
IEC60730BLPCCM0EUG
LPC CM0 Safety Example
Rev. 5 — 21 December 2022 User guide

1 IEC60730B Safety library example user's guide

For easier development of the IEC60730B application, the library also provides the
example code. This example is distributed through the MCUXpresso SDK website. This
example user's guide describes how to set the hardware correctly and how to use the
example code with the IEC60730B Safety library.

The library user's guide is the main documentation for IEC60730B. It is also part of this
package and you can download it at www.nxp.com/IEC60730.

https://mcuxpresso.nxp.com/en/welcome
http://www.nxp.com/IEC60730

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

2 Hardware settings

This chapter describes how to set up the hardware of the evaulation board. The MCU
peripherals' setup is described later on.

The IEC60730B library example for the LPC CM0 family supports the following
development boards:

• LPCxpresso51U68
• LPCxpresso802
• LPCxpresso804
• LPCxpresso824Max
• LPCxpresso845Max
• LPCxpresso860Max

To run the IEC60730B example application, it is neccessary to make some hardware
settings. For the default configuration of your development board, see the corresponding
board's user manual at www.nxp.com.

2.1 LPCXpresso804
Debugger:

To use the on-board debugger, make sure that jumper JP1 (next to the USB connector) is
open. Short this jumper to use an external debug connector.

The default debugger in the example project is set to CMSIS-DAP.

FreeMASTER

FreeMASTER communication is used via an onboard debugger with a speed of 9600 bd.

The ADC module on LPCXpresso804 does not allow to connect the VrefH, VrefL, and
Bandgap internally to the ADC input. Thus, it is necessary to connect these signals (for
the Analog I/O test) as follows:

• VrefH - 3.3 V on PIO0_16 (conn. CN5-2).
• VrefL - GND on PIO0_1 (conn. CN5-6).
• Bandgap - connect a custom reference (for example 1.65 V) on PIO0_10 (conn.

CN5-1). The expected value of the custom bandgap can be set in the safety_config.h
file (#define ADC_BANDGAP_LEVEL 1.65).

An example of the corresponding connection is shown in Figure 1.

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
2 / 26

http://www.nxp.com/

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

Figure 1. Hardware connection of LPCXpresso804

In Figure 1, the external debbugger is used. Due to this, jumper JP1 is shorted. The test
voltage of 1.65 V is provided by a resistor voltage divider from the VCC (3.3 V).

2.2 LPCXpresso824MAX
Debugger:

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
3 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

To use the on-board debugger, make sure that jumper JP1 (next to the USB connector) is
open. Short this jumper to use an external debug connector.

The default debugger in the example project is set to CMSIS-DAP.

FreeMASTER

FreeMASTER communication is used via an onboard debugger with a speed of 9600 bd.

The ADC module on LPCXpresso824MAX does not allow to connect the VrefH, VrefL,
and Bandgap internally to the ADC input. Connect these signals (for the Analog I/O test)
as follows:

• VrefH - 3.3 V on PIO0_21(conn. J5-5).
• VrefL - GND on PIO0_20 (conn. J5-6).
• Bandgap - connect a custom reference (for example 1.65 V) to PIO0_22 (conn. J5-4).

The expected value of the custom bandgap can be set in the safety_config.h file
(#define ADC_BANDGAP_LEVEL 1.65).

An example of the corresponding connection is shown in Figure 2.

Figure 2. Hardware connection of LPCXpresso824MAX

In Figure 2, an external debbugger is used. Due to this, jumper JP1 is shorted. The test
voltage of 1.65 V is provided by a resistor voltage divider from the VCC (3.3 V).

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
4 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

Note: To use FreeMASTER, ensure that solderjumper SJ9 is set to position 2-3 (default
is 1-2). For more information, see the LPCXpresso824MAX schematic at www.nxp.com.

2.3 LPCXpresso845MAX
Debugger:

To use the on-board debugger, make sure that jumper JP1 (next to the USB connector) is
open. Short this jumper to use an external debug connector.

The default debugger in the example project is set to CMSIS-DAP.

FreeMASTER

FreeMASTER communication is used via an onboard debugger with a speed of 9600 bd.

