
MCUXSDKGSUG
Getting Started with MCUXpresso SDK
Rev. 2.13.0 — 22 December 2022 User guide

Document information
Information Content

Keywords MCUXSDKGSUG, Getting Started, MCUXpresso SDK, MCUXSDK

Abstract This document describes the steps to get started with MCUXpresso SDK.

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

1 Overview

The NXP MCUXpresso software and tools offer comprehensive development solutions
designed to optimize, ease, and help accelerate embedded system development of
applications based on general purpose, crossover, and Bluetooth-enabled MCUs from
NXP. The MCUXpresso SDