MCUXpresso_LPC55S69/devices/LPC55S69/drivers/fsl_spi_dma.c

686 lines
25 KiB
C

/*
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright 2016-2020 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_spi_dma.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.flexcomm_spi_dma"
#endif
/*<! Structure definition for spi_dma_private_handle_t. The structure is private. */
typedef struct _spi_dma_private_handle
{
SPI_Type *base;
spi_dma_handle_t *handle;
} spi_dma_private_handle_t;
/*! @brief SPI transfer state, which is used for SPI transactiaonl APIs' internal state. */
enum _spi_dma_states_t
{
kSPI_Idle = 0x0, /*!< SPI is idle state */
kSPI_Busy /*!< SPI is busy tranferring data. */
};
typedef struct _spi_dma_txdummy
{
uint32_t lastWord;
uint32_t word;
} spi_dma_txdummy_t;
static spi_dma_private_handle_t s_dmaPrivateHandle[FSL_FEATURE_SOC_SPI_COUNT];
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief DMA callback function for SPI send transfer.
*
* @param handle DMA handle pointer.
* @param userData User data for DMA callback function.
*/
static void SPI_TxDMACallback(dma_handle_t *handle, void *userData, bool transferDone, uint32_t intmode);
/*!
* @brief DMA callback function for SPI receive transfer.
*
* @param handle DMA handle pointer.
* @param userData User data for DMA callback function.
*/
static void SPI_RxDMACallback(dma_handle_t *handle, void *userData, bool transferDone, uint32_t intmode);
/*******************************************************************************
* Variables
******************************************************************************/
#if defined(__ICCARM__)
#pragma data_alignment = 4
static spi_dma_txdummy_t s_txDummy[FSL_FEATURE_SOC_SPI_COUNT] = {0};
#elif defined(__CC_ARM) || defined(__ARMCC_VERSION)
__attribute__((aligned(4))) static spi_dma_txdummy_t s_txDummy[FSL_FEATURE_SOC_SPI_COUNT] = {0};
#elif defined(__GNUC__)
__attribute__((aligned(4))) static spi_dma_txdummy_t s_txDummy[FSL_FEATURE_SOC_SPI_COUNT] = {0};
#endif
#if defined(__ICCARM__)
#pragma data_alignment = 4
static uint16_t s_rxDummy;
static uint32_t s_txLastWord[FSL_FEATURE_SOC_SPI_COUNT];
#elif defined(__CC_ARM) || defined(__ARMCC_VERSION)
__attribute__((aligned(4))) static uint16_t s_rxDummy;
__attribute__((aligned(4))) static uint32_t s_txLastWord[FSL_FEATURE_SOC_SPI_COUNT];
#elif defined(__GNUC__)
__attribute__((aligned(4))) static uint16_t s_rxDummy;
__attribute__((aligned(4))) static uint32_t s_txLastWord[FSL_FEATURE_SOC_SPI_COUNT];
#endif
#if defined(__ICCARM__)
#pragma data_alignment = 16
static dma_descriptor_t s_spi_descriptor_table[FSL_FEATURE_SOC_SPI_COUNT] = {0};
#elif defined(__CC_ARM) || defined(__ARMCC_VERSION)
__attribute__((aligned(16))) static dma_descriptor_t s_spi_descriptor_table[FSL_FEATURE_SOC_SPI_COUNT] = {0};
#elif defined(__GNUC__)
__attribute__((aligned(16))) static dma_descriptor_t s_spi_descriptor_table[FSL_FEATURE_SOC_SPI_COUNT] = {0};
#endif
/*******************************************************************************
* Code
******************************************************************************/
static void XferToFifoWR(spi_transfer_t *xfer, uint32_t *fifowr)
{
*fifowr |= ((xfer->configFlags & (uint32_t)kSPI_FrameDelay) != 0U) ? (uint32_t)kSPI_FrameDelay : 0U;
*fifowr |= ((xfer->configFlags & (uint32_t)kSPI_FrameAssert) != 0U) ? (uint32_t)kSPI_FrameAssert : 0U;
}
static void SpiConfigToFifoWR(spi_config_t *config, uint32_t *fifowr)
{
*fifowr |= ((uint32_t)SPI_DEASSERT_ALL & (~(uint32_t)SPI_DEASSERTNUM_SSEL((uint32_t)config->sselNum)));
/* set width of data - range asserted at entry */
*fifowr |= SPI_FIFOWR_LEN(config->dataWidth);
}
static void PrepareTxLastWord(spi_transfer_t *xfer, uint32_t *txLastWord, spi_config_t *config)
{
if (config->dataWidth > kSPI_Data8Bits)
{
*txLastWord = (((uint32_t)xfer->txData[xfer->dataSize - 1U] << 8U) | (xfer->txData[xfer->dataSize - 2U]));
}
else
{
*txLastWord = xfer->txData[xfer->dataSize - 1U];
}
XferToFifoWR(xfer, txLastWord);
SpiConfigToFifoWR(config, txLastWord);
}
static void SPI_SetupDummy(SPI_Type *base, spi_dma_txdummy_t *dummy, spi_transfer_t *xfer, spi_config_t *spi_config_p)
{
uint32_t instance = SPI_GetInstance(base);
uint32_t dummydata = (uint32_t)s_dummyData[instance];
dummydata |= (uint32_t)s_dummyData[instance] << 8U;
dummy->word = dummydata;
dummy->lastWord = dummydata;
XferToFifoWR(xfer, &dummy->word);
XferToFifoWR(xfer, &dummy->lastWord);
SpiConfigToFifoWR(spi_config_p, &dummy->word);
SpiConfigToFifoWR(spi_config_p, &dummy->lastWord);
/* Clear the end of transfer bit for continue word transfer. */
dummy->word &= (~(uint32_t)kSPI_FrameAssert);
}
/*!
* brief Initialize the SPI master DMA handle.
*
* This function initializes the SPI master DMA handle which can be used for other SPI master transactional APIs.
* Usually, for a specified SPI instance, user need only call this API once to get the initialized handle.
*
* param base SPI peripheral base address.
* param handle SPI handle pointer.
* param callback User callback function called at the end of a transfer.
* param userData User data for callback.
* param txHandle DMA handle pointer for SPI Tx, the handle shall be static allocated by users.
* param rxHandle DMA handle pointer for SPI Rx, the handle shall be static allocated by users.
*/
status_t SPI_MasterTransferCreateHandleDMA(SPI_Type *base,
spi_dma_handle_t *handle,
spi_dma_callback_t callback,
void *userData,
dma_handle_t *txHandle,
dma_handle_t *rxHandle)
{
uint32_t instance;
/* check 'base' */
assert(!(NULL == base));
if (NULL == base)
{
return kStatus_InvalidArgument;
}
/* check 'handle' */
assert(!(NULL == handle));
if (NULL == handle)
{
return kStatus_InvalidArgument;
}
instance = SPI_GetInstance(base);
(void)memset(handle, 0, sizeof(*handle));
/* Set spi base to handle */
handle->txHandle = txHandle;
handle->rxHandle = rxHandle;
handle->callback = callback;
handle->userData = userData;
handle->instance = instance;
handle->dataBytesEveryTime = DMA_MAX_TRANSFER_COUNT;
/* Set SPI state to idle */
handle->state = (uint8_t)kSPI_Idle;
/* Set handle to global state */
s_dmaPrivateHandle[instance].base = base;
s_dmaPrivateHandle[instance].handle = handle;
/* Install callback for Tx dma channel */
DMA_SetCallback(handle->txHandle, SPI_TxDMACallback, &s_dmaPrivateHandle[instance]);
DMA_SetCallback(handle->rxHandle, SPI_RxDMACallback, &s_dmaPrivateHandle[instance]);
return kStatus_Success;
}
/*!
* brief Perform a non-blocking SPI transfer using DMA.
*
* note This interface returned immediately after transfer initiates, users should call
* SPI_GetTransferStatus to poll the transfer status to check whether SPI transfer finished.
*
* param base SPI peripheral base address.
* param handle SPI DMA handle pointer.
* param xfer Pointer to dma transfer structure.
* retval kStatus_Success Successfully start a transfer.
* retval kStatus_InvalidArgument Input argument is invalid.
* retval kStatus_SPI_Busy SPI is not idle, is running another transfer.
