/* * Copyright 2018-2021 NXP * All rights reserved. * * * SPDX-License-Identifier: BSD-3-Clause */ #include "fsl_puf.h" #include "fsl_clock.h" #include "fsl_common.h" #if !(defined(FSL_FEATURE_PUF_HAS_NO_RESET) && (FSL_FEATURE_PUF_HAS_NO_RESET > 0)) #include "fsl_reset.h" #endif /* FSL_FEATURE_PUF_HAS_NO_RESET */ /* Component ID definition, used by tools. */ #ifndef FSL_COMPONENT_ID #define FSL_COMPONENT_ID "platform.drivers.puf" #endif /* RT6xx POWER CONTROL bit masks */ #if defined(FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL) && (FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL > 0) #define PUF_PWRCTRL_CKDIS_MASK (0x4U) #define PUF_PWRCTRL_RAMINIT_MASK (0x8U) #define PUF_PWRCTRL_RAMPSWLARGEMA_MASK (0x10U) #define PUF_PWRCTRL_RAMPSWLARGEMP_MASK (0x20U) #define PUF_PWRCTRL_RAMPSWSMALLMA_MASK (0x40U) #define PUF_PWRCTRL_RAMPSWSMALLMP_MASK (0x80U) #endif #if defined(FSL_FEATURE_PUF_HAS_SRAM_CTRL) && (FSL_FEATURE_PUF_HAS_SRAM_CTRL > 0) #define DEFAULT_CKGATING 0x0u #define PUF_ENABLE_MASK 0xFFFFFFFEu #define PUF_ENABLE_CTRL 0x1u #else static void puf_wait_usec(volatile uint32_t usec, uint32_t coreClockFrequencyMHz) { SDK_DelayAtLeastUs(usec, coreClockFrequencyMHz * 1000000U); /* Instead of calling SDK_DelayAtLeastUs() implement delay loop here */ // while (usec > 0U) // { // usec--; // number of MHz is directly number of core clocks to wait 1 usec. // the while loop below is actually 4 clocks so divide by 4 for ~1 usec // volatile uint32_t ticksCount = coreClockFrequencyMHz / 4u + 1u; // while (0U != ticksCount--) // { // } // } } #endif /* defined(FSL_FEATURE_PUF_HAS_SRAM_CTRL) && (FSL_FEATURE_PUF_HAS_SRAM_CTRL > 0) */ static status_t puf_waitForInit(PUF_Type *base) { status_t status = kStatus_Fail; /* wait until status register reads non-zero. All zero is not valid. It should be BUSY or OK or ERROR */ while (0U == base->STAT) { } /* wait if busy */ while ((base->STAT & PUF_STAT_BUSY_MASK) != 0U) { } /* return status */ if (0U != (base->STAT & (PUF_STAT_SUCCESS_MASK | PUF_STAT_ERROR_MASK))) { status = kStatus_Success; } return status; } static void puf_powerOn(PUF_Type *base, puf_config_t *conf) { #if defined(FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL) && (FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL > 0) /* RT6xxs */ base->PWRCTRL = (PUF_PWRCTRL_RAM_ON_MASK | PUF_PWRCTRL_CK_DIS_MASK); base->PWRCTRL = (PUF_PWRCTRL_RAM_ON_MASK | PUF_PWRCTRL_CK_DIS_MASK | PUF_PWRCTRL_RAMINIT_MASK); base->PWRCTRL = (PUF_PWRCTRL_RAM_ON_MASK | PUF_PWRCTRL_RAMINIT_MASK); #elif defined(FSL_FEATURE_PUF_HAS_SRAM_CTRL) && (FSL_FEATURE_PUF_HAS_SRAM_CTRL > 0) /* LPCXpresso55s16 */ conf->puf_sram_base->CFG |= PUF_ENABLE_CTRL; while (0U == (PUF_SRAM_CTRL_STATUS_READY_MASK & conf->puf_sram_base->STATUS)) { } #else /* !FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL */ /* LPCXpresso55s69 & LPCXpresso54S018 */ base->PWRCTRL = PUF_PWRCTRL_RAMON_MASK; while (0U == (PUF_PWRCTRL_RAMSTAT_MASK & base->PWRCTRL)) { } #endif /* FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL */ } /*! * brief Powercycle PUF * * This function make powercycle of PUF. * * param base PUF peripheral base address * param conf PUF configuration structure * return Status of the powercycle operation. */ status_t PUF_PowerCycle(PUF_Type *base, puf_config_t *conf) { #if