MCUXpresso_LPC54102/devices/LPC54102/cmsis_drivers/fsl_i2c_cmsis.c

1247 lines
40 KiB
C

/*
* Copyright (c) 2013-2016 ARM Limited. All rights reserved.
* Copyright (c) 2016, Freescale Semiconductor, Inc. Not a Contribution.
* Copyright 2016-2017 NXP. Not a Contribution.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fsl_i2c_cmsis.h"
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.lpc_i2c_cmsis"
#endif
#if (RTE_I2C0 || RTE_I2C1 || RTE_I2C2)
#define ARM_I2C_DRV_VERSION ARM_DRIVER_VERSION_MAJOR_MINOR(2, 1)
/*
* ARMCC does not support split the data section automatically, so the driver
* needs to split the data to separate sections explicitly, to reduce codesize.
*/
#if defined(__CC_ARM) || defined(__ARMCC_VERSION)
#define ARMCC_SECTION(section_name) __attribute__((section(section_name)))
#endif
typedef const struct _cmsis_i2c_resource
{
I2C_Type *base; /*!< I2C peripheral base address. */
uint32_t (*GetFreq)(void); /*!< Function to get the clock frequency. */
} cmsis_i2c_resource_t;
typedef union _cmsis_i2c_handle
{
i2c_master_handle_t master_handle; /*!< master Interupt transfer handle. */
i2c_slave_handle_t slave_handle; /*!< slave Interupt transfer handle. */
} cmsis_i2c_handle_t;
typedef struct _cmsis_i2c_interrupt_driver_state
{
cmsis_i2c_resource_t *resource; /*!< Basic I2C resource. */
cmsis_i2c_handle_t *handle;
ARM_I2C_SignalEvent_t cb_event; /*!< Callback function. */
uint8_t flags; /*!< Control and state flags. */
} cmsis_i2c_interrupt_driver_state_t;
#if (defined(FSL_FEATURE_SOC_DMA_COUNT) && FSL_FEATURE_SOC_DMA_COUNT)
typedef const struct _cmsis_i2c_dma_resource
{
DMA_Type *i2cDmaBase; /*!< DMA peripheral base address for i2c. */
uint32_t i2cDmaChannel; /*!< DMA channel for i2c. */
} cmsis_i2c_dma_resource_t;
typedef struct _cmsis_i2c_dma_driver_state
{
cmsis_i2c_resource_t *resource; /*!< i2c basic resource. */
cmsis_i2c_dma_resource_t *dmaResource; /*!< i2c DMA resource. */
i2c_master_dma_handle_t *master_dma_handle; /*!< i2c DMA transfer handle. */
dma_handle_t *dmaHandle; /*!< DMA i2c handle. */
uint8_t flags; /*!< Control and state flags. */
} cmsis_i2c_dma_driver_state_t;
#endif
static const ARM_DRIVER_VERSION s_i2cDriverVersion = {ARM_I2C_API_VERSION, ARM_I2C_DRV_VERSION};
static const ARM_I2C_CAPABILITIES s_i2cDriverCapabilities = {
0, /*< supports 10-bit addressing*/
};
static const clock_ip_name_t s_i2cClocks[] = I2C_CLOCKS;
extern uint32_t I2C_GetInstance(I2C_Type *base);
static ARM_DRIVER_VERSION I2Cx_GetVersion(void)
{
return s_i2cDriverVersion;
}
static ARM_I2C_CAPABILITIES I2Cx_GetCapabilities(void)
{
return s_i2cDriverCapabilities;
}
#endif
#if (RTE_I2C0_DMA_EN || RTE_I2C1_DMA_EN || RTE_I2C2_DMA_EN)
#if (defined(FSL_FEATURE_SOC_DMA_COUNT) && FSL_FEATURE_SOC_DMA_COUNT)
void KSDK_I2C_MASTER_DmaCallback(I2C_Type *base, i2c_master_dma_handle_t *handle, status_t status, void *userData)
{
uint32_t event;
if (status == kStatus_Success) /* Occurs after Master Transmit/Receive operation has finished. */
{
event = ARM_I2C_EVENT_TRANSFER_DONE;
}
if (userData)
{
((ARM_I2C_SignalEvent_t)userData)(event);
}
}
static int32_t I2C_Master_DmaInitialize(ARM_I2C_SignalEvent_t cb_event, cmsis_i2c_dma_driver_state_t *i2c)
{
if (!(i2c->flags & I2C_FLAG_INIT))
{
DMA_EnableChannel(i2c->dmaResource->i2cDmaBase, i2c->dmaResource->i2cDmaChannel);
DMA_CreateHandle(i2c->dmaHandle, i2c->dmaResource->i2cDmaBase, i2c->dmaResource->i2cDmaChannel);
I2C_MasterTransferCreateHandleDMA(i2c->resource->base, i2c->master_dma_handle, KSDK_I2C_MASTER_DmaCallback,
(void *)cb_event, i2c->dmaHandle);
i2c->flags = I2C_FLAG_INIT;
}
return ARM_DRIVER_OK;
}
int32_t I2C_Master_DmaUninitialize(cmsis_i2c_dma_driver_state_t *i2c)
{
i2c->flags = I2C_FLAG_UNINIT;
return ARM_DRIVER_OK;
}
int32_t I2C_Master_DmaTransmit(
uint32_t addr, const uint8_t *data, uint32_t num, bool xfer_pending, cmsis_i2c_dma_driver_state_t *i2c)
{
int32_t status;
int32_t ret;
i2c_master_transfer_t masterXfer;
/* Check if the I2C bus is idle - if not return busy status. */
if (i2c->master_dma_handle->state != 0)
{
return ARM_DRIVER_ERROR_BUSY;
}