The ADC module on LPCXpresso845MAX does not allow to connect the VrefH, VrefL,
and Bandgap internally to the ADC input. Connect these signals (for the Analog I/O test)
as follows:

• VrefH - 3.3 V on PIO0_23 (conn. J6-2).
• VrefL - GND on PIO0_14 (conn. J6-1).
• Bandgap - connect a custom reference (for example 1.65 V) to PIO0_19 (conn. J6-3).

The expected value of the custom bandgap can be set in the safety_config.h file
(#define ADC_BANDGAP_LEVEL 1.65).

An example of the corresponding connection is shown in Figure 3.

Figure 3. Hardware connection of LPCXpresso845MAX
IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
5 / 26

https://www.nxp.com/downloads/en/schematics/LPC824_Xpresso_v2_schematic_Rev_B1.pdf

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

In Figure 3, the external debbugger is used. Due to this, jumper JP1 is shorted. The test
voltage of 1.65 V is provided by a resistor voltage divider from the VCC (3.3 V).

2.4 LPCXpresso860MAX
Debugger:

There is no additional board settings for using onboard debugger.

The default debugger in the example project is set to CMSIS-DAP.

FreeMASTER

FreeMASTER communication is used via an onboard debugger with a speed of 9600 bd.

The ADC module on LPCXpresso860MAX does not allow to connect the VrefH, VrefL,
and Bandgap internally to the ADC input. Connect these signals (for the Analog I/O test)
as follows:

• VrefH - 3.3 V on PIO0_22 (conn. J6-4).
• VrefL - GND on PIO0_21 (conn. J6-2).
• Bandgap - connect a custom reference (for example 1.65 V) to PIO0_7 (conn. J6-12).

The expected value of the custom bandgap can be set in the safety_config.h file
(#define ADC_BANDGAP_LEVEL 1.65).

An example of the corresponding connection is shown in Figure 4.

Figure 4. Hardware connection of LPCXpresso860MAX

In , Figure 4 the test voltage of 1.65 V is provided by a resistor voltage divider from the
VCC (3.3 V).

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
6 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

2.5 LPCXpresso51U68
Debugger:

To use the on-board debugger and power the board via USB, make sure that jumper JP2
is set to "Loc". Then connect the USB to connector J6.

The default debugger in the example project is set to CMSIS-DAP.

Note: If downloading to the device does not work, press and hold the SW3 button during
the download.

FreeMASTER

FreeMASTER communication is used via an on-board debugger with a speed of 9600
bd.

See the LPCXpresso51U68 development board User Manual (document UM11121) for
more details.

The ADC module on the LPCXpresso51U68 does not allow the VrefH, VrefL, and
Bandgap to connect internally to the ADC input. Connect these signals (for the Analog I/
O test) as follows:

• VrefH - connect VCC to PIO_0_30 (J8-2).
• VrefL - connect GND to PIO_0_29 (J2-5).
• Bandgap - connect a custom reference (for example 1.65 V) to PIO_0_31 (J2-17). The

expected value of the custom bandgap can be set in the safety_config.h file (#define
ADC_BANDGAP_LEVEL 2.5).

Figure 5. Hardware connection of LPCXpresso51U68

The test voltage of 2.5 V is provided by a resistor voltage divider from the VCC (5 V).

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
7 / 26

https://www.nxp.com/webapp/Download?colCode=UM11121

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

3 File structure

Safety is only a small part of the whole SDK package for your device. The IEC60730
library and examples are located in the middleware and in the board folders. The
IEC60730 library is independent of the SDK and can be used stand-alone.

3.1 Library source files location
The library source files are in the middleware/safety_iec60730b/safety/v4_2 folder in the
SDK package.

The folder has the following structure:

Figure 6. Folder structure

Where:

• The common_test folder contains the source files for the peripheral test – this is a
common cross core. These tests are compiled to library libIEC60730B_<core>_COM_
<compiler>_<version>.a.

• The compiler folder contains compiler support files.
• The core_test folder contains the source files for the core-dependent test. These tests

are compiled to library libIEC60730B_<core>_<compiler>_<version>.a.
• iec60730b.h is the main library header file.
• iec60730b_types.h is the header file with the necessary defines for the library.

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
8 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

The folder also contains binary *.lib files, which are compiled for the IAR, Keil, and
MCUXpresso IDEs (see the release notes for details).