defined(FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL) && (FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL > 0) /* RT6xxs */ uint32_t coreClockFrequencyMHz = conf->coreClockFrequencyHz / 1000000u; base->PWRCTRL = (PUF_PWRCTRL_RAM_ON_MASK | PUF_PWRCTRL_CK_DIS_MASK | PUF_PWRCTRL_RAMINIT_MASK); /* disable RAM CK */ /* enter ASPS mode */ base->PWRCTRL = (PUF_PWRCTRL_CK_DIS_MASK | PUF_PWRCTRL_RAMINIT_MASK); /* SLEEP = 1 */ base->PWRCTRL = (PUF_PWRCTRL_RAMINIT_MASK); /* enable RAM CK */ base->PWRCTRL = (PUF_PWRCTRL_RAMINIT_MASK | PUF_PWRCTRL_RAMPSWLARGEMA_MASK | PUF_PWRCTRL_RAMPSWLARGEMP_MASK | PUF_PWRCTRL_RAMPSWSMALLMA_MASK | PUF_PWRCTRL_RAMPSWSMALLMP_MASK); /* SLEEP=1, PSW*=1 */ /* Wait enough time to discharge fully */ puf_wait_usec(conf->dischargeTimeMsec * 1000u, conf->coreClockFrequencyHz / 1000000u); /* write PWRCTRL=0x38. wait time > 1 us */ base->PWRCTRL = (PUF_PWRCTRL_RAMINIT_MASK | PUF_PWRCTRL_RAMPSWLARGEMA_MASK | PUF_PWRCTRL_RAMPSWLARGEMP_MASK); /* SLEEP=1. PSWSMALL*=0. PSWLARGE*=1. */ puf_wait_usec(1, coreClockFrequencyMHz); /* write PWRCTRL=0x8. wait time > 1 us */ base->PWRCTRL = PUF_PWRCTRL_RAMINIT_MASK; /* SLEEP=1. PSWSMALL*=0. PSWLARGE*=0 */ puf_wait_usec(1, coreClockFrequencyMHz); base->PWRCTRL = (PUF_PWRCTRL_CK_DIS_MASK | PUF_PWRCTRL_RAMINIT_MASK); base->PWRCTRL = (PUF_PWRCTRL_RAM_ON_MASK | PUF_PWRCTRL_CK_DIS_MASK | PUF_PWRCTRL_RAMINIT_MASK); base->PWRCTRL = (PUF_PWRCTRL_RAM_ON_MASK | PUF_PWRCTRL_RAMINIT_MASK); /* Generate INITN low pulse */ base->PWRCTRL = (PUF_PWRCTRL_RAM_ON_MASK | PUF_PWRCTRL_CK_DIS_MASK | PUF_PWRCTRL_RAMINIT_MASK); base->PWRCTRL = (PUF_PWRCTRL_RAM_ON_MASK | PUF_PWRCTRL_CK_DIS_MASK); base->PWRCTRL = PUF_PWRCTRL_RAM_ON_MASK; #elif defined(FSL_FEATURE_PUF_HAS_SRAM_CTRL) && (FSL_FEATURE_PUF_HAS_SRAM_CTRL > 0) /* LPCXpresso55s16 */ conf->puf_sram_base->CFG &= PUF_ENABLE_MASK; #else /* LPCXpresso55s69 & LPCXpresso54S018 */ base->PWRCTRL = 0x0u; while (0U != (PUF_PWRCTRL_RAMSTAT_MASK & base->PWRCTRL)) { } /* Wait enough time to discharge fully */ puf_wait_usec(conf->dischargeTimeMsec * 1000u, conf->coreClockFrequencyHz / 1000000u); #endif #if !(defined(FSL_FEATURE_PUF_HAS_NO_RESET) && (FSL_FEATURE_PUF_HAS_NO_RESET > 0)) /* Reset PUF and reenable power to PUF SRAM */ RESET_PeripheralReset(kPUF_RST_SHIFT_RSTn); #endif /* FSL_TEATURE_PUF_HAS_NO_RESET */ puf_powerOn(base, conf); return kStatus_Success; } /*! * brief Sets the default configuration of PUF * * This function initialize PUF config structure to default values. * * param conf PUF configuration structure */ void PUF_GetDefaultConfig(puf_config_t *conf) { #if defined(FSL_FEATURE_PUF_HAS_SRAM_CTRL) && (FSL_FEATURE_PUF_HAS_SRAM_CTRL > 0) /* LPCXpresso55s16 */ conf->puf_sram_base = PUF_SRAM_CTRL; /* Default configuration after reset */ conf->CKGATING = DEFAULT_CKGATING; /* PUF SRAM Clock Gating */ #endif /* FSL_FEATURE_PUF_HAS_SRAM_CTRL */ conf->dischargeTimeMsec = KEYSTORE_PUF_DISCHARGE_TIME_FIRST_TRY_MS; conf->coreClockFrequencyHz = CLOCK_GetFreq(kCLOCK_CoreSysClk); return; } /*! * brief Initialize PUF * * This function enables power to PUF block and waits until the block initializes. * * param base PUF peripheral base address * param conf PUF configuration structure * return Status of the init operation */ status_t PUF_Init(PUF_Type *base, puf_config_t *conf) { status_t status = kStatus_Fail; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) CLOCK_EnableClock(kCLOCK_Puf); #endif #if !