masterXfer.slaveAddress = addr; /*7-bit slave address.*/
masterXfer.direction = kI2C_Write; /*Transfer direction.*/
masterXfer.subaddress = 0; /*Sub address*/
masterXfer.subaddressSize = 0; /*Size of command buffer.*/
masterXfer.data = (uint8_t *)data; /*Transfer buffer.*/
masterXfer.dataSize = num; /*Transfer size.*/
masterXfer.flags = kI2C_TransferDefaultFlag; /*Transfer flag which controls the transfer.*/
if (xfer_pending)
{
masterXfer.flags |= kI2C_TransferNoStopFlag;
}
status = I2C_MasterTransferDMA(i2c->resource->base, i2c->master_dma_handle, &masterXfer);
switch (status)
{
case kStatus_Success:
ret = ARM_DRIVER_OK;
break;
case kStatus_I2C_Busy:
ret = ARM_DRIVER_ERROR_BUSY;
break;
default:
ret = ARM_DRIVER_ERROR;
break;
}
return ret;
}
int32_t I2C_Master_DmaReceive(
uint32_t addr, uint8_t *data, uint32_t num, bool xfer_pending, cmsis_i2c_dma_driver_state_t *i2c)
{
int32_t status;
int32_t ret;
i2c_master_transfer_t masterXfer;
/* Check if the I2C bus is idle - if not return busy status. */
if (i2c->master_dma_handle->state != 0)
{
return ARM_DRIVER_ERROR_BUSY;
}
masterXfer.slaveAddress = addr; /*7-bit slave address.*/
masterXfer.direction = kI2C_Read; /*Transfer direction.*/
masterXfer.subaddress = 0; /*Sub address*/
masterXfer.subaddressSize = 0; /*Size of command buffer.*/
masterXfer.data = data; /*Transfer buffer.*/
masterXfer.dataSize = num; /*Transfer size.*/
masterXfer.flags = kI2C_TransferDefaultFlag; /*Transfer flag which controls the transfer.*/
if (xfer_pending)
{
masterXfer.flags |= kI2C_TransferNoStopFlag;
}
status = I2C_MasterTransferDMA(i2c->resource->base, i2c->master_dma_handle, &masterXfer);
switch (status)
{
case kStatus_Success:
ret = ARM_DRIVER_OK;
break;
case kStatus_I2C_Busy:
ret = ARM_DRIVER_ERROR_BUSY;
break;
default:
ret = ARM_DRIVER_ERROR;
break;
}
return ret;
}
int32_t I2C_Master_DmaGetDataCount(cmsis_i2c_dma_driver_state_t *i2c)
{
size_t cnt; /*the number of currently transferred data bytes*/
I2C_MasterTransferGetCountDMA(i2c->resource->base, i2c->master_dma_handle, &cnt);
return cnt;
}
int32_t I2C_Master_DmaControl(uint32_t control, uint32_t arg, cmsis_i2c_dma_driver_state_t *i2c)
{
uint32_t baudRate_Bps;
switch (control)
{
/* Not supported */
case ARM_I2C_OWN_ADDRESS:
return ARM_DRIVER_ERROR_UNSUPPORTED;
/*Set Bus Speed; arg = bus speed*/
case ARM_I2C_BUS_SPEED:
switch (arg)
{
case ARM_I2C_BUS_SPEED_STANDARD:
baudRate_Bps = 100000;
break;
case ARM_I2C_BUS_SPEED_FAST:
baudRate_Bps = 400000;
break;
case ARM_I2C_BUS_SPEED_FAST_PLUS:
baudRate_Bps = 1000000;
break;
default:
return ARM_DRIVER_ERROR_UNSUPPORTED;
}
I2C_MasterSetBaudRate(i2c->resource->base, baudRate_Bps, i2c->resource->GetFreq());
return ARM_DRIVER_OK;
/* Not supported */
case ARM_I2C_BUS_CLEAR:
return ARM_DRIVER_ERROR_UNSUPPORTED;
/*Aborts the data transfer when Master for Transmit or Receive*/
case ARM_I2C_ABORT_TRANSFER:
/*disable dma*/
I2C_MasterTransferAbortDMA(i2c->resource->base, i2c->master_dma_handle);
i2c->master_dma_handle->transferCount = 0;
i2c->master_dma_handle->transfer.data = NULL;
i2c->master_dma_handle->transfer.dataSize = 0;
return ARM_DRIVER_OK;
default:
return ARM_DRIVER_ERROR_UNSUPPORTED;
}
}
int32_t I2C_Master_DmaPowerControl(ARM_POWER_STATE state, cmsis_i2c_dma_driver_state_t *i2c)
{
switch (state)
{
/*terminates any pending data transfers, disable i2c moduole and i2c clock and related dma*/
case ARM_POWER_OFF:
if (i2c->flags & I2C_FLAG_POWER)
{
I2C_Master_DmaControl(ARM_I2C_ABORT_TRANSFER, 0, i2c);
I2C_MasterDeinit(i2c->resource->base);
DMA_DisableChannel(i2c->dmaResource->i2cDmaBase, i2c->dmaResource->i2cDmaChannel);
i2c->flags = I2C_FLAG_INIT;
}
return ARM_DRIVER_OK;
/* Not supported */
case ARM_POWER_LOW:
return ARM_DRIVER_ERROR_UNSUPPORTED;
/*enable i2c moduole and i2c clock*/
case ARM_POWER_FULL:
if (i2c->flags == I2C_FLAG_UNINIT)
{
return ARM_DRIVER_ERROR;
}
if (i2c->flags & I2C_FLAG_POWER)
{
/* Driver already powered */
break;
}
CLOCK_EnableClock(s_i2cClocks[I2C_GetInstance(i2c->resource->base)]);
I2C_MasterEnable(i2c->resource->base, true);
i2c->flags |= I2C_FLAG_POWER;
return ARM_DRIVER_OK;
default:
