES,
strlen("dts") + 1,
(u8 *)"dts");
if (ret)
goto unmap_initrd;
}
s = env_get("bootargs");
if (!s)
s = "";
ret = tcg2_measure_data(dev, &elog, 1, strlen(s) + 1, (u8 *)s,
EV_PLATFORM_CONFIG_FLAGS,
strlen(s) + 1, (u8 *)s);
unmap_initrd:
unmap_sysmem(initrd_buf);
unmap_image:
unmap_sysmem(image_buf);
tcg2_measurement_term(dev, &elog, ret != 0);
}
return ret;
}
int bootm_run_states(struct bootm_info *bmi, int states)
{
struct bootm_headers *images = bmi->images;
boot_os_fn *boot_fn;
ulong iflag = 0;
int ret = 0, need_boot_fn;
images->state |= states;
/*
* Work through the states and see how far we get. We stop on
* any error.
*/
if (states & BOOTM_STATE_START)
ret = bootm_start();
if (!ret && (states & BOOTM_STATE_PRE_LOAD))
ret = bootm_pre_load(bmi->addr_img);
if (!ret && (states & BOOTM_STATE_FINDOS))
ret = bootm_find_os(bmi->cmd_name, bmi->addr_img);
if (!ret && (states & BOOTM_STATE_FINDOTHER)) {
ulong img_addr;
img_addr = bmi->addr_img ? hextoul(bmi->addr_img, NULL)
: image_load_addr;
ret = bootm_find_other(img_addr, bmi->conf_ramdisk,
bmi->conf_fdt);
}
if (IS_ENABLED(CONFIG_MEASURED_BOOT) && !ret &&
(states & BOOTM_STATE_MEASURE))
bootm_measure(images);
/* Load the OS */
if (!ret && (states & BOOTM_STATE_LOADOS)) {
iflag = bootm_disable_interrupts();
ret = bootm_load_os(images, 0);
if (ret && ret != BOOTM_ERR_OVERLAP)
goto err;
else if (ret == BOOTM_ERR_OVERLAP)
ret = 0;
}
/* Relocate the ramdisk */
#ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
if (!ret && (states & BOOTM_STATE_RAMDISK)) {
ulong rd_len = images->rd_end - images->rd_start;
ret = boot_ramdisk_high(&images->lmb, images->rd_start,
rd_len, &images->initrd_start, &images->initrd_end);
if (!ret) {
env_set_hex("initrd_start", images->initrd_start);
env_set_hex("initrd_end", images->initrd_end);
}
}
#endif
#if CONFIG_IS_ENABLED(OF_LIBFDT) && defined(CONFIG_LMB)
if (!ret && (states & BOOTM_STATE_FDT)) {
boot_fdt_add_mem_rsv_regions(&images->lmb, images->ft_addr);
ret = boot_relocate_fdt(&images->lmb, &images->ft_addr,
&images->ft_len);
}
#endif
/* From now on, we need the OS boot function */
if (ret)
return ret;
boot_fn = bootm_os_get_boot_func(images->os.os);
need_boot_fn = states & (BOOTM_STATE_OS_CMDLINE |
BOOTM_STATE_OS_BD_T | BOOTM_STATE_OS_PREP |
BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO);
if (boot_fn == NULL && need_boot_fn) {
if (iflag)
enable_interrupts();
printf("ERROR: booting os '%s' (%d) is not supported\n",
genimg_get_os_name(images->os.os), images->os.os);
bootstage_error(BOOTSTAGE_ID_CHECK_BOOT_OS);
return 1;
}
/* Call various other states that are not generally used */
if (!ret && (states & BOOTM_STATE_OS_CMDLINE))
ret = boot_fn(BOOTM_STATE_OS_CMDLINE, bmi);
if (!ret && (states & BOOTM_STATE_OS_BD_T))
ret = boot_fn(BOOTM_STATE_OS_BD_T, bmi);
if (!ret && (states & BOOTM_STATE_OS_PREP)) {
int flags = 0;
/* For Linux OS do all substitutions at console processing */
if (images->os.os == IH_OS_LINUX)
flags = BOOTM_CL_ALL;
ret = bootm_process_cmdline_env(flags);
if (ret) {
printf("Cmdline setup failed (err=%d)\n", ret);
ret = CMD_RET_FAILURE;
goto err;
}
ret = boot_fn(BOOTM_STATE_OS_PREP, bmi);
}
#ifdef CONFIG_TRACE
/* Pretend to run the OS, then run a user command */
if (!ret && (states & BOOTM_STATE_OS_FAKE_GO)) {
char *cmd_list = env_get("fakegocmd");
ret = boot_selected_os(BOOTM_STATE_OS_FAKE_GO, bmi, boot_fn);
if (!ret && cmd_list)
ret = run_command_list(cmd_list, -1, 0);
}
#endif
/* Check for unsupported subcommand. */
if (ret) {
printf("subcommand failed (err=%d)\n", ret);
return ret;
}
/* Now run the OS! We hope this doesn't return */
if (!ret && (states & BOOTM_STATE_OS_GO))
ret = boot_selected_os(BOOTM_STATE_OS_GO, bmi, boot_fn);
/* Deal with any fallout */
err:
if (iflag)
enable_interrupts();
if (ret == BOOTM_ERR_UNIMPLEMENTED) {
bootstage_error(BOOTSTAGE_ID_DECOMP_UNIMPL);
} else if (ret == BOOTM_ERR_RESET) {
printf("Resetting the board...\n");
reset_cpu();
}
return ret;
}
int boot_run(struct bootm_info *bmi, const char *cmd, int extra_states)
{
int states;
bmi->cmd_name = cmd;
states = BOOTM_STATE_MEASURE | BOOTM_STATE_OS_PREP |
BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO;
if (IS_ENABLED(CONFIG_SYS_BOOT_RAMDISK_HIGH))
states |= BOOTM_STATE_RAMDISK;
states |= extra_states;
return bootm_run_states(bmi, states);
}
int bootm_run(struct bootm_info *bmi)
{
return boot_run(bmi, "bootm", BOOTM_STATE_START | BOOTM_STATE_FINDOS |
BOOTM_STATE_PRE_LOAD | BOOTM_STATE_FINDOTHER |
BOOTM_STATE_LOADOS);
}
int bootz_run(struct bootm_info *bmi)
{
return boot_run(bmi, "bootz", 0);
}
int booti_run(struct bootm_info *bmi)
{
return boot_run(bmi, "booti", 0);
}
int bootm_boot_start(ulong addr, const char *cmdline)
{
char addr_str[30];
struct bootm_info bmi;
int states;
int ret;
states = BOOTM_STATE_START | BOOTM_STATE_FINDOS | BOOTM_STATE_PRE_LOAD |
BOOTM_STATE_FINDOTHER | BOOTM_STATE_LOADOS |
BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO |
BOOTM_STATE_OS_GO;
if (IS_ENABLED(CONFIG_SYS_BOOT_RAMDISK_HIGH))
states |= BOOTM_STATE_RAMDISK;
if (IS_ENABLED(CONFIG_PPC) || IS_ENABLED(CONFIG_MIPS))
states |= BOOTM_STATE_OS_CMDLINE;
images.state |= states;
snprintf(addr_str, sizeof(addr_str), "%lx", addr);
ret = env_set("bootargs", cmdline);
if (ret) {
printf("Failed to set cmdline\n");
return ret;
}
bootm_init(&bmi);
bmi.addr_img = addr_str;
bmi.cmd_name = "bootm";
ret = bootm_run_states(&bmi, states);
return ret;
}
void bootm_init(struct bootm_info *bmi)
{
memset(bmi, '\0', sizeof(struct bootm_info));
bmi->boot_progress = true;
if (IS_ENABLED(CONFIG_CMD_BOOTM))
bmi->images = &images;
}
/**
* switch_to_non_secure_mode() - switch to non-secure mode
*
* This routine is overridden by architectures requiring this feature.
*/
void __weak switch_to_non_secure_mode(void)
{
}
#else /* USE_HOSTCC */
#if defined(CONFIG_FIT_SIGNATURE)
static int bootm_host_load_image(const void *fit, int req_image_type,
int cfg_noffset)
{
const char *fit_uname_config = NULL;
ulong data, len;
struct bootm_headers images;
int noffset;
ulong load_end, buf_size;
uint8_t image_type;
uint8_t image_comp;
void *load_buf;
int ret;
fit_uname_config = fdt_get_name(fit, cfg_noffset, NULL);
memset(&images, '\0', sizeof(images));
images.verify = 1;
noffset = fit_image_load(&images, (ulong)fit,
NULL, &fit_uname_config,
IH_ARCH_DEFAULT, req_image_type, -1,
FIT_LOAD_IGNORED, &data, &len);
if (noffset < 0)
return noffset;
if (fit_image_get_type(fit, noffset, &image_type)) {
puts("Can't get image type!\n");
return -EINVAL;
}
if (fit_image_get_comp(fit, noffset, &image_comp))
image_comp = IH_COMP_NONE;
/* Allow the image to expand by a factor of 4, should be safe */
buf_size = (1 << 20) + len * 4;
load_buf = malloc(buf_size);
ret = image_decomp(image_comp, 0, data, image_type, load_buf,
(void *)data, len, buf_size, &load_end);
free(load_buf);
if (ret) {
ret = handle_decomp_error(image_comp, load_end - 0, buf_size, ret);
if (ret != BOOTM_ERR_UNIMPLEMENTED)
return ret;
}
return 0;
}
int bootm_host_load_images(const void *fit, int cfg_noffset)
{
static uint8_t image_types[] = {
IH_TYPE_KERNEL,
IH_TYPE_FLATDT,
IH_TYPE_RAMDISK,
};
int err = 0;
int i;
for (i = 0; i < ARRAY_SIZE(image_types); i++) {
int ret;
ret = bootm_host_load_image(fit, image_types[i], cfg_noffset);
if (!err && ret && ret != -ENOENT)
err = ret;
}
/* Return the first error we found */
return err;
}
#endif
#endif /* ndef USE_HOSTCC */