*/
status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_transfer_t *xfer)
{
assert(!((NULL == handle) || (NULL == xfer)));
uint32_t instance;
status_t result = kStatus_Success;
spi_config_t *spi_config_p;
uint32_t address;
void *nextDesc = NULL;
uint32_t firstTimeSize = 0;
dma_transfer_config_t xferConfig = {0};
spi_config_p = (spi_config_t *)SPI_GetConfig(base);
bool firstTimeIntFlag = false;
bool lastTimeIntFlag = false;
uint8_t bytesPerFrame =
(uint8_t)((spi_config_p->dataWidth > kSPI_Data8Bits) ? (sizeof(uint16_t)) : (sizeof(uint8_t)));
handle->bytesPerFrame = bytesPerFrame;
uint8_t lastwordBytes = 0U;
if ((xfer->configFlags & (uint32_t)kSPI_FrameAssert) != 0U)
{
handle->lastwordBytes = bytesPerFrame;
lastwordBytes = bytesPerFrame;
}
else
{
handle->lastwordBytes = 0U;
lastwordBytes = 0U;
}
if ((NULL == handle) || (NULL == xfer))
{
return kStatus_InvalidArgument;
}
/* Byte size is zero. */
if (xfer->dataSize == 0U)
{
return kStatus_InvalidArgument;
}
/* cannot get instance from base address */
instance = SPI_GetInstance(base);
/* Check if the device is busy */
if (handle->state == (uint8_t)kSPI_Busy)
{
return kStatus_SPI_Busy;
}
else
{
/* Set the dma unit by dataSize */
if (xfer->dataSize <= bytesPerFrame)
{
nextDesc = NULL;
firstTimeSize = xfer->dataSize;
firstTimeIntFlag = false;
lastTimeIntFlag = true;
}
else if (xfer->dataSize - lastwordBytes <= handle->dataBytesEveryTime)
{
firstTimeSize = xfer->dataSize - lastwordBytes;
if (lastwordBytes != 0U)
{
firstTimeIntFlag = false;
lastTimeIntFlag = false;
nextDesc = &s_spi_descriptor_table[instance];
}
else
{
nextDesc = NULL;
firstTimeIntFlag = true;
}
}
else
{
firstTimeSize = handle->dataBytesEveryTime;
nextDesc = NULL;
firstTimeIntFlag = true;
lastTimeIntFlag = false;
}
/* Clear FIFOs before transfer. */
base->FIFOCFG |= SPI_FIFOCFG_EMPTYTX_MASK | SPI_FIFOCFG_EMPTYRX_MASK;
base->FIFOSTAT |= SPI_FIFOSTAT_TXERR_MASK | SPI_FIFOSTAT_RXERR_MASK;
handle->state = (uint8_t)kSPI_Busy;
handle->transferSize = xfer->dataSize;
/* receive */
SPI_EnableRxDMA(base, true);
address = (uint32_t)&base->FIFORD;
if (xfer->rxData != NULL)
{
handle->rxEndData = xfer->rxData + xfer->dataSize;
DMA_PrepareTransfer(&xferConfig, (uint32_t *)address, xfer->rxData, bytesPerFrame, firstTimeSize,
kDMA_PeripheralToMemory, NULL);
handle->rxNextData = xfer->rxData + firstTimeSize;
}
else
{
DMA_PrepareTransfer(&xferConfig, (uint32_t *)address, &s_rxDummy,
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (sizeof(uint16_t)) : (sizeof(uint8_t))),
xfer->dataSize, kDMA_StaticToStatic, NULL);
}
(void)DMA_SubmitTransfer(handle->rxHandle, &xferConfig);
handle->rxInProgress = true;
DMA_StartTransfer(handle->rxHandle);
/* transmit */
SPI_EnableTxDMA(base, true);
address = (uint32_t)&base->FIFOWR;
if (xfer->txData != NULL)
{
handle->txEndData = xfer->txData + xfer->dataSize;
handle->txNextData = xfer->txData + firstTimeSize;
if ((xfer->configFlags & (uint32_t)kSPI_FrameAssert) != 0U)
{
PrepareTxLastWord(xfer, &s_txLastWord[instance], spi_config_p);
}
/* If end of tranfer function is enabled and data transfer frame is bigger then 1, use dma
* descriptor to send the last data.