return ARM_DRIVER_ERROR_UNSUPPORTED;
}
return ARM_DRIVER_OK;
}
ARM_I2C_STATUS I2C_Master_DmaGetStatus(cmsis_i2c_dma_driver_state_t *i2c)
{
ARM_I2C_STATUS stat;
uint32_t ksdk_i2c_status = I2C_GetStatusFlags(i2c->resource->base);
stat.busy = !(ksdk_i2c_status & I2C_STAT_MSTPENDING_MASK); /*Busy flag.*/
stat.direction = i2c->master_dma_handle->transfer.direction; /*Direction: 0=Transmitter, 1=Receiver.*/
stat.mode = 1; /*Mode: 0=Slave, 1=Master.*/
stat.arbitration_lost = !(!(ksdk_i2c_status & I2C_STAT_MSTARBLOSS_MASK));
/*Master lost arbitration (cleared on start of next Master operation)*/
return stat;
}
#endif
#endif
#if ((RTE_I2C0 && !RTE_I2C0_DMA_EN) || (RTE_I2C1 && !RTE_I2C1_DMA_EN) || (RTE_I2C2 && !RTE_I2C2_DMA_EN) || \
(RTE_I2C3 && !RTE_I2C3_DMA_EN))
static void KSDK_I2C_SLAVE_InterruptCallback(I2C_Type *base, volatile i2c_slave_transfer_t *xfer, void *param)
{
uint32_t event;
switch (xfer->event)
{
case kI2C_SlaveCompletionEvent: /* Occurs after Slave Transmit/Receive operation has finished. */
event = ARM_I2C_EVENT_TRANSFER_DONE;
break;
default:
event = ARM_I2C_EVENT_TRANSFER_INCOMPLETE;
break;
}
if (param)
{
((ARM_I2C_SignalEvent_t)param)(event);
}
}
static void KSDK_I2C_MASTER_InterruptCallback(I2C_Type *base,
i2c_master_handle_t *handle,
status_t status,
void *userData)
{
uint32_t event;
switch (status)
{
case kStatus_Success: /* Occurs after Master Transmit/Receive operation has finished. */
event = ARM_I2C_EVENT_TRANSFER_DONE;
break;
case kStatus_I2C_ArbitrationLost: /*Occurs in master mode when arbitration is lost.*/
event = ARM_I2C_EVENT_ARBITRATION_LOST;
break;
default:
event = ARM_I2C_EVENT_TRANSFER_INCOMPLETE;
break;
}
/* User data is actually CMSIS driver callback. */
if (userData)
{
((ARM_I2C_SignalEvent_t)userData)(event);
}
}
static int32_t I2C_InterruptInitialize(ARM_I2C_SignalEvent_t cb_event, cmsis_i2c_interrupt_driver_state_t *i2c)
{
if (!(i2c->flags & I2C_FLAG_INIT))
{
i2c->cb_event = cb_event; /* cb_event is CMSIS driver callback. */
i2c->flags = I2C_FLAG_INIT;
}
return ARM_DRIVER_OK;
}
static int32_t I2C_InterruptUninitialize(cmsis_i2c_interrupt_driver_state_t *i2c)
{
i2c->flags = I2C_FLAG_UNINIT;
return ARM_DRIVER_OK;
}
int32_t I2C_Master_InterruptTransmit(
uint32_t addr, const uint8_t *data, uint32_t num, bool xfer_pending, cmsis_i2c_interrupt_driver_state_t *i2c)
{
int32_t status;
int32_t ret;
i2c_master_transfer_t masterXfer;
/* Check if the I2C bus is idle - if not return busy status. */
if (i2c->handle->master_handle.state != 0)
{
return ARM_DRIVER_ERROR_BUSY;
}
I2C_MasterEnable(i2c->resource->base, true);
/*create master_handle*/
I2C_MasterTransferCreateHandle(i2c->resource->base, &(i2c->handle->master_handle),
KSDK_I2C_MASTER_InterruptCallback, (void *)i2c->cb_event);
masterXfer.slaveAddress = addr; /*7-bit slave address.*/
masterXfer.direction = kI2C_Write; /*Transfer direction.*/
masterXfer.subaddress = (uint32_t)NULL; /*Sub address*/
masterXfer.subaddressSize = 0; /*Size of command buffer.*/
masterXfer.data = (uint8_t *)data; /*Transfer buffer.*/
masterXfer.dataSize = num; /*Transfer size.*/
masterXfer.flags = kI2C_TransferDefaultFlag; /*Transfer flag which controls the transfer.*/
if (xfer_pending)
{
masterXfer.flags |= kI2C_TransferNoStopFlag;
}
status = I2C_MasterTransferNonBlocking(i2c->resource->base, &(i2c->handle->master_handle), &masterXfer);
switch (status)
{
case kStatus_Success:
ret = ARM_DRIVER_OK;
break;
case kStatus_I2C_Busy:
ret = ARM_DRIVER_ERROR_BUSY;
break;
default:
ret = ARM_DRIVER_ERROR;
break;
}
return ret;
}
int32_t I2C_Master_InterruptReceive(
uint32_t addr, uint8_t *data, uint32_t num, bool xfer_pending, cmsis_i2c_interrupt_driver_state_t *i2c)
{
int32_t status;
int32_t ret;
i2c_master_transfer_t masterXfer;
/* Check if the I2C bus is idle - if not return busy status. */
if (i2c->handle->master_handle.state != 0)
{
return ARM_DRIVER_ERROR_BUSY;
}
I2C_MasterEnable(i2c->resource->base, true);
/*create master_handle*/
I2C_MasterTransferCreateHandle(i2c->resource->base, &(i2c->handle->master_handle),
KSDK_I2C_MASTER_InterruptCallback, (void *)i2c->cb_event);