3.2 Example of library handling code
The library-handling code and the example aplication are separate from the library file.
The example source files and other SDK examples are at this path:

boards/<your board>/demo_apps/safety_iec60730b/

The safety example code is shown in Figure 7.

Figure 7. Example of project structure in example folder

This folder contains the example source file and three folders for the IDE project file:

• iar
• mcux
• mdk

The following files are generated by the MCUXpresso configuration tool:

• clock_config.h
• clock_config.c
• pin_mux.c
• pin_mux.h

Other files are used only for safety examples and their contents are described in the next
chapter.

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
9 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

4 Example application

The structure of the example is common in all supported IDEs (IAR, Keil, MCUXpresso).

Figure 8. IAR example application structure

The project contains the CMSIS, SDK, library, and safety example-related folders.

The safety-related folders are the following:

• Board – this folder contains the files related to the board used (clock_config.h,
pin_config.h, board.h, and so on).

• CPU – this folder contains the startup code and vectors table.
• IEC60730_Class_B – files for the IEC60730B Safety library.
• Source – source file for the safety example (see the next explanation).

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
10 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

The example of project hiearchy is shown in Figure 9.

Figure 9.  Example of project hiearchy

Figure 9 shows that the functions in the project_setup.c file are called from the main.c
file. The library-handling functions are located in the safety_cm0_lpc.c file and also called
from the main.c file.

The main example application header file safety_config.h contains all definitions for
running the safety test in examples. The safety_test_items.c file declares the structures
for the DIO (or TSI) safety test. The project_setup_<your_board>.c file contains the setup
functions (clock, port, UART, and so on). The safety_cm0_lpc.c file contains the handling
function for safety routines from the IEC60730B library and also the test-initialization
function for safety.

4.1 How to open the project

4.1.1 IAR IDE

Open the project file located at boards/<your_board>/demo_apps/safety_iec60730b/iar/
safety_iec60730b.eww.

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
11 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

4.1.2 Arm Keil IDE

Open the project file located at boards/<your_board>/demo_apps/safety_iec60730b/mdk/
safety_iec60730b.uvprojx.

4.1.3 MCUXpresso IDE

Firstly, drag and drop the <name_of_the_package>.zip package into the
MCUXpresso IDE (into the "Installed SDKs" tab). Secondly, import the SDK example
(safety_iec60730b).

If you are not familiar with the MCUXpresso IDE yet, see docs/Getting Started with
MCUXpresso SDK for <your_board>.pdf ("Build an example application" section).

4.2 Example settings - safety_config.h
The main example settings header file is safety_config.h. The neccessary macros for the
safety example are defined in this file.

The "switch macros", which enable the user to turn off the calling of the safety test, are
defined in the beginning. When starting, turn off the FLASH test and the WDOG test. On
LPC devices, turn off also the Clock test.

/* This macro enables infinity while loop in the SafetyErrorHandling() function */

#define SAFETY_ERROR_ACTION 1

/* TEST SWITCHES - for debugging, it is better to turn the FLASH and WDOG tests OFF.
*/

#define ADC_TEST_ENABLED 1

#define CLOCK_TEST_ENABLED 1

#define DIO_TEST_ENABLED 1

#define FLASH_TEST_ENABLED 1

#define RAM_TEST_ENABLED 1

#define PC_TEST_ENABLED 1

#define WATCHDOG_ENABLED 1

#define FMSTR_SERIAL_ENABLE 1

Other defines are used to configure the safety test as a parameter to a function or to fill
structures.

4.3 safety_test_items.c file
The safety_test_items.c and .h files are the configuration files for the DIO test.

The file contains the fs_dio_test_<platform>_t list of structures. The pointers to these
structures are collected in the dio_safety_test_items[] array, which is used in the example
application.

fs_dio_test_lpc_t dio_safety_test_item_0 = /* P0_13 */

{

.iocon_mode_shift = IOCON_PIO_MODE_SHIFT, /*Device depend */

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
12 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

.pPort_byte = (uint8_t *)&(GPIO->B[0][13]), /* Address of byte register in GPIO */

.pPort_dir = (uint32_t *)&(GPIO->DIR[0]), /* Address of dir1 register */

.pPort_Iocon = (uint32_t *)&(IOCON->PIO[IOCON_INDEX_PIO0_13]), /* Address of
concrete IOCON register */