(defined(FSL_FEATURE_PUF_HAS_NO_RESET) && (FSL_FEATURE_PUF_HAS_NO_RESET > 0)) /* Reset PUF */ RESET_PeripheralReset(kPUF_RST_SHIFT_RSTn); #endif /* FSL_FEATURE_PUF_HAS_NO_RESET */ #if defined(FSL_FEATURE_PUF_HAS_SRAM_CTRL) && (FSL_FEATURE_PUF_HAS_SRAM_CTRL > 0) /* Set configuration for SRAM */ conf->puf_sram_base->CFG |= PUF_SRAM_CTRL_CFG_CKGATING(conf->CKGATING); #endif /* FSL_FEATURE_PUF_HAS_SRAM_CTRL */ /* Enable power to PUF SRAM */ puf_powerOn(base, conf); /* Wait for peripheral to become ready */ status = puf_waitForInit(base); /* In case of error or enroll or start not allowed, do power-cycle */ /* First try with shorter discharge time, if then it also fails try with longer time */ /* conf->dischargeTimeMsec = KEYSTORE_PUF_DISCHARGE_TIME_FIRST_TRY_MS; */ if ((status != kStatus_Success) || (0U == (base->ALLOW & (PUF_ALLOW_ALLOWENROLL_MASK | PUF_ALLOW_ALLOWSTART_MASK)))) { (void)PUF_PowerCycle(base, conf); status = puf_waitForInit(base); } /* In case of error or enroll or start not allowed, do power-cycle with worst discharge timing */ if ((status != kStatus_Success) || (0U == (base->ALLOW & (PUF_ALLOW_ALLOWENROLL_MASK | PUF_ALLOW_ALLOWSTART_MASK)))) { conf->dischargeTimeMsec = KEYSTORE_PUF_DISCHARGE_TIME_MAX_MS; (void)PUF_PowerCycle(base, conf); status = puf_waitForInit(base); } return status; } /*! * brief Denitialize PUF * * This function disables power to PUF SRAM and peripheral clock. * * param base PUF peripheral base address * param conf PUF configuration structure */ void PUF_Deinit(PUF_Type *base, puf_config_t *conf) { #if defined(FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL) && (FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL > 0) /* RT6xxs */ base->PWRCTRL = (PUF_PWRCTRL_RAM_ON_MASK | PUF_PWRCTRL_CK_DIS_MASK | PUF_PWRCTRL_RAMINIT_MASK); /* disable RAM CK */ /* enter ASPS mode */ base->PWRCTRL = (PUF_PWRCTRL_CK_DIS_MASK | PUF_PWRCTRL_RAMINIT_MASK); /* SLEEP = 1 */ base->PWRCTRL = PUF_PWRCTRL_RAMINIT_MASK; /* enable RAM CK */ base->PWRCTRL = (PUF_PWRCTRL_RAMINIT_MASK | PUF_PWRCTRL_RAMPSWLARGEMA_MASK | PUF_PWRCTRL_RAMPSWLARGEMP_MASK | PUF_PWRCTRL_RAMPSWSMALLMA_MASK | PUF_PWRCTRL_RAMPSWSMALLMP_MASK); /* SLEEP=1, PSW*=1 */ puf_wait_usec(conf->dischargeTimeMsec * 1000u, conf->coreClockFrequencyHz / 1000000u); #elif defined(FSL_FEATURE_PUF_HAS_SRAM_CTRL) && (FSL_FEATURE_PUF_HAS_SRAM_CTRL > 0) /* LPCXpresso55s16 */ conf->puf_sram_base = PUF_SRAM_CTRL; conf->puf_sram_base->CFG &= PUF_ENABLE_MASK; #else /* !FSL_FEATURE_PUF_PWR_HAS_MANUAL_SLEEP_CONTROL */ /* LPCXpresso55s69 & LPCXpresso54S018 */ base->PWRCTRL = 0x00u; puf_wait_usec(conf->dischargeTimeMsec * 1000u, conf->coreClockFrequencyHz / 1000000u); #endif #if !(defined(FSL_FEATURE_PUF_HAS_NO_RESET) && (FSL_FEATURE_PUF_HAS_NO_RESET > 0)) RESET_SetPeripheralReset(kPUF_RST_SHIFT_RSTn); #endif /* FSL_FEATURE_PUF_HAS_NO_RESET */ #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) CLOCK_DisableClock(kCLOCK_Puf); #endif } /*! * brief Enroll PUF * * This function derives a digital fingerprint, generates the corresponding Activation Code (AC) * and returns it to be stored in an NVM or a file. This step needs to be * performed only once for each device. This function may be permanently disallowed by a fuse. * * param base PUF peripheral base address * param[out] activationCode Word aligned address of the resulting activation code. * param activationCodeSize Size of the activationCode buffer in bytes. Shall be 1192 bytes. * return Status of enroll operation. */ status_t PUF_Enroll(PUF_Type *base, uint8_t *activationCode, size_t activationCodeSize) { status_t status = kStatus_Fail; uint32_t *activationCodeAligned = NULL; register uint32_t temp32 = 0; /* check that activation code buffer size is at least 1192 bytes */ if (activationCodeSize < PUF_ACTIVATION_CODE_SIZE) { return kStatus_InvalidArgument; } /* only work with aligned activationCode */ if (0U != (0x3u & (uintptr_t)activationCode)) { return kStatus_InvalidArgument; } activationCodeAligned = (uint32_t *)(uintptr_t)activationCode; /* check if ENROLL is allowed */ if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWENROLL_MASK)) { return kStatus_EnrollNotAllowed; } /* begin */ base->CTRL = PUF_CTRL_ENROLL_MASK; /* check status */ while (0U == (base->STAT & (PUF_STAT_BUSY_MASK | PUF_STAT_ERROR_MASK))) { } /* read out AC */ while (0U != (base->STAT & PUF_STAT_BUSY_MASK)) { if (0U != (PUF_STAT_CODEOUTAVAIL_MASK & base->STAT)) { temp32 = base->CODEOUTPUT; if (activationCodeSize >= sizeof(uint32_t)) { *activationCodeAligned = temp32; activationCodeAligned++; activationCodeSize -= sizeof(uint32_t); } } } if (((base->STAT & PUF_STAT_SUCCESS_MASK) != 0U) && (activationCodeSize == 0U)) { status = kStatus_Success; } return status; } /*! * brief Start PUF * * The Activation Code generated during the Enroll operation is used to * reconstruct the digital fingerprint. This needs to be done after every power-up * and reset. * * param base PUF peripheral base address * param activationCode Word aligned address of the input activation code. * param activationCodeSize Size of the activationCode buffer in bytes. Shall be 1192 bytes. * return Status of start operation. */ status_t PUF_Start(PUF_Type *base, const uint8_t *activationCode, size_t activationCodeSize) { status_t status = kStatus_Fail; const uint32_t *activationCodeAligned = NULL; register uint32_t temp32 = 0; /* check that activation code size is at least 1192 bytes */ if (activationCodeSize < 1192U) { return kStatus_InvalidArgument; } /* only work with aligned activationCode */ if (0U != (0x3u & (uintptr_t)activationCode)) { return kStatus_InvalidArgument; } activationCodeAligned = (const uint32_t *)(uintptr_t)activationCode; /* check if START is allowed */ if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWSTART_MASK)) { return kStatus_StartNotAllowed; } /* begin */ base->CTRL = PUF_CTRL_START_MASK; /* check status */ while (0U == (base->STAT & (PUF_STAT_BUSY_MASK | PUF_STAT_ERROR_MASK))) { } /* while busy send AC */ while (0U != (base->STAT & PUF_STAT_BUSY_MASK)) { if (0U != (PUF_STAT_CODEINREQ_MASK & base->STAT)) { if (activationCodeSize >= sizeof(uint32_t)) { temp32 = *activationCodeAligned; activationCodeAligned++; activationCodeSize -= sizeof(uint32_t); } base->CODEINPUT = temp32; } } /* get status */ if (0U != (base->STAT & PUF_STAT_SUCCESS_MASK)) { status = kStatus_Success; } return status; } /*! * brief Set intrinsic key * * The digital fingerprint generated during the Enroll/Start * operations is used to generate a Key Code (KC) that defines a unique intrinsic * key. This KC is returned to be stored in an NVM or