masterXfer.slaveAddress = addr; /*7-bit slave address.*/
masterXfer.direction = kI2C_Read; /*Transfer direction.*/
masterXfer.subaddress = (uint32_t)NULL; /*Sub address*/
masterXfer.subaddressSize = 0; /*Size of command buffer.*/
masterXfer.data = data; /*Transfer buffer.*/
masterXfer.dataSize = num; /*Transfer size.*/
masterXfer.flags = kI2C_TransferDefaultFlag; /*Transfer flag which controls the transfer.*/
if (xfer_pending)
{
masterXfer.flags |= kI2C_TransferNoStopFlag;
}
status = I2C_MasterTransferNonBlocking(i2c->resource->base, &(i2c->handle->master_handle), &masterXfer);
switch (status)
{
case kStatus_Success:
ret = ARM_DRIVER_OK;
break;
case kStatus_I2C_Busy:
ret = ARM_DRIVER_ERROR_BUSY;
break;
default:
ret = ARM_DRIVER_ERROR;
break;
}
return ret;
}
int32_t I2C_Slave_InterruptTransmit(const uint8_t *data, uint32_t num, cmsis_i2c_interrupt_driver_state_t *i2c)
{
int32_t status;
int32_t ret;
/* set Slave enable */
I2C_SlaveEnable(i2c->resource->base, true);
/*create slave_handle*/
I2C_SlaveTransferCreateHandle(i2c->resource->base, &(i2c->handle->slave_handle), KSDK_I2C_SLAVE_InterruptCallback,
(void *)i2c->cb_event);
status = I2C_SlaveTransferNonBlocking(i2c->resource->base, &(i2c->handle->slave_handle), kI2C_SlaveCompletionEvent);
i2c->handle->slave_handle.transfer.txData =
(uint8_t *)data; /*Pointer to buffer with data to transmit to I2C Master*/
i2c->handle->slave_handle.transfer.txSize = num; /*Number of data bytes to transmit*/
i2c->handle->slave_handle.transfer.transferredCount =
0; /*Number of bytes actually transferred since start or last repeated start. */
switch (status)
{
case kStatus_Success:
ret = ARM_DRIVER_OK;
break;
case kStatus_I2C_Busy:
ret = ARM_DRIVER_ERROR_BUSY;
break;
default:
ret = ARM_DRIVER_ERROR;
break;
}
return ret;
}
int32_t I2C_Slave_InterruptReceive(uint8_t *data, uint32_t num, cmsis_i2c_interrupt_driver_state_t *i2c)
{
int32_t status;
int32_t ret;
/* set Slave enable */
I2C_SlaveEnable(i2c->resource->base, true);
/*create slave_handle*/
I2C_SlaveTransferCreateHandle(i2c->resource->base, &(i2c->handle->slave_handle), KSDK_I2C_SLAVE_InterruptCallback,
(void *)i2c->cb_event);
status = I2C_SlaveTransferNonBlocking(i2c->resource->base, &(i2c->handle->slave_handle), kI2C_SlaveCompletionEvent);
i2c->handle->slave_handle.transfer.rxData = data; /*Pointer to buffer with data to transmit to I2C Master*/
i2c->handle->slave_handle.transfer.rxSize = num; /*Number of data bytes to transmit*/
i2c->handle->slave_handle.transfer.transferredCount =
0; /*Number of bytes actually transferred since start or last repeated start. */
switch (status)
{
case kStatus_Success:
ret = ARM_DRIVER_OK;
break;
case kStatus_I2C_Busy:
ret = ARM_DRIVER_ERROR_BUSY;
break;
default:
ret = ARM_DRIVER_ERROR;
break;
}
return ret;
}
int32_t I2C_InterruptGetDataCount(cmsis_i2c_interrupt_driver_state_t *i2c)
{
uint32_t cnt = 0; /*the number of currently transferred data bytes*/
if (i2c->resource->base->CFG & I2C_CFG_MSTEN_MASK)
{
cnt = i2c->handle->master_handle.transferCount;
}
else
{
cnt = i2c->handle->slave_handle.transfer.transferredCount;
}
return cnt;
}
int32_t I2C_InterruptControl(uint32_t control, uint32_t arg, cmsis_i2c_interrupt_driver_state_t *i2c)
{
uint32_t baudRate_Bps;
uint32_t clkDiv;
switch (control)
{
/*Set Own Slave Address; arg = slave address*/
case ARM_I2C_OWN_ADDRESS:
/* Use as slave, set CLKDIV for clock stretching, ensure data set up time for standard mode 250ns. */
/* divVal = (sourceClock_Hz / 1000000) * (dataSetupTime_ns / 1000) */
clkDiv = i2c->resource->GetFreq() / 1000U;
clkDiv = (clkDiv * 250) / 1000000U;
i2c->resource->base->CLKDIV = clkDiv & I2C_CLKDIV_DIVVAL_MASK;
/* Set slave address. */
I2C_SlaveSetAddress(i2c->resource->base, kI2C_SlaveAddressRegister0, arg, false);
/* set Slave address 0 qual */
i2c->resource->base->SLVQUAL0 = I2C_SLVQUAL0_QUALMODE0(0) | I2C_SLVQUAL0_SLVQUAL0(0);
return ARM_DRIVER_OK;
/*Set Bus Speed; arg = bus speed*/
case ARM_I2C_BUS_SPEED:
switch (arg)
{
case ARM_I2C_BUS_SPEED_STANDARD:
baudRate_Bps = 100000;
break;
case ARM_I2C_BUS_SPEED_FAST:
baudRate_Bps = 400000;
break;
case ARM_I2C_BUS_SPEED_FAST_PLUS:
baudRate_Bps = 1000000;
break;
default:
return ARM_DRIVER_ERROR_UNSUPPORTED;
}
I2C_MasterSetBaudRate(i2c->resource->base, baudRate_Bps, i2c->resource->GetFreq());
return ARM_DRIVER_OK;
// Not supported
case ARM_I2C_BUS_CLEAR:
return ARM_DRIVER_ERROR_UNSUPPORTED;
/*Aborts the data transfer between Master and Slave for Transmit or Receive*/
case ARM_I2C_ABORT_TRANSFER:
if (i2c->resource->base->CFG & I2C_CFG_MSTEN_MASK)
{
/*disable master interrupt and send STOP signal*/
I2C_MasterTransferAbort(i2c->resource->base, &(i2c->handle->master_handle));
i2c->handle->master_handle.transferCount = 0;
i2c->handle->master_handle.transfer.data = NULL;
i2c->handle->master_handle.transfer.dataSize = 0;
}
/*if slave receive*/
if ((i2c->resource->base->CFG & I2C_CFG_SLVEN_MASK) &&
((i2c->handle->slave_handle.slaveFsm) == kI2C_SlaveFsmReceive))
{
/*disable slave interrupt*/
I2C_SlaveTransferAbort(i2c->resource->base, &(i2c->handle->slave_handle));
i2c->handle->slave_handle.transfer.transferredCount = 0;
i2c->handle->slave_handle.transfer.txData = NULL;
i2c->handle->slave_handle.transfer.rxData = NULL;
}
return ARM_DRIVER_OK;
default:
return ARM_DRIVER_ERROR_UNSUPPORTED;
}
}
static int32_t I2C_InterruptPowerControl(ARM_POWER_STATE state, cmsis_i2c_interrupt_driver_state_t *i2c)
{
switch (state)
{
/*terminates any pending data transfers, disable i2c moduole and i2c clock*/
case ARM_POWER_OFF:
if (i2c->flags & I2C_FLAG_POWER)
{
I2C_InterruptControl(ARM_I2C_ABORT_TRANSFER, 0, i2c);
I2C_MasterDeinit(i2c->resource->base);
I2C_SlaveDeinit(i2c->resource->base);
i2c->flags = I2C_FLAG_INIT;
}
return ARM_DRIVER_OK;
/* Not supported */
case ARM_POWER_LOW:
return ARM_DRIVER_ERROR_UNSUPPORTED;
/*enable i2c moduole and i2c clock*/
case ARM_POWER_FULL:
if (i2c->flags == I2C_FLAG_UNINIT)
{
return ARM_DRIVER_ERROR;
}
if (i2c->flags & I2C_FLAG_POWER)
{
/* Driver already powered */
break;
}
CLOCK_EnableClock(s_i2cClocks[I2C_GetInstance(i2c->resource->base)]);
I2C_MasterEnable(i2c->resource->base, true);
i2c->flags |= I2C_FLAG_POWER;
return ARM_DRIVER_OK;
default:
return ARM_DRIVER_ERROR_UNSUPPORTED;
}
return ARM_DRIVER_OK;
}
ARM_I2C_STATUS I2C_InterruptGetStatus(cmsis_i2c_interrupt_driver_state_t *i2c)
{
ARM_I2C_STATUS stat = {0};
uint32_t ksdk_i2c_status = I2C_GetStatusFlags(i2c->resource->base);
if (i2c->resource->base->CFG & I2C_CFG_MSTEN_MASK)
{
stat.busy = !(ksdk_i2c_status & I2C_STAT_MSTPENDING_MASK); /*Busy flag.*/
stat.direction = i2c->handle->master_handle.transfer.direction; /*Direction: 0=Transmitter, 1=Receiver.*/
stat.mode = 1; /*Mode: 0=Slave, 1=Master.*/
stat.arbitration_lost = !(!(ksdk_i2c_status & I2C_STAT_MSTARBLOSS_MASK));
/*Master lost arbitration (cleared on start of next Master operation)*/
}
if (i2c->resource->base->CFG & I2C_CFG_SLVEN_MASK)
{
stat.busy = !(ksdk_i2c_status & I2C_STAT_SLVPENDING_MASK); /*Busy flag.*/
if ((i2c->handle->slave_handle.slaveFsm) == kI2C_SlaveFsmReceive)
{
stat.direction = 1; /*Direction: 0=Transmitter, 1=Receiver.*/
}
else
{
stat.direction = 0; /*Direction: 0=Transmitter, 1=Receiver.*/
}
stat.mode = 0; /*Mode: 0=Slave, 1=Master.*/
}
return stat;
}
#endif
#if defined(I2C0) && RTE_I2C0
/* User needs to provide the implementation for I2C0_GetFreq/InitPins/DeinitPins
in the application for enabling according instance. */
extern uint32_t I2C0_GetFreq(void);
extern void I2C0_InitPins(void);
extern void I2C0_DeinitPins(void);
cmsis_i2c_resource_t I2C0_Resource = {I2C0, I2C0_GetFreq};
#if RTE_I2C0_DMA_EN
#if (defined(FSL_FEATURE_SOC_DMA_COUNT) && FSL_FEATURE_SOC_DMA_COUNT)
cmsis_i2c_dma_resource_t I2C0_DmaResource = {RTE_I2C0_Master_DMA_BASE, RTE_I2C0_Master_DMA_CH};
i2c_master_dma_handle_t I2C0_DmaHandle;
dma_handle_t I2C0_DmaTxRxHandle;
#if defined(__CC_ARM) || defined(__ARMCC_VERSION)
ARMCC_SECTION("i2c0_dma_driver_state")
cmsis_i2c_dma_driver_state_t I2C0_DmaDriverState = {
#else
cmsis_i2c_dma_driver_state_t I2C0_DmaDriverState = {
#endif
&I2C0_Resource,
&I2C0_DmaResource,
&I2C0_DmaHandle,
&I2C0_DmaTxRxHandle,
};
static int32_t I2C0_Master_DmaInitialize(ARM_I2C_SignalEvent_t cb_event)
{
I2C0_InitPins();
return I2C_Master_DmaInitialize(cb_event, &I2C0_DmaDriverState);
}
int32_t I2C0_Master_DmaUninitialize(void)
{
I2C0_DeinitPins();
return I2C_Master_DmaUninitialize(&I2C0_DmaDriverState);
}
int32_t I2C0_Master_DmaPowerControl(ARM_POWER_STATE state)
{
return I2C_Master_DmaPowerControl(state, &I2C0_DmaDriverState);
}
int32_t I2C0_Master_DmaTransmit(uint32_t addr, const uint8_t *data, uint32_t num, bool xfer_pending)
{
return I2C_Master_DmaTransmit(addr, data, num, xfer_pending, &I2C0_DmaDriverState);
}
int32_t I2C0_Master_DmaReceive(uint32_t addr, uint8_t *data, uint32_t num, bool xfer_pending)
{
return I2C_Master_DmaReceive(addr, data, num, xfer_pending, &I2C0_DmaDriverState);
}
int32_t I2C0_Master_DmaGetDataCount(void)
{
return I2C_Master_DmaGetDataCount(&I2C0_DmaDriverState);
}
int32_t I2C0_Master_DmaControl(uint32_t control, uint32_t arg)
{
return I2C_Master_DmaControl(control, arg, &I2C0_DmaDriverState);
}
ARM_I2C_STATUS I2C0_Master_DmaGetStatus(void)
{
return I2C_Master_DmaGetStatus(&I2C0_DmaDriverState);
}
#endif
#else
cmsis_i2c_handle_t I2C0_handle;
#if defined(__CC_ARM) || defined(__ARMCC_VERSION)
ARMCC_SECTION("i2c0_interrupt_driver_state")
cmsis_i2c_interrupt_driver_state_t I2C0_InterruptDriverState = {
#else
cmsis_i2c_interrupt_driver_state_t I2C0_InterruptDriverState = {
#endif
&I2C0_Resource,
&I2C0_handle,
};
static int32_t I2C0_InterruptInitialize(ARM_I2C_SignalEvent_t cb_event)
{
I2C0_InitPins();
return I2C_InterruptInitialize(cb_event, &I2C0_InterruptDriverState);
}
static int32_t I2C0_InterruptUninitialize(void)
{
I2C0_DeinitPins();
return I2C_InterruptUninitialize(&I2C0_InterruptDriverState);
}
static int32_t I2C0_InterruptPowerControl(ARM_POWER_STATE state)
{
return I2C_InterruptPowerControl(state, &I2C0_InterruptDriverState);
}
int32_t I2C0_Master_InterruptTransmit(uint32_t addr, const uint8_t *data, uint32_t num, bool xfer_pending)
{
return I2C_Master_InterruptTransmit(addr, data, num, xfer_pending, &I2C0_InterruptDriverState);
}
int32_t I2C0_Master_InterruptReceive(uint32_t addr, uint8_t *data, uint32_t num, bool xfer_pending)
{
return I2C_Master_InterruptReceive(addr, data, num, xfer_pending, &I2C0_InterruptDriverState);
}
int32_t I2C0_Slave_InterruptTransmit(const uint8_t *data, uint32_t num)
{
return I2C_Slave_InterruptTransmit(data, num, &I2C0_InterruptDriverState);
}
int32_t I2C0_Slave_InterruptReceive(uint8_t *data, uint32_t num)
{
return I2C_Slave_InterruptReceive(data, num, &I2C0_InterruptDriverState);
}
int32_t I2C0_InterruptGetDataCount(void)
{
return I2C_InterruptGetDataCount(&I2C0_InterruptDriverState);
}
int32_t I2C0_InterruptControl(uint32_t control, uint32_t arg)
{
return I2C_InterruptControl(control, arg, &I2C0_InterruptDriverState);
}
ARM_I2C_STATUS I2C0_InterruptGetStatus(void)
{
return I2C_InterruptGetStatus(&I2C0_InterruptDriverState);
}
#endif
ARM_DRIVER_I2C Driver_I2C0 = {I2Cx_GetVersion,
I2Cx_GetCapabilities,
#if RTE_I2C0_DMA_EN
I2C0_Master_DmaInitialize,
I2C0_Master_DmaUninitialize,
I2C0_Master_DmaPowerControl,
I2C0_Master_DmaTransmit,
I2C0_Master_DmaReceive,
NULL,
NULL,
I2C0_Master_DmaGetDataCount,
I2C0_Master_DmaControl,
I2C0_Master_DmaGetStatus
#else
I2C0_InterruptInitialize,
I2C0_InterruptUninitialize,
I2C0_InterruptPowerControl,
I2C0_Master_InterruptTransmit,
I2C0_Master_InterruptReceive,
I2C0_Slave_InterruptTransmit,
I2C0_Slave_InterruptReceive,
I2C0_InterruptGetDataCount,
I2C0_InterruptControl,
I2C0_InterruptGetStatus
#endif
};
#endif
#if defined(I2C1) && RTE_I2C1
/* User needs to provide the implementation for I2C1_GetFreq/InitPins/DeinitPins
in the application for enabling according instance. */
extern uint32_t I2C1_GetFreq(void);
extern void I2C1_InitPins(void);
extern void I2C1_DeinitPins(void);
cmsis_i2c_resource_t I2C1_Resource = {I2C1, I2C1_GetFreq};
#if RTE_I2C1_DMA_EN
#if (defined(FSL_FEATURE_SOC_DMA_COUNT) && FSL_FEATURE_SOC_DMA_COUNT)
cmsis_i2c_dma_resource_t I2C1_DmaResource = {RTE_I2C1_Master_DMA_BASE, RTE_I2C1_Master_DMA_CH};
i2c_master_dma_handle_t I2C1_DmaHandle;
dma_handle_t I2C1_DmaTxRxHandle;
#if defined(__CC_ARM) || defined(__ARMCC_VERSION)
ARMCC_SECTION("i2c1_dma_driver_state")
cmsis_i2c_dma_driver_state_t I2C1_DmaDriverState = {
#else
cmsis_i2c_dma_driver_state_t I2C1_DmaDriverState = {
#endif
&I2C1_Resource,
&I2C1_DmaResource,
&I2C1_DmaHandle,
&I2C1_DmaTxRxHandle,
};
static int32_t I2C1_Master_DmaInitialize(ARM_I2C_SignalEvent_t cb_event)
{
I2C1_InitPins();
return I2C_Master_DmaInitialize(cb_event, &I2C1_DmaDriverState);
}
int32_t I2C1_Master_DmaUninitialize(void)
{
I2C1_DeinitPins();
return I2C_Master_DmaUninitialize(&I2C1_DmaDriverState);
}
int32_t I2C1_Master_DmaPowerControl(ARM_POWER_STATE state)
{
return I2C_Master_DmaPowerControl(state, &I2C1_DmaDriverState);
}
int32_t I2C1_Master_DmaTransmit(uint32_t addr, const uint8_t *data, uint32_t num, bool xfer_pending)
{
return I2C_Master_DmaTransmit(addr, data, num, xfer_pending, &I2C1_DmaDriverState);
}
int32_t I2C1_Master_DmaReceive(uint32_t addr, uint8_t *data, uint32_t num, bool xfer_pending)
{
return I2C_Master_DmaReceive(addr, data, num, xfer_pending, &I2C1_DmaDriverState);
}
int32_t I2C1_Master_DmaGetDataCount(void)
{
return I2C_Master_DmaGetDataCount(&I2C1_DmaDriverState);
}
int32_t I2C1_Master_DmaControl(uint32_t control, uint32_t arg)
{
return I2C_Master_DmaControl(control, arg, &I2C1_DmaDriverState);
}
ARM_I2C_STATUS I2C1_Master_DmaGetStatus(void)
{
return I2C_Master_DmaGetStatus(&I2C1_DmaDriverState);
}
#endif
#else
cmsis_i2c_handle_t I2C1_Handle;
#if defined(__CC_ARM) || defined(__ARMCC_VERSION)
ARMCC_SECTION("i2c1_interrupt_driver_state")
cmsis_i2c_interrupt_driver_state_t I2C1_InterruptDriverState = {
#else
cmsis_i2c_interrupt_driver_state_t I2C1_InterruptDriverState = {
#endif
&I2C1_Resource,
&I2C1_Handle,
};
static int32_t I2C1_InterruptInitialize(ARM_I2C_SignalEvent_t cb_event)
{
I2C1_InitPins();
return I2C_InterruptInitialize(cb_event, &I2C1_InterruptDriverState);
}
static int32_t I2C1_InterruptUninitialize(void)
{
I2C1_DeinitPins();
return I2C_InterruptUninitialize(&I2C1_InterruptDriverState);
}
static int32_t I2C1_InterruptPowerControl(ARM_POWER_STATE state)
{
return I2C_InterruptPowerControl(state, &I2C1_InterruptDriverState);
}
int32_t I2C1_Master_InterruptTransmit(uint32_t addr, const uint8_t *data, uint32_t num, bool xfer_pending)
{
return I2C_Master_InterruptTransmit(addr, data, num, xfer_pending, &I2C1_InterruptDriverState);
}
int32_t I2C1_Master_InterruptReceive(uint32_t addr, uint8_t *data, uint32_t num, bool xfer_pending)
{
return I2C_Master_InterruptReceive(addr, data, num, xfer_pending, &I2C1_InterruptDriverState);
}
int32_t I2C1_Slave_InterruptTransmit(const uint8_t *data, uint32_t num)
{
return I2C_Slave_InterruptTransmit(data, num, &I2C1_InterruptDriverState);
}
int32_t I2C1_Slave_InterruptReceive(uint8_t *data, uint32_t num)
{
return I2C_Slave_InterruptReceive(data, num, &I2C1_InterruptDriverState);
}
int32_t I2C1_InterruptGetDataCount(void)
{
return I2C_InterruptGetDataCount(&I2C1_InterruptDriverState);
}
int32_t I2C1_InterruptControl(uint32_t control, uint32_t arg)
{
return I2C_InterruptControl(control, arg, &I2C1_InterruptDriverState);
}
ARM_I2C_STATUS I2C1_InterruptGetStatus(void)
{
return I2C_InterruptGetStatus(&I2C1_InterruptDriverState);
}
#endif
ARM_DRIVER_I2C Driver_I2C1 = {I2Cx_GetVersion,
I2Cx_GetCapabilities,
#if RTE_I2C1_DMA_EN
I2C1_Master_DmaInitialize,
I2C1_Master_DmaUninitialize,
I2C1_Master_DmaPowerControl,
I2C1_Master_DmaTransmit,
I2C1_Master_DmaReceive,
NULL,
NULL,
I2C1_Master_DmaGetDataCount,
I2C1_Master_DmaControl,
I2C1_Master_DmaGetStatus
#else
I2C1_InterruptInitialize,
I2C1_InterruptUninitialize,
I2C1_InterruptPowerControl,
I2C1_Master_InterruptTransmit,
I2C1_Master_InterruptReceive,
I2C1_Slave_InterruptTransmit,
I2C1_Slave_InterruptReceive,
I2C1_InterruptGetDataCount,
I2C1_InterruptControl,
I2C1_InterruptGetStatus
#endif
};
#endif
#if defined(I2C2) && RTE_I2C2
/* User needs to provide the implementation for I2C2_GetFreq/InitPins/DeinitPins
in the application for enabling according instance. */
extern uint32_t I2C2_GetFreq(void);
extern void I2C2_InitPins(void);
extern void I2C2_DeinitPins(void);
cmsis_i2c_resource_t I2C2_Resource = {I2C2, I2C2_GetFreq};
