MCUXpresso_LPC55S69/devices/LPC55S69/drivers/fsl_crc.c

186 lines
6.2 KiB
C

/*
* Copyright (c) 2015-2016, Freescale Semiconductor, Inc.
* Copyright 2016-2017, 2019-2020 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_crc.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.lpc_crc"
#endif
#if defined(CRC_DRIVER_USE_CRC16_CCITT_FALSE_AS_DEFAULT) && CRC_DRIVER_USE_CRC16_CCITT_FALSE_AS_DEFAULT
/* @brief Default user configuration structure for CRC-CCITT */
#define CRC_DRIVER_DEFAULT_POLYNOMIAL kCRC_Polynomial_CRC_CCITT
/*< CRC-CCIT polynomial x^16 + x^12 + x^5 + x^0 */
#define CRC_DRIVER_DEFAULT_REVERSE_IN false
/*< Default is no bit reverse */
#define CRC_DRIVER_DEFAULT_COMPLEMENT_IN false
/*< Default is without complement of written data */
#define CRC_DRIVER_DEFAULT_REVERSE_OUT false
/*< Default is no bit reverse */
#define CRC_DRIVER_DEFAULT_COMPLEMENT_OUT false
/*< Default is without complement of CRC data register read data */
#define CRC_DRIVER_DEFAULT_SEED 0xFFFFU
/*< Default initial checksum */
#endif /* CRC_DRIVER_USE_CRC16_CCITT_FALSE_AS_DEFAULT */
/*******************************************************************************
* Code
******************************************************************************/
/*!
* brief Enables and configures the CRC peripheral module.
*
* This functions enables the CRC peripheral clock in the LPC SYSCON block.
* It also configures the CRC engine and starts checksum computation by writing the seed.
*
* param base CRC peripheral address.
* param config CRC module configuration structure.
*/
void CRC_Init(CRC_Type *base, const crc_config_t *config)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* enable clock to CRC */
CLOCK_EnableClock(kCLOCK_Crc);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
#if !(defined(FSL_FEATURE_CRC_HAS_NO_RESET) && FSL_FEATURE_CRC_HAS_NO_RESET)
RESET_PeripheralReset(kCRC_RST_SHIFT_RSTn);
#endif
/* configure CRC module and write the seed */
base->MODE = CRC_MODE_CRC_POLY(config->polynomial) | CRC_MODE_BIT_RVS_WR(config->reverseIn) |
CRC_MODE_CMPL_WR(config->complementIn) | CRC_MODE_BIT_RVS_SUM(config->reverseOut) |
CRC_MODE_CMPL_SUM(config->complementOut);
base->SEED = config->seed;
}
/*!
* brief Loads default values to CRC protocol configuration structure.
*
* Loads default values to CRC protocol configuration structure. The default values are:
* code
* config->polynomial = kCRC_Polynomial_CRC_CCITT;
* config->reverseIn = false;
* config->complementIn = false;
* config->reverseOut = false;
* config->complementOut = false;
* config->seed = 0xFFFFU;
* endcode
*
* param config CRC protocol configuration structure
*/
void CRC_GetDefaultConfig(crc_config_t *config)
{
/* Initializes the configure structure to zero. */
(void)memset(config, 0, sizeof(*config));
static const crc_config_t default_config = {CRC_DRIVER_DEFAULT_POLYNOMIAL, CRC_DRIVER_DEFAULT_REVERSE_IN,
CRC_DRIVER_DEFAULT_COMPLEMENT_IN, CRC_DRIVER_DEFAULT_REVERSE_OUT,
CRC_DRIVER_DEFAULT_COMPLEMENT_OUT, CRC_DRIVER_DEFAULT_SEED};
*config = default_config;
}
/*!
* brief resets CRC peripheral module.
*
* param base CRC peripheral address.
*/
void CRC_Reset(CRC_Type *base)
{
crc_config_t config;
CRC_GetDefaultConfig(&config);
CRC_Init(base, &config);
}
/*!
* brief Write seed (initial checksum) to CRC peripheral module.
*
* param base CRC peripheral address.
* param seed CRC Seed value.
*/
void CRC_WriteSeed(CRC_Type *base, uint32_t seed)
{
/* write the seed (initial checksum) */
base->SEED = seed;
}
/*!
* brief Loads actual values configured in CRC peripheral to CRC protocol configuration structure.
*
* The values, including seed, can be used to resume CRC calculation later.
* param base CRC peripheral address.
* param config CRC protocol configuration structure
*/
void CRC_GetConfig(CRC_Type *base, crc_config_t *config)
{
/* extract CRC mode settings */
uint32_t mode = base->MODE;
config->polynomial =
(crc_polynomial_t)(uint32_t)(((uint32_t)(mode & CRC_MODE_CRC_POLY_MASK)) >> CRC_MODE_CRC_POLY_SHIFT);
config->reverseIn = (bool)(mode & CRC_MODE_BIT_RVS_WR_MASK);
config->complementIn = (bool)(mode & CRC_MODE_CMPL_WR_MASK);
config->reverseOut = (bool)(mode & CRC_MODE_BIT_RVS_SUM_MASK);
config->complementOut = (bool)(mode & CRC_MODE_CMPL_SUM_MASK);
/* reset CRC sum bit reverse and 1's complement setting, so its value can be used as a seed */
base->MODE = mode & ~((1U << CRC_MODE_BIT_RVS_SUM_SHIFT) | (1U << CRC_MODE_CMPL_SUM_SHIFT));
/* now we can obtain intermediate raw CRC sum value */
config->seed = base->SUM;
/* restore original CRC sum bit reverse and 1's complement setting */
base->MODE = mode;
}
/*!
* brief Writes data to the CRC module.
*
* Writes input data buffer bytes to CRC data register.
*
* param base CRC peripheral address.
* param data Input data stream, MSByte in data[0].
* param dataSize Size of the input data buffer in bytes.
*/
void CRC_WriteData(CRC_Type *base, const uint8_t *data, size_t dataSize)
{
const uint32_t *data32;
/* 8-bit reads and writes till source address is aligned 4 bytes */
while ((0U != dataSize) && (0U != ((uint32_t)data & 3U)))
{
*((__O uint8_t *)&(base->WR_DATA)) = *data;
data++;
dataSize--;
}
/* use 32-bit reads and writes as long as possible */
data32 = (const uint32_t *)(uint32_t)data;
while (dataSize >= sizeof(uint32_t))
{
*((__O uint32_t *)&(base->WR_DATA)) = *data32;
data32++;
dataSize -= sizeof(uint32_t);
}
data = (const uint8_t *)data32;
/* 8-bit reads and writes till end of data buffer */
while (0U != dataSize)
{
*((__O uint8_t *)&(base->WR_DATA)) = *data;
data++;
dataSize--;
}
}