.pinNum = 13, /* Position in DIR register */

.gpio_clkc_shift = SYSCON_SYSAHBCLKCTRL_GPIO_SHIFT

};

/* NULL terminated array of pointers to dio_test_lpc_t items for safety DIO test */

fs_dio_test_lpc_t *dio_safety_test_items[] = {&dio_safety_test_item_0,
&dio_safety_test_item_1, NULL};

4.4 Source file - safety_cm0_lpc.c/.h
The safety_cm0_lpc.c source file and the corresponding *.h file contain a library
handling function. Each function contains a detection. If a safety error ocurrs, the
SafetyErrorHandling() function is called.

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
13 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

5 Running example

For the first run of the example on your hardware, it is recomended to turn off Flash,
WDOG, Clock, AIO, and DIO test. In the next step, turn on step by step.

When the WDOG is turned off and a safety error happens, the example stays in an
endless loop.

5.1 Post-build CRC calculation
The post-build CRC calculation can be used in several ways, depending on the IDE's
built-in options. In IDEs that do not have the built-in options, use the SRecord tool.

SRecord is a standalone utility for memory manipulation. This utility and all information
about it are available at Peter Miller’s http://srecord.sourceforge.net/ webpage.

In the SDK package, the SRecord tool is in the <sdk_pack>/tools/srecord folder.

In the IEC60730B Safety example, the SRecord tool is used for the post-build CRC
calculations in the MCUXpresso and uVision Keil IDEs.

In the IAR IDE, use the "ielftool" integrated feature.

The SRecord utility is used to calculate the post-build CRC without any changes. In the
postbuild, an additional *.bat file that uses the SRecord tool is called.

Note: The invariable memory test can be turned off/on in file safety_config.h file.

5.1.1 Postbuild in IEC60730B safety example

The approach with SRecord is used in the safety examples for the MCUXpresso and
uVision Keil IDEs, when the post-build command calls the crc-hex.bat file, which supports
the CRC16 and CRC32 calculations.

The crc-hex.bat file is in your SDK package, in the <sdk_package>/middleware/safety_
iec60730b/tools/crc folder.

The complete post-build command, which is used in the safety example to calculate
CRC32 in the uVision Keil IDE is as follows:

..\..\..\..\..\middleware\safety_iec60730b\tools\crc\crc_hex.bat -..\..\..\..\boards\<YOUR
_BOARD>\demo_apps\safety_iec60730b\mdk\debug\safety_iec60730b.hex -..\..\..\..
\boards\<YOUR_BOARD>\demo_apps\safety_iec60730b\mdk\debug\safety_iec60730b_
crc.hex -..\..\..\..\tools\srecord\srec_cat.exe -CRC32

"<YOUR_BOARD>" is the name of your SDK development board, e.g. "frdmk22f".

The first line is the path from the project root path (IDE project file) to the crc_hex.bat file.
The other lines are the parameters for the crc_hex.bat file.

The crc-hex.bat file has three mandatory parameters and one optional parameter:

• The first paramater is the path from the crc-hex.bat file to your application's *.hex file
(safety_iec60730b.hex). It is the input for the calculation.

• The second parameter is the path for the generated output file. This file (with the
specified name) is stored as a result of the script (safety_iec60730b_crc.hex) with the
calculated CRC.

• The third parameter is the path from the crc-hex.bat file to the srec_cat.exe file.

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
14 / 26

http://srecord.sourceforge.net/

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

• The fourth parameters is optional. When it is filled with"-CRC32", the result will be
CRC32. Otherwise, the CRC16 calculation happens.

A dedicated structure in the input *.hex file is used to define the area where the CRC will
be calculated. All necessary information for the CRC will be read by the crc-hex.bat file
from this structure.

Information table in the *.hex file

It is necessary to add a dedicated marker structure to the memory *.hex file to use the
presented crc-hex.bat file.

The presented crc-hex.bat file parses the last 16 bytes from the input *.hex file to the
found information table.

This information table must have a dedicated structure and it must be placed at the end
of the input *.hex file.

The structure of the information table is as follows:

/* The safety-related FLASH CRC value. */

fs_crc_t c_sfsCRC =

{

.ui16Start = 0xA55AU,

.ui32FlashStart = (uint32_t)__ROM_start__,

.ui32FlashEnd = (uint32_t)&Load$$ER_IROM3$$Limit,

.ui32CRC = (uint32_t)FS_CFG_FLASH_TST_CRC,

.ui16End = 0x5AA5U

};

• 0x5AA5 - the start/end marker for the information table
• ui32FlashStart - the start address for the CRC calculation
• ui32FlashEnd - the end address for the CRC calculation
• ui32CRC - the seed value

This table must be placed at the end of the *.hex file. This can be assured by a linker
script. The linker script depends on the IDE used. The exact description for the supported
IDE is in the following chapter.

5.1.2 Arm uVison Keil IDE postbuild CRC

The safety example in the uVision Keil used Srecord to generate the postbuild for the
invariable memory test.

To use the presented crc-hex.bat file, it is necessary to have correct settings in the IDE.

From the start, all necessary settings are added in the example project by default:

• The Flash test is turned on in the safety_config.h file.
• The output *.hex file is turned on and the postbuild CRC is calculated by the crc-

hex.bat file with the Srecord.
• The final post-processed image is downloaded to the ROM memory using the

"Download" button.

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
15 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

5.1.2.1 Postbuild CRC settings

As mentioned in Section 5.1.1, for the presented crc-hex.bat file, it is necessary to do
some settings also in the IDE.

1. Set the IDE to generate the output *.hex file. Go to "Options → Output" and check the
"Create HEX File" box.

2. Enable the afterbuild options in "Options->User → After Build/Rebuild", check "Run
#1", and fill it with the following command:

..\..\..\..\..\middleware\safety_iec60730b\tools\crc\crc_hex.bat -..\..\..\..\boards\<YOUR
_BOARD>\demo_apps\safety_iec60730b\mdk\debug\dev_safety_iec60730b.hex -..\..
\..\..\boards\<YOUR_BOARD>\demo_apps\safety_iec60730b\mdk\debug\dev_safety_
iec60730b_crc.hex -..\..\..\..\tools\srecord\srec_cat.exe

The meaning of this afterbuild command is described in Section 5.1.1.

The product of the postbuild operation with the crc-hex.bat file is the
<your_project_name>_crc.hex edited file, which must be loaded to the target. The best
way to do this is to create a debug initialization file.

5.1.2.2 Debug initialization settings

By default, the uVision Keil IDE downloads the output file specified in "Options->output".
Due to this, it is necessary to create an alternative debug initialization file. In our case, a
*.hex file with an added CRC is dedicated for the download to the target.

In the uVision Keil IDE, it is necessary to select the following options:

• "Options ->Debug->Initialization file" - fill it with the "safety_debug.ini" pattern.
• "Options->Utilities->Init File" - fill it with the "safety_debug.ini" pattern.

Use a text editor to create the safety_debug.ini file. Create an empty file, save it with
the *.ini extension, and copy the following command into the file: "LOAD .\debug
\<YOUR_PROJECT>_crc.hex INCREMENTAL".

This command loads the <YOUR_PROJECT>_crc.hex file from the .\debug\ relative
path and this address is relative to the project file (<YOUR_PROJECT>.uvprojx in the
presented case). It means that the file is in the debug folder.

It is necessary to save this file to the project root path (to the folder with
<YOUR_PROJECT>.uvprojx in the presented case).

After these IDE settings, the IDE calls the crc-hex.bat file after the build and it uses the
alternative hex file <YOUR_PROJECT>_crc.hex as the source for programming during
the download.

5.1.2.3 Linker settings for information table

The crc-hex.bat postbuild file expects the information table at the end of the *.hex file. For
this purpose, it is good to define your own section in the linker. In the uVision Keil IDE, it
can be the following:

LR_IROM3 m_fs_flash_crc_start __size_flash_crc__{

; Safety-flash CRC region

ER_CRC (m_fs_flash_crc_start) FIXED (__size_flash_crc__)
IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
16 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

{

*(.flshcrc)

}

}

Where "m_fs_flash_crc_start" and "__size_flash_crc__" are the user-defined address.
This address must be at the end of the flash.

After defining this section in the ROM, a correct structure must be defined in the C
language:

/* The safety-related FLASH CRC value. */

fs_crc_t c_sfsCRC __attribute__((used, section(".flshcrc"))) =

{

.ui16Start = 0xA55AU,

.ui32FlashStart = (uint32_t)__ROM_start__,

.ui32FlashEnd = (uint32_t)&Load$$ER_IROM3$$Limit,

.ui32CRC = (uint32_t)FS_CFG_FLASH_TST_CRC,

.ui16End = 0x5AA5U

};

5.1.3 MCUxpresso postbuild CRC

Note: The invariable memoty test example uses the crc-hex.bat file for the post-build
calculation, so this example does not work on Unix/Mac operating systems.

To use the crc-hec.bat file in the MCUXpresso IDE, do some settings in the IDE.

1. Set the "Options → C/C++ Build → Settings → Build steps → Post-build steps"
options correctly.

2. Set the debug sesion (or the GUI Flash tool) configuration correctly.
3. Put the "Information table" at the end of the invariable memory.

5.1.3.1 Post-build configuration

It is necessary to set the post-build string, so go to the "Options → C/C++ Build →
Settings → Build steps → Post-build steps" menu.

Copy and paste the following post-build string into it:

arm-none-eabi-objcopy -v -O ihex "${BuildArtifactFileName}"
"${BuildArtifactFileBaseName}.hex"

${ProjDirPath}/crc_hex.bat -${ConfigName}/${BuildArtifactFileBaseName}.hex -
${ConfigName}/${BuildArtifactFileBaseName}_crc.hex -tools\\srecord\\srec_cat.exe

This string ensures that the MCUxpresso IDE generates a *.hex file with the same name
as your project. After this, call the crc_hex.bat file with the correct parameters as follows:

• -${ConfigName}/${BuildArtifactFileBaseName}.hex - the path to your application *.hex
file.

• -${ConfigName}/${BuildArtifactFileBaseName}_crc.hex - the path to the generated
*.hex file with the CRC added.

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
17 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

• -tools\\srecord\\srec_cat.exe - the path to the screcat.exe utility.

Because the name of your poject is set as the "${BuildArtifactFileBaseName}" variable,
this postbuild is independent on your project name.

Figure 10. Configuration of post-build steps

5.1.3.2 Place information table

The crc-hex.bat file expects the information table in the last 16 bytes of the input *.hex
file. This table can be defined as the following structure:

/* The safety-related FLASH CRC value. */

fs_crc_t c_sfsCRC __attribute__((used, section(".flshcrc"))) =

{

.ui16Start = 0xA55AU,

.ui32FlashStart = (uint32_t)&__ROM_start__,

.ui32FlashEnd = (uint32_t)&m_safety_flash_end,

.ui32CRC = (uint32_t)FS_CFG_FLASH_TST_CRC,

.ui16End = 0x5AA5U

};

Where "__attribute__((used, section(".flshcrc")))" is a directive for the linker script to
place this strucuture to memory section "flshcrc".

MCUXpresso Linker settings
IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
18 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

The structure definition in the above example expects memory section "flscrc" to be
defined in the linker. This can be set as follows:

/* The safety FLASH CRC. */

.SEC_CRC m_fs_flash_crc_start : ALIGN(4)

{

FILL(0xff)

KEEP(*(.flshcrc*))

} >MEM_FLASH

Where "m_fs_flash_crc_start" is the user-defined address, but this section must be
placed at the end of the output *.hex file.

5.1.3.3 Flash loader configuration

It is necessary to set a correct output file for the download to the target. There are the
following two ways to do this in the MCUXpresso IDE:

1. Using the "Debug configuration".
2. Using the "GUI Flash Tool".

Debug configuration

• Create the debug configuration for your debugger.
• Open the "Debug Configurations" menu ("Run → Debug configuration")

and select the "Startup" tab. In this tab, select "Load Image -> Use File ->
<YOUR_PROJECT_NAME_crc.hex".

• This edited *.hex file is in the <workspace>/<your_project>/Debug/<your_project>_
crc.hex folder.

This can be set in the OpenSDA, CMSIS-DAP, or J-Link debuggers.

Figure 11.  Using output *.hex file with calculated CRC in MCUXpresso IDE

Using GUI Flash Tool
IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
19 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

Only the SEGGER J-Link probes in the GUI Flash Tool support *.hex files.