#if RTE_I2C2_DMA_EN
#if (defined(FSL_FEATURE_SOC_DMA_COUNT) && FSL_FEATURE_SOC_DMA_COUNT)
cmsis_i2c_dma_resource_t I2C2_DmaResource = {RTE_I2C2_Master_DMA_BASE, RTE_I2C2_Master_DMA_CH};
i2c_master_dma_handle_t I2C2_DmaHandle;
dma_handle_t I2C2_DmaTxRxHandle;
#if defined(__CC_ARM) || defined(__ARMCC_VERSION)
ARMCC_SECTION("i2c2_dma_driver_state")
cmsis_i2c_dma_driver_state_t I2C2_DmaDriverState = {
#else
cmsis_i2c_dma_driver_state_t I2C2_DmaDriverState = {
#endif
&I2C2_Resource,
&I2C2_DmaResource,
&I2C2_DmaHandle,
&I2C2_DmaTxRxHandle,
};
static int32_t I2C2_Master_DmaInitialize(ARM_I2C_SignalEvent_t cb_event)
{
I2C2_InitPins();
return I2C_Master_DmaInitialize(cb_event, &I2C2_DmaDriverState);
}
int32_t I2C2_Master_DmaUninitialize(void)
{
I2C2_DeinitPins();
return I2C_Master_DmaUninitialize(&I2C2_DmaDriverState);
}
int32_t I2C2_Master_DmaPowerControl(ARM_POWER_STATE state)
{
return I2C_Master_DmaPowerControl(state, &I2C2_DmaDriverState);
}
int32_t I2C2_Master_DmaTransmit(uint32_t addr, const uint8_t *data, uint32_t num, bool xfer_pending)
{
return I2C_Master_DmaTransmit(addr, data, num, xfer_pending, &I2C2_DmaDriverState);
}
int32_t I2C2_Master_DmaReceive(uint32_t addr, uint8_t *data, uint32_t num, bool xfer_pending)
{
return I2C_Master_DmaReceive(addr, data, num, xfer_pending, &I2C2_DmaDriverState);
}
int32_t I2C2_Master_DmaGetDataCount(void)
{
return I2C_Master_DmaGetDataCount(&I2C2_DmaDriverState);
}
int32_t I2C2_Master_DmaControl(uint32_t control, uint32_t arg)
{
return I2C_Master_DmaControl(control, arg, &I2C2_DmaDriverState);
}
ARM_I2C_STATUS I2C2_Master_DmaGetStatus(void)
{
return I2C_Master_DmaGetStatus(&I2C2_DmaDriverState);
}
#endif
#else
cmsis_i2c_handle_t I2C2_Handle;
#if defined(__CC_ARM) || defined(__ARMCC_VERSION)
ARMCC_SECTION("i2c2_interrupt_driver_state")
cmsis_i2c_interrupt_driver_state_t I2C2_InterruptDriverState = {
#else
cmsis_i2c_interrupt_driver_state_t I2C2_InterruptDriverState = {
#endif
&I2C2_Resource,
&I2C2_Handle,
};
static int32_t I2C2_InterruptInitialize(ARM_I2C_SignalEvent_t cb_event)
{
I2C2_InitPins();
return I2C_InterruptInitialize(cb_event, &I2C2_InterruptDriverState);
}
static int32_t I2C2_InterruptUninitialize(void)
{
I2C2_DeinitPins();
return I2C_InterruptUninitialize(&I2C2_InterruptDriverState);
}
static int32_t I2C2_InterruptPowerControl(ARM_POWER_STATE state)
{
return I2C_InterruptPowerControl(state, &I2C2_InterruptDriverState);
}
int32_t I2C2_Master_InterruptTransmit(uint32_t addr, const uint8_t *data, uint32_t num, bool xfer_pending)
{
return I2C_Master_InterruptTransmit(addr, data, num, xfer_pending, &I2C2_InterruptDriverState);
}
int32_t I2C2_Master_InterruptReceive(uint32_t addr, uint8_t *data, uint32_t num, bool xfer_pending)
{
return I2C_Master_InterruptReceive(addr, data, num, xfer_pending, &I2C2_InterruptDriverState);
}
int32_t I2C2_Slave_InterruptTransmit(const uint8_t *data, uint32_t num)
{
return I2C_Slave_InterruptTransmit(data, num, &I2C2_InterruptDriverState);
}
int32_t I2C2_Slave_InterruptReceive(uint8_t *data, uint32_t num)
{
return I2C_Slave_InterruptReceive(data, num, &I2C2_InterruptDriverState);
}
int32_t I2C2_InterruptGetDataCount(void)
{
return I2C_InterruptGetDataCount(&I2C2_InterruptDriverState);
}
int32_t I2C2_InterruptControl(uint32_t control, uint32_t arg)
{
return I2C_InterruptControl(control, arg, &I2C2_InterruptDriverState);
}
ARM_I2C_STATUS I2C2_InterruptGetStatus(void)
{
return I2C_InterruptGetStatus(&I2C2_InterruptDriverState);
}
#endif
ARM_DRIVER_I2C Driver_I2C2 = {I2Cx_GetVersion,
I2Cx_GetCapabilities,
#if RTE_I2C2_DMA_EN
I2C2_Master_DmaInitialize,
I2C2_Master_DmaUninitialize,
I2C2_Master_DmaPowerControl,
I2C2_Master_DmaTransmit,
I2C2_Master_DmaReceive,
NULL,
NULL,
I2C2_Master_DmaGetDataCount,
I2C2_Master_DmaControl,
I2C2_Master_DmaGetStatus
#else
I2C2_InterruptInitialize,
I2C2_InterruptUninitialize,
I2C2_InterruptPowerControl,
I2C2_Master_InterruptTransmit,
I2C2_Master_InterruptReceive,
I2C2_Slave_InterruptTransmit,
I2C2_Slave_InterruptReceive,
I2C2_InterruptGetDataCount,
I2C2_InterruptControl,
I2C2_InterruptGetStatus
#endif
};
#endif