*/
if (((xfer->configFlags & (uint32_t)kSPI_FrameAssert) != 0U) &&
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (xfer->dataSize > 2U) : (xfer->dataSize > 1U)))
{
dma_xfercfg_t tmp_xfercfg;
tmp_xfercfg.valid = true;
tmp_xfercfg.swtrig = true;
tmp_xfercfg.intA = false;
tmp_xfercfg.byteWidth = 4U;
tmp_xfercfg.srcInc = 0;
tmp_xfercfg.dstInc = 0;
tmp_xfercfg.transferCount = 1U;
tmp_xfercfg.reload = false;
tmp_xfercfg.clrtrig = false;
tmp_xfercfg.intB = true;
/* Create chained descriptor to transmit last word */
DMA_CreateDescriptor(&s_spi_descriptor_table[instance], &tmp_xfercfg, &s_txLastWord[instance],
(uint32_t *)address, NULL);
}
DMA_PrepareTransfer(&xferConfig, xfer->txData, (uint32_t *)address, bytesPerFrame, firstTimeSize,
kDMA_MemoryToPeripheral, nextDesc);
/* Disable interrupts for first descriptor to avoid calling callback twice. */
xferConfig.xfercfg.intA = firstTimeIntFlag;
xferConfig.xfercfg.intB = lastTimeIntFlag;
result = DMA_SubmitTransfer(handle->txHandle, &xferConfig);
if (result != kStatus_Success)
{
return result;
}
}
else
{
/* Setup tx dummy data. */
SPI_SetupDummy(base, &s_txDummy[instance], xfer, spi_config_p);
if (((xfer->configFlags & (uint32_t)kSPI_FrameAssert) != 0U) &&
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (xfer->dataSize > 2U) : (xfer->dataSize > 1U)))
{
dma_xfercfg_t tmp_xfercfg;
tmp_xfercfg.valid = true;
tmp_xfercfg.swtrig = true;
tmp_xfercfg.intA = true;
tmp_xfercfg.byteWidth = (uint8_t)sizeof(uint32_t);
tmp_xfercfg.srcInc = 0;
tmp_xfercfg.dstInc = 0;
tmp_xfercfg.transferCount = 1;
tmp_xfercfg.reload = false;
tmp_xfercfg.clrtrig = false;
tmp_xfercfg.intB = false;
/* Create chained descriptor to transmit last word */
DMA_CreateDescriptor(&s_spi_descriptor_table[instance], &tmp_xfercfg, &s_txDummy[instance].lastWord,
(uint32_t *)address, NULL);
/* Use common API to setup first descriptor */
DMA_PrepareTransfer(
&xferConfig, &s_txDummy[instance].word, (uint32_t *)address,
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (sizeof(uint16_t)) : (sizeof(uint8_t))),
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (xfer->dataSize - 2U) : (xfer->dataSize - 1U)),
kDMA_StaticToStatic, &s_spi_descriptor_table[instance]);
/* Disable interrupts for first descriptor to avoid calling callback twice */
xferConfig.xfercfg.intA = false;
xferConfig.xfercfg.intB = false;
result = DMA_SubmitTransfer(handle->txHandle, &xferConfig);
if (result != kStatus_Success)
{
return result;
}
}
else
{
DMA_PrepareTransfer(
&xferConfig, &s_txDummy[instance].word, (uint32_t *)address,
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (sizeof(uint16_t)) : (sizeof(uint8_t))),
xfer->dataSize, kDMA_StaticToStatic, NULL);
result = DMA_SubmitTransfer(handle->txHandle, &xferConfig);
if (result != kStatus_Success)
{
return result;
}
}
}
handle->txInProgress = true;
uint32_t tmpData = 0U;
uint32_t writeAddress = (uint32_t) & (base->FIFOWR) + 2UL;
XferToFifoWR(xfer, &tmpData);
SpiConfigToFifoWR(spi_config_p, &tmpData);
/* Setup the control info.
* Halfword writes to just the control bits (offset 0xE22) doesn't push anything into the FIFO.
* And the data access type of control bits must be uint16_t, byte writes or halfword writes to FIFOWR
* will push the data and the current control bits into the FIFO.
*/
if (((xfer->configFlags & (uint32_t)kSPI_FrameAssert) != 0U) &&
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (xfer->dataSize == 2U) : (xfer->dataSize == 1U)))
{
*(uint16_t *)writeAddress = (uint16_t)(tmpData >> 16U);
}
else
{
/* Clear the SPI_FIFOWR_EOT_MASK bit when data is not the last. */
tmpData &= (~(uint32_t)kSPI_FrameAssert);
*(uint16_t *)writeAddress = (uint16_t)(tmpData >> 16U);
}
DMA_StartTransfer(handle->txHandle);
}
return result;
}
/*!
* brief Transfers a block of data using a DMA method.
*
* This function using polling way to do the first half transimission and using DMA way to
* do the srcond half transimission, the transfer mechanism is half-duplex.
* When do the second half transimission, code will return right away. When all data is transferred,
* the callback function is called.
*
* param base SPI base pointer
* param handle A pointer to the spi_master_dma_handle_t structure which stores the transfer state.
* param transfer A pointer to the spi_half_duplex_transfer_t structure.
* return status of status_t.
*/
status_t SPI_MasterHalfDuplexTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_half_duplex_transfer_t *xfer)
{
assert((xfer != NULL) && (handle != NULL));
spi_transfer_t tempXfer = {0};
status_t status;
if (xfer->isTransmitFirst)
{
tempXfer.txData = xfer->txData;
tempXfer.rxData = NULL;
tempXfer.dataSize = xfer->txDataSize;
}
else
{
tempXfer.txData = NULL;
tempXfer.rxData = xfer->rxData;
tempXfer.dataSize = xfer->rxDataSize;
}
/* If the pcs pin keep assert between transmit and receive. */
if (xfer->isPcsAssertInTransfer)
{
tempXfer.configFlags = (xfer->configFlags) & (~(uint32_t)kSPI_FrameAssert);
}
else
{
tempXfer.configFlags = (xfer->configFlags) | (uint32_t)kSPI_FrameAssert;
}
status = SPI_MasterTransferBlocking(base, &tempXfer);
if (status != kStatus_Success)
{
return status;
}
if (xfer->isTransmitFirst)
{
tempXfer.txData = NULL;
tempXfer.rxData = xfer->rxData;
tempXfer.dataSize = xfer->rxDataSize;
}
else
{
tempXfer.txData = xfer->txData;
tempXfer.rxData = NULL;
tempXfer.dataSize = xfer->txDataSize;
}
tempXfer.configFlags = xfer->configFlags;
status = SPI_MasterTransferDMA(base, handle, &tempXfer);
return status;
}
static void SPI_RxDMACallback(dma_handle_t *handle, void *userData, bool transferDone, uint32_t intmode)
{
spi_dma_private_handle_t *privHandle = (spi_dma_private_handle_t *)userData;
spi_dma_handle_t *spiHandle = privHandle->handle;
SPI_Type *base = privHandle->base;
status_t result = kStatus_Success;
uint8_t bytesPerFrame = spiHandle->bytesPerFrame;
uint32_t nextDataSize = 0;
uint32_t address = (uint32_t)&base->FIFORD;
if (spiHandle->rxNextData >= spiHandle->rxEndData)
{
/* change the state */
spiHandle->rxInProgress = false;
/* All finished, call the callback */
if ((spiHandle->txInProgress == false) && (spiHandle->rxInProgress == false))
{
spiHandle->state = (uint8_t)kSPI_Idle;
if (spiHandle->callback != NULL)
{
(spiHandle->callback)(base, spiHandle, kStatus_Success, spiHandle->userData);
}
}
}
else
{
/* need transmit by DMA again */
if (spiHandle->rxEndData <= (spiHandle->dataBytesEveryTime + spiHandle->rxNextData))
{
nextDataSize = (uint32_t)((uint32_t)spiHandle->rxEndData - (uint32_t)spiHandle->rxNextData);
}
else if (spiHandle->rxEndData > (spiHandle->dataBytesEveryTime + spiHandle->rxNextData))
{
nextDataSize = spiHandle->dataBytesEveryTime;
}
else
{
/* MISRA 15.7*/
}
dma_transfer_config_t xferConfig = {0};
DMA_PrepareTransfer(&xferConfig, (uint32_t *)(address), (uint8_t *)spiHandle->rxNextData, bytesPerFrame,
nextDataSize, kDMA_PeripheralToMemory, NULL);
spiHandle->rxNextData = (uint8_t *)(spiHandle->rxNextData + nextDataSize);
result = DMA_SubmitTransfer(spiHandle->rxHandle, &xferConfig);
if (result != kStatus_Success)
{
return;
}
DMA_StartTransfer(spiHandle->rxHandle);
}
}