In the GUI Flash Tool settings, select "Workspace → <Configuration> →
<PROJECT_NAME>_crc.hex" file for download.

Figure 12. GUI Flash Tool - SEGGER J-Link

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
20 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

6 IEC60730B tests

The library contains the following tests:

• Analog I/O test
• Clock test
• CPU register test
• Digital I/O test
• Invariable memory (flash) test
• Variable memory (RAM) test
• Program counter test
• Stack test
• Watchdog test
• Touch-sensing peripheral TSIv5 test

The following chapters describe each test with focus on the example application
(debugging).

6.1 Clock test
The clock test procedure tests the oscilator frequency for the CPU core in the wrong
frequency condition.

Note: The default clock setting from the SDK library is used in the example. For a real
application, ensure that the reference clock source is not dependent on the primary
(tested) clock.

6.2 CPU register
The CPU register test procedure tests all CPU registers for the stuck-at condition (except
for the program counter register). The program counter test is implemented as a stand-
alone safety routine.

Some tests stay in an endless loop in case of an error, others return a corresponding
error message.

6.3 DIO test
The Digital Input/Output (DIO) test procedure performs the plausibility check of the
processor's digital IO interface.

Note: Make sure that the time between the "set" and "get" functions is sufficient for the
GPIO peripheral speed.

6.4 Invariable memory test
The invariable (Flash) memory test provides a CRC check of a dedicated part of memory.
This test can be turned off in the safety_config.h file.

The test consists of the following two parts:

• Post-build CRC calculation of the dedicated memory.
• Runtime CRC calculation and comparison with the post-build result.

The post-build calculation is different for each IDE:

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
21 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

In the IAR IDE, the CRC is calculated by the IDE directly using the linker (see Options-
>Build Action). The Flash test is fully integrated to the example project in the IAR IDE. It
is necessary only to turn this test on in the safety_config.h file.

In the uVision Keil IDE, the CRC is calculated by the Srecord third-party tool, which is
called from the IDE (see Options → User → After Build) The Flash test is fully integrated
to the example project in the uVison Keil IDE. It is only necessary to turn this test on in
the safety_config.h file. In case of any issues, see Section 5.1.2

In the MCUXpresso IDE, the CRC is calculated by the Srecord third-party tool. The user
must do some additional steps. For more information, see Section 5.1.3.

Note: The invariable memory test example uses the crc.bat file for post-build calculation,
so this example does not work on a Unix/Mac operating system.

Note: When you debug your application with the Flash test turned on, be careful when
using the breakpoint. The software breakpoint usually changes the CRC result and
causes a safety error.

6.5 Variable memory test
The variable memory on the supported MCU is an on-chip RAM.

The RAM memory test is provided by the MarchC or MarchX tests.

The test copies a block of memory to the backup area defined by the linker. Be sure that
the BLOCK_SIZE parameter is smaller than the backup area defined by the linker.

Note: This test cannot be interupted.

6.6 Program counter test
The CPU program counter register test procedure tests the CPU program counter
register for the stuck-at condition. The program counter register test can be performed
once after the MCU reset and also during runtime.

Note: The program counter test cannot be interrupted.

6.7 Stack test
This test routine is used to test the overflow and underflow conditions of the application
stack. The testing of the stuck-at faults in the memory area occupied by the stack is
covered by the variable memory test. The overflow or underflow of the stack can occur
if the stack is incorrectly controlled or by defining the "too-low" stack area for the given
application.

Note: Choose a correct pattern to fill the tested area. This pattern must be unique to the
application.

6.8 Watchdog test
The watchdog test provides the testing of the watchdog timer functionality. The test runs
only once after the reset. The test causes the WDOG reset and compares the preset time
for the WDOG reset to the real time.

For this test to run correctly, it is necessary to keep the WDOG_backup variable in a part
of memory which is not corrupted by the WDOG reset.

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
22 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

Note: Some debuggers do not allow the WDOG reset. Due to this, it is necessary to turn
off the WDOG when debugging the application.

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
23 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

7 Revision history

Revision number SDK Description

0 2.9.0 Intial release.

1 2.10.0 Change devices supported in SDK rel. 2.10.

2 2.10.0 Post-build description added.