a file. This operation * needs to be done only once for each intrinsic key. * Each time a Set Intrinsic Key operation is executed a new unique key is * generated. * * param base PUF peripheral base address * param keyIndex PUF key index register * param keySize Size of the intrinsic key to generate in bytes. * param[out] keyCode Word aligned address of the resulting key code. * param keyCodeSize Size of the keyCode buffer in bytes. Shall be PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(keySize). * return Status of set intrinsic key operation. */ status_t PUF_SetIntrinsicKey( PUF_Type *base, puf_key_index_register_t keyIndex, size_t keySize, uint8_t *keyCode, size_t keyCodeSize) { status_t status = kStatus_Fail; uint32_t *keyCodeAligned = NULL; register uint32_t temp32 = 0; /* check if SET KEY is allowed */ if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWSETKEY_MASK)) { return kStatus_Fail; } /* only work with aligned keyCode */ if (0U != (0x3u & (uintptr_t)keyCode)) { return kStatus_InvalidArgument; } /* Check that keySize is in the correct range and that it is multiple of 8 */ if ((keySize < (uint32_t)kPUF_KeySizeMin) || (keySize > (uint32_t)kPUF_KeySizeMax) || (0U != (keySize & 0x7U))) { return kStatus_InvalidArgument; } /* check that keyCodeSize is correct for given keySize */ if (keyCodeSize < PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(keySize)) { return kStatus_InvalidArgument; } if ((uint32_t)keyIndex > (uint32_t)kPUF_KeyIndexMax) { return kStatus_InvalidArgument; } keyCodeAligned = (uint32_t *)(uintptr_t)keyCode; /* program the key size and index */ base->KEYSIZE = keySize >> 3; base->KEYINDEX = (uint32_t)keyIndex; /* begin */ base->CTRL = PUF_CTRL_GENERATEKEY_MASK; /* wait till command is accepted */ while (0U == (base->STAT & (PUF_STAT_BUSY_MASK | PUF_STAT_ERROR_MASK))) { } /* while busy read KC */ while (0U != (base->STAT & PUF_STAT_BUSY_MASK)) { if (0U != (PUF_STAT_CODEOUTAVAIL_MASK & base->STAT)) { temp32 = base->CODEOUTPUT; if (keyCodeSize >= sizeof(uint32_t)) { *keyCodeAligned = temp32; keyCodeAligned++; keyCodeSize -= sizeof(uint32_t); } } } /* get status */ if (0U != (base->STAT & PUF_STAT_SUCCESS_MASK)) { status = kStatus_Success; } return status; } /*! * brief Set user key * * The digital fingerprint generated during the Enroll/Start * operations and a user key (UK) provided as input are used to * generate a Key Code (KC). This KC is sent returned to be stored * in an NVM or a file. This operation needs to be done only once for each user key. * * param base PUF peripheral base address * param keyIndex PUF key index register * param userKey Word aligned address of input user key. * param userKeySize Size of the input user key in bytes. * param[out] keyCode Word aligned address of the resulting key code. * param keyCodeSize Size of the keyCode buffer in bytes. Shall be PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(userKeySize). * return Status of set user key operation. */ status_t PUF_SetUserKey(PUF_Type *base, puf_key_index_register_t keyIndex, const uint8_t *userKey, size_t userKeySize, uint8_t *keyCode, size_t keyCodeSize) { status_t status = kStatus_Fail; uint32_t *keyCodeAligned = NULL; const uint32_t *userKeyAligned = NULL; register uint32_t temp32 = 0; /* check if SET KEY is allowed */ if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWSETKEY_MASK)) { return