static void SPI_TxDMACallback(dma_handle_t *handle, void *userData, bool transferDone, uint32_t intmode)
{
spi_dma_private_handle_t *privHandle = (spi_dma_private_handle_t *)userData;
spi_dma_handle_t *spiHandle = privHandle->handle;
SPI_Type *base = privHandle->base;
status_t result = kStatus_Success;
uint32_t instance = spiHandle->instance;
bool thisTimeIntFlag = false;
uint8_t bytesPerFrame = spiHandle->bytesPerFrame;
void *nextDesc = NULL;
uint32_t nextDataSize = 0U;
uint8_t lastwordBytes = spiHandle->lastwordBytes;
uint32_t writeAddress = (uint32_t) & (base->FIFOWR);
if (spiHandle->txNextData + lastwordBytes >= spiHandle->txEndData)
{
spiHandle->txInProgress = false;
if ((spiHandle->txInProgress == false) && (spiHandle->rxInProgress == false))
{
spiHandle->state = (uint8_t)kSPI_Idle;
if (spiHandle->callback != NULL)
{
(spiHandle->callback)(base, spiHandle, kStatus_Success, spiHandle->userData);
}
}
}
else
{
if ((uint32_t)((uint32_t)(spiHandle->txEndData)) <=
(spiHandle->dataBytesEveryTime + lastwordBytes + (uint32_t)spiHandle->txNextData))
{
if (lastwordBytes != 0U)
{
nextDesc = &s_spi_descriptor_table[instance];
thisTimeIntFlag = false;
}
else
{
thisTimeIntFlag = true;
}
nextDataSize = (uint32_t)((uint32_t)spiHandle->txEndData - (uint32_t)spiHandle->txNextData - lastwordBytes);
}
else if ((uint32_t)(spiHandle->txEndData) >
(spiHandle->dataBytesEveryTime + lastwordBytes + (uint32_t)spiHandle->txNextData))
{
nextDesc = NULL;
nextDataSize = spiHandle->dataBytesEveryTime;
thisTimeIntFlag = true;
}
else
{
/* MISRA 15.7*/
}
dma_transfer_config_t xferConfig = {0};
DMA_PrepareTransfer(&xferConfig, (uint8_t *)spiHandle->txNextData, (uint32_t *)(writeAddress), bytesPerFrame,
nextDataSize, kDMA_MemoryToPeripheral, nextDesc);
spiHandle->txNextData = (uint8_t *)(spiHandle->txNextData + nextDataSize);
xferConfig.xfercfg.intA = thisTimeIntFlag;
xferConfig.xfercfg.intB = false;
result = DMA_SubmitTransfer(spiHandle->txHandle, &xferConfig);
if (result != kStatus_Success)
{
return;
}
DMA_StartTransfer(spiHandle->txHandle);
}
}
/*!
* brief Abort a SPI transfer using DMA.
*
* param base SPI peripheral base address.
* param handle SPI DMA handle pointer.
*/
void SPI_MasterTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)
{
assert(NULL != handle);
/* Stop tx transfer first */
DMA_AbortTransfer(handle->txHandle);
/* Then rx transfer */
DMA_AbortTransfer(handle->rxHandle);
/* Set the handle state */
handle->txInProgress = false;
handle->rxInProgress = false;
handle->state = (uint8_t)kSPI_Idle;
}
/*!
* brief Gets the master DMA transfer remaining bytes.
*
* This function gets the master DMA transfer remaining bytes.
*
* param base SPI peripheral base address.
* param handle A pointer to the spi_dma_handle_t structure which stores the transfer state.
* param count A number of bytes transferred by the non-blocking transaction.
* return status of status_t.
*/
status_t SPI_MasterTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t *handle, size_t *count)
{
assert(handle != NULL);
if (NULL == count)
{
return kStatus_InvalidArgument;
}
/* Catch when there is not an active transfer. */
if (handle->state != (uint8_t)kSPI_Busy)
{
*count = 0;
return kStatus_NoTransferInProgress;
}
size_t bytes;
bytes = DMA_GetRemainingBytes(handle->rxHandle->base, handle->rxHandle->channel);
*count = handle->transferSize - bytes;
return kStatus_Success;
}