3 - Version cover SDK 2.9 and SDK 2.10 release - document for web

4 2.11.0 Change devices supported in SDK rel. 2.11.

5 2.13.0 Added examples supported in SDK re. 2.13

Revision history

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
24 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

Figures
Fig. 1. Hardware connection of LPCXpresso804 3
Fig. 2. Hardware connection of

LPCXpresso824MAX ...4
Fig. 3. Hardware connection of

LPCXpresso845MAX ...5
Fig. 4. Hardware connection of

LPCXpresso860MAX ...6
Fig. 5. Hardware connection of

LPCXpresso51U68 ..7

Fig. 6. Folder structure ... 8
Fig. 7. Example of project structure in example

folder ... 9
Fig. 8. IAR example application structure10
Fig. 9. Example of project hiearchy11
Fig. 10. Configuration of post-build steps18
Fig. 11. Using output *.hex file with calculated CRC

in MCUXpresso IDE ..19
Fig. 12. GUI Flash Tool - SEGGER J-Link 20

IEC60730BLPCCM0EUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 5 — 21 December 2022
25 / 26

NXP Semiconductors IEC60730BLPCCM0EUG
LPC CM0 Safety Example

Contents
1 IEC60730B Safety library example user's

guide ...1
2 Hardware settings ...2
2.1 LPCXpresso804 ...2
2.2 LPCXpresso824MAX ... 3
2.3 LPCXpresso845MAX ... 5
2.4 LPCXpresso860MAX ... 6
2.5 LPCXpresso51U68 .. 7
3 File structure ... 8
3.1 Library source files location8
3.2 Example of library handling code 9
4 Example application ... 10
4.1 How to open the project 11
4.1.1 IAR IDE ..11
4.1.2 Arm Keil IDE ..12
4.1.3 MCUXpresso IDE .. 12
4.2 Example settings - safety_config.h 12
4.3 safety_test_items.c file 12
4.4 Source file - safety_cm0_lpc.c/.h13
5 Running example .. 14
5.1 Post-build CRC calculation14
5.1.1 Postbuild in IEC60730B safety example14
5.1.2 Arm uVison Keil IDE postbuild CRC 15
5.1.2.1 Postbuild CRC settings16
5.1.2.2 Debug initialization settings 16
5.1.2.3 Linker settings for information table16
5.1.3 MCUxpresso postbuild CRC17
5.1.3.1 Post-build configuration 17
5.1.3.2 Place information table 18
5.1.3.3 Flash loader configuration 19
6 IEC60730B tests .. 21
6.1 Clock test ...21
6.2 CPU register .. 21
6.3 DIO test ... 21
6.4 Invariable memory test 21
6.5 Variable memory test22
6.6 Program counter test22
6.7 Stack test ...22
6.8 Watchdog test ..22
7 Revision history .. 24

© 2022 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 21 December 2022

	1 IEC60730B Safety library example user's guide
	2 Hardware settings
	2.1 LPCXpresso804
	2.2 LPCXpresso824MAX
	2.3 LPCXpresso845MAX
	2.4 LPCXpresso860MAX
	2.5 LPCXpresso51U68

	3 File structure
	3.1 Library source files location
	3.2 Example of library handling code

	4 Example application
	4.1 How to open the project
	4.1.1 IAR IDE
	4.1.2 Arm Keil IDE
	4.1.3 MCUXpresso IDE

	4.2 Example settings - safety_config.h
	4.3 safety_test_items.c file
	4.4 Source file - safety_cm0_lpc.c/.h

	5 Running example
	5.1 Post-build CRC calculation
	5.1.1 Postbuild in IEC60730B safety example
	5.1.2 Arm uVison Keil IDE postbuild CRC
	5.1.2.1 Postbuild CRC settings
	5.1.2.2 Debug initialization settings
	5.1.2.3 Linker settings for information table

	5.1.3 MCUxpresso postbuild CRC
	5.1.3.1 Post-build configuration
	5.1.3.2 Place information table
	5.1.3.3 Flash loader configuration

	6 IEC60730B tests
	6.1 Clock test
	6.2 CPU register
	6.3 DIO test
	6.4 Invariable memory test
	6.5 Variable memory test
	6.6 Program counter test
	6.7 Stack test
	6.8 Watchdog test

	7 Revision history
	Figures
	Contents

