MCUXpresso_LPC55S69/CMSIS/DSP/Include/dsp/matrix_functions_f16.h
2022-08-23 23:05:58 +08:00

222 lines
8.3 KiB
C

/******************************************************************************
* @file matrix_functions_f16.h
* @brief Public header file for CMSIS DSP Library
* @version V1.9.0
* @date 23 April 2021
* Target Processor: Cortex-M and Cortex-A cores
******************************************************************************/
/*
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _MATRIX_FUNCTIONS_F16_H_
#define _MATRIX_FUNCTIONS_F16_H_
#ifdef __cplusplus
extern "C"
{
#endif
#include "arm_math_types_f16.h"
#include "arm_math_memory.h"
#include "dsp/none.h"
#include "dsp/utils.h"
#if defined(ARM_FLOAT16_SUPPORTED)
/**
* @brief Instance structure for the floating-point matrix structure.
*/
typedef struct
{
uint16_t numRows; /**< number of rows of the matrix. */
uint16_t numCols; /**< number of columns of the matrix. */
float16_t *pData; /**< points to the data of the matrix. */
} arm_matrix_instance_f16;
/**
* @brief Floating-point matrix addition.
* @param[in] pSrcA points to the first input matrix structure
* @param[in] pSrcB points to the second input matrix structure
* @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_add_f16(
const arm_matrix_instance_f16 * pSrcA,
const arm_matrix_instance_f16 * pSrcB,
arm_matrix_instance_f16 * pDst);
/**
* @brief Floating-point, complex, matrix multiplication.
* @param[in] pSrcA points to the first input matrix structure
* @param[in] pSrcB points to the second input matrix structure
* @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_cmplx_mult_f16(
const arm_matrix_instance_f16 * pSrcA,
const arm_matrix_instance_f16 * pSrcB,
arm_matrix_instance_f16 * pDst);
/**
* @brief Floating-point matrix transpose.
* @param[in] pSrc points to the input matrix
* @param[out] pDst points to the output matrix
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_trans_f16(
const arm_matrix_instance_f16 * pSrc,
arm_matrix_instance_f16 * pDst);
/**
* @brief Floating-point complex matrix transpose.
* @param[in] pSrc points to the input matrix
* @param[out] pDst points to the output matrix
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_cmplx_trans_f16(
const arm_matrix_instance_f16 * pSrc,
arm_matrix_instance_f16 * pDst);
/**
* @brief Floating-point matrix multiplication
* @param[in] pSrcA points to the first input matrix structure
* @param[in] pSrcB points to the second input matrix structure
* @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_f16(
const arm_matrix_instance_f16 * pSrcA,
const arm_matrix_instance_f16 * pSrcB,
arm_matrix_instance_f16 * pDst);
/**
* @brief Floating-point matrix and vector multiplication
* @param[in] pSrcMat points to the input matrix structure
* @param[in] pVec points to vector
* @param[out] pDst points to output vector
*/
void arm_mat_vec_mult_f16(
const arm_matrix_instance_f16 *pSrcMat,
const float16_t *pVec,
float16_t *pDst);
/**
* @brief Floating-point matrix subtraction
* @param[in] pSrcA points to the first input matrix structure
* @param[in] pSrcB points to the second input matrix structure
* @param[out] pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_sub_f16(
const arm_matrix_instance_f16 * pSrcA,
const arm_matrix_instance_f16 * pSrcB,
arm_matrix_instance_f16 * pDst);
/**
* @brief Floating-point matrix scaling.
* @param[in] pSrc points to the input matrix
* @param[in] scale scale factor
* @param[out] pDst points to the output matrix
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_scale_f16(
const arm_matrix_instance_f16 * pSrc,
float16_t scale,
arm_matrix_instance_f16 * pDst);
/**
* @brief Floating-point matrix initialization.
* @param[in,out] S points to an instance of the floating-point matrix structure.
* @param[in] nRows number of rows in the matrix.
* @param[in] nColumns number of columns in the matrix.
* @param[in] pData points to the matrix data array.
*/
void arm_mat_init_f16(
arm_matrix_instance_f16 * S,
uint16_t nRows,
uint16_t nColumns,
float16_t * pData);
/**
* @brief Floating-point matrix inverse.
* @param[in] src points to the instance of the input floating-point matrix structure.
* @param[out] dst points to the instance of the output floating-point matrix structure.
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
* If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
*/
arm_status arm_mat_inverse_f16(
const arm_matrix_instance_f16 * src,
arm_matrix_instance_f16 * dst);
/**
* @brief Floating-point Cholesky decomposition of Symmetric Positive Definite Matrix.
* @param[in] src points to the instance of the input floating-point matrix structure.
* @param[out] dst points to the instance of the output floating-point matrix structure.
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
* If the input matrix does not have a decomposition, then the algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE.
* If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition.
* The decomposition is returning a lower triangular matrix.
*/
arm_status arm_mat_cholesky_f16(
const arm_matrix_instance_f16 * src,
arm_matrix_instance_f16 * dst);
/**
* @brief Solve UT . X = A where UT is an upper triangular matrix
* @param[in] ut The upper triangular matrix
* @param[in] a The matrix a
* @param[out] dst The solution X of UT . X = A
* @return The function returns ARM_MATH_SINGULAR, if the system can't be solved.
*/
arm_status arm_mat_solve_upper_triangular_f16(
const arm_matrix_instance_f16 * ut,
const arm_matrix_instance_f16 * a,
arm_matrix_instance_f16 * dst);
/**
* @brief Solve LT . X = A where LT is a lower triangular matrix
* @param[in] lt The lower triangular matrix
* @param[in] a The matrix a
* @param[out] dst The solution X of LT . X = A
* @return The function returns ARM_MATH_SINGULAR, if the system can't be solved.
*/
arm_status arm_mat_solve_lower_triangular_f16(
const arm_matrix_instance_f16 * lt,
const arm_matrix_instance_f16 * a,
arm_matrix_instance_f16 * dst);
#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
#ifdef __cplusplus
}
#endif
#endif /* ifndef _MATRIX_FUNCTIONS_F16_H_ */