kStatus_Fail; } /* only work with aligned keyCode */ if (0U != (0x3u & (uintptr_t)keyCode)) { return kStatus_InvalidArgument; } /* Check that userKeySize is in the correct range and that it is multiple of 8 */ if ((userKeySize < (uint32_t)kPUF_KeySizeMin) || (userKeySize > (uint32_t)kPUF_KeySizeMax) || (0U != (userKeySize & 0x7U))) { return kStatus_InvalidArgument; } /* check that keyCodeSize is correct for given userKeySize */ if (keyCodeSize < PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(userKeySize)) { return kStatus_InvalidArgument; } if ((uint32_t)keyIndex > (uint32_t)kPUF_KeyIndexMax) { return kStatus_InvalidArgument; } keyCodeAligned = (uint32_t *)(uintptr_t)keyCode; userKeyAligned = (const uint32_t *)(uintptr_t)userKey; /* program the key size and index */ base->KEYSIZE = userKeySize >> 3; /* convert to 64-bit blocks */ base->KEYINDEX = (uint32_t)keyIndex; /* We have to store the user key on index 0 swaped for HW bus */ if (keyIndex == kPUF_KeyIndex_00) { userKeyAligned = userKeyAligned + (userKeySize / sizeof(uint32_t)); } /* begin */ base->CTRL = PUF_CTRL_SETKEY_MASK; /* wait till command is accepted */ while (0U == (base->STAT & (PUF_STAT_BUSY_MASK | PUF_STAT_ERROR_MASK))) { } /* while busy write UK and read KC */ while (0U != (base->STAT & PUF_STAT_BUSY_MASK)) { if (0U != (PUF_STAT_KEYINREQ_MASK & base->STAT)) { if (userKeySize >= sizeof(uint32_t)) { #if defined(LPC54S018_SERIES) if (keyIndex == kPUF_KeyIndex_00) { userKeyAligned--; temp32 = *userKeyAligned; userKeySize -= sizeof(uint32_t); } #else if (keyIndex == kPUF_KeyIndex_00) { userKeyAligned--; temp32 = __REV(*userKeyAligned); userKeySize--; } #endif /* defined(LPC54S018_SERIES) */ else if (keyIndex != kPUF_KeyIndex_00) { temp32 = *userKeyAligned; userKeyAligned++; userKeySize -= sizeof(uint32_t); } else { /* Intentional empty */ } } base->KEYINPUT = temp32; } if (0U != (PUF_STAT_CODEOUTAVAIL_MASK & base->STAT)) { temp32 = base->CODEOUTPUT; if (keyCodeSize >= sizeof(uint32_t)) { *keyCodeAligned = temp32; keyCodeAligned++; keyCodeSize -= sizeof(uint32_t); } } } /* get status */ if (0U != (base->STAT & PUF_STAT_SUCCESS_MASK)) { status = kStatus_Success; } return status; } static status_t puf_getHwKey(PUF_Type *base, const uint8_t *keyCode, size_t keyCodeSize) { status_t status = kStatus_Fail; uint32_t *keyCodeAligned = NULL; register uint32_t temp32 = 0; keyCodeAligned = (uint32_t *)(uintptr_t)keyCode; /* begin */ base->CTRL = PUF_CTRL_GETKEY_MASK; /* wait till command is accepted */ while (0U == (base->STAT & (PUF_STAT_BUSY_MASK | PUF_STAT_ERROR_MASK))) { } /* while busy send KC, key is reconstructed to HW bus */ while (0U != (base->STAT & PUF_STAT_BUSY_MASK)) { if (0U != (PUF_STAT_CODEINREQ_MASK & base->STAT)) { if (keyCodeSize >= sizeof(uint32_t)) { temp32 = *keyCodeAligned; keyCodeAligned++; keyCodeSize -= sizeof(uint32_t); } base->CODEINPUT = temp32; } } /* get status */ if (0U != (base->STAT & PUF_STAT_SUCCESS_MASK)) { status = kStatus_Success; } return status; } /*! * brief Reconstruct hw bus key from a key code * * The digital fingerprint generated during the Start operation and the KC * generated during a Set Key operation (Set intrinsic key or Set user key) are used to retrieve a stored key. This * operation needs to be done every time a key is needed. * This function accepts only Key Codes created for PUF index register kPUF_KeyIndex_00. * Such a key is output directly to a dedicated hardware bus. The reconstructed key is not exposed to system memory. * * param base PUF peripheral base address * param keyCode Word aligned address of the input key code. * param keyCodeSize Size of the keyCode buffer in bytes. Shall be PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(keySize). * param keySlot key slot to output on hw bus. Parameter is ignored on devices with less than two key slots. * param keyMask key masking value. Shall be random for each POR/reset. Value does not have to be cryptographicaly * secure. * return Status of get key operation. */ status_t PUF_GetHwKey( PUF_Type *base, const uint8_t *keyCode, size_t keyCodeSize, puf_key_slot_t keySlot, uint32_t keyMask) { status_t status = kStatus_Fail; uint32_t keyIndex; /* check if GET KEY is allowed */ if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWGETKEY_MASK)) { return kStatus_Fail; } /* only work with aligned keyCode */ if (0U != (0x3u & (uintptr_t)keyCode)) { return kStatus_Fail; } /* check that keyCodeSize is at least PUF_MIN_KEY_CODE_SIZE */ if (keyCodeSize < PUF_MIN_KEY_CODE_SIZE) { return kStatus_InvalidArgument; } keyIndex = (uint32_t)(0x0Fu & (uint32_t)keyCode[1]); /* check the Key Code header byte 1. index must be zero for the hw key. */ if (kPUF_KeyIndex_00 != (puf_key_index_register_t)keyIndex) { return kStatus_Fail; } #if defined(PUF_KEYMASK_COUNT) && (PUF_KEYMASK_COUNT > 0) volatile uint32_t *keyMask_reg = NULL; uint32_t regVal = ((uint32_t)2U << ((uint32_t)2U * (uint32_t)keySlot)); switch (keySlot) { case kPUF_KeySlot0: keyMask_reg = &base->KEYMASK[0]; break; case kPUF_KeySlot1: keyMask_reg = &base->KEYMASK[1]; break; #if (PUF_KEYMASK_COUNT > 2) case kPUF_KeySlot2: keyMask_reg = &base->KEYMASK[2]; break; case kPUF_KeySlot3: keyMask_reg = &base->KEYMASK[3]; break; #endif /* PUF_KEYMASK_COUNT > 2 */ default: status = kStatus_InvalidArgument; break; } #endif /* PUF_KEYMASK_COUNT */ if (status != kStatus_InvalidArgument) { #if defined(PUF_KEYMASK_COUNT) && (PUF_KEYMASK_COUNT > 0) base->KEYRESET = regVal; base->KEYENABLE = regVal; *keyMask_reg = keyMask; #endif /* FSL_FEATURE_PUF_HAS_KEYSLOTS */ status = puf_getHwKey(base, keyCode, keyCodeSize); #if defined(FSL_FEATURE_PUF_HAS_SHIFT_STATUS) && (FSL_FEATURE_PUF_HAS_SHIFT_STATUS > 0) size_t keyWords = 0; if (status == kStatus_Success) { /* if the corresponding shift count does not match, return fail anyway */ keyWords = ((((size_t)keyCode[3]) * 2U) - 1u) << ((size_t)keySlot << 2U); if (keyWords != ((0x0FUL << ((uint32_t)keySlot << 2U)) & base->SHIFT_STATUS)) { status = kStatus_Fail; } } #elif defined(PUF_IDXBLK_SHIFT_IND_KEY0_MASK) && PUF_IDXBLK_SHIFT_IND_KEY0_MASK size_t keyWords = 0; if (status == kStatus_Success) { /* if the corresponding shift count does not match, return fail anyway */ keyWords = ((((size_t)keyCode[3]) * 2U) - 1u) << ((size_t)keySlot << 2U); if (keyWords != ((0x0FUL << ((uint32_t)keySlot << 2U)) & base->IDXBLK_SHIFT)) { status = kStatus_Fail; } } #endif /* FSL_FEATURE_PUF_HAS_SHIFT_STATUS || PUF_IDXBLK_SHIFT_IND_KEY0_MASK */ } return status; } /*! * brief Checks if Get Key operation is allowed. * * This function returns true if get key operation is allowed. * * param base PUF peripheral base address * return true if get key operation is allowed */ bool PUF_IsGetKeyAllowed(PUF_Type *base) { /* check if GET KEY is allowed */ if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWGETKEY_MASK)) { return false; } return true; } /*! * brief Reconstruct key from a key code * * The digital fingerprint generated during the Start operation and the KC * generated during a Set Key operation (Set intrinsic key or Set user key) are used to retrieve a stored key. This * operation needs to be done every time a key is needed. * This function accepts only Key Codes created for PUF index registers kPUF_KeyIndex_01 to kPUF_KeyIndex_15. * * param base PUF peripheral base address * param keyCode Word aligned address of the input key code. * param keyCodeSize Size of the keyCode buffer in bytes. Shall be PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(keySize). * param[out] key Word aligned address of output key. * param keySize Size of the output key in bytes. * return Status of get key operation. */ status_t PUF_GetKey(PUF_Type *base, const uint8_t *keyCode, size_t keyCodeSize, uint8_t *key, size_t keySize) { status_t status = kStatus_Fail; uint32_t *keyCodeAligned = NULL; uint32_t *keyAligned = NULL; uint32_t keyIndex; register uint32_t temp32 = 0; /* check if GET KEY is allowed */ if (0x0u == (base->ALLOW & PUF_ALLOW_ALLOWGETKEY_MASK)) { return kStatus_Fail; } /* only work with aligned keyCode */ if (0U != (0x3u & (uintptr_t)keyCode)) { return kStatus_Fail; } /* only work with aligned key */ if (0U != (0x3u & (uintptr_t)key)) { return kStatus_Fail; } /* check that keyCodeSize is correct for given keySize */ if (keyCodeSize < PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(keySize)) { return kStatus_InvalidArgument; } keyIndex = (0x0Fu & (uint32_t)keyCode[1]); /* check the Key Code header byte 1. index must be non-zero for the register key. */ if (kPUF_KeyIndex_00 == (puf_key_index_register_t)keyIndex) { return kStatus_Fail; } keyCodeAligned = (uint32_t *)(uintptr_t)keyCode; keyAligned = (uint32_t *)(uintptr_t)key; /* begin */ base->CTRL = PUF_CTRL_GETKEY_MASK; /* wait till command is accepted */ while (0U == (base->STAT & (PUF_STAT_BUSY_MASK | PUF_STAT_ERROR_MASK))) { } /* while busy send KC, read key */ while (0U != (base->STAT & PUF_STAT_BUSY_MASK)) { if (0U != (PUF_STAT_CODEINREQ_MASK & base->STAT)) { temp32 = 0; if (keyCodeSize >= sizeof(uint32_t)) { temp32 = *keyCodeAligned; keyCodeAligned++; keyCodeSize -= sizeof(uint32_t); } base->CODEINPUT = temp32; } if (0U != (PUF_STAT_KEYOUTAVAIL_MASK & base->STAT)) { keyIndex = base->KEYOUTINDEX; temp32 = base->KEYOUTPUT; if (keySize >= sizeof(uint32_t)) { *keyAligned = temp32; keyAligned++; keySize -= sizeof(uint32_t); } } } /* get status */ if ((keyIndex != 0U) && (0U != (base->STAT & PUF_STAT_SUCCESS_MASK))) { status = kStatus_Success; } return status; } /*! * brief Zeroize PUF * * This function clears all PUF internal logic and puts the PUF to error state. * * param base PUF peripheral base address * return Status of the zeroize operation. */ status_t PUF_Zeroize(PUF_Type *base) { status_t status = kStatus_Fail; /* zeroize command is always allowed */ base->CTRL = PUF_CTRL_ZEROIZE_MASK; /* check that command is accepted */ if ((0U != (base->STAT & PUF_STAT_ERROR_MASK)) && (0U == base->ALLOW)) { status = kStatus_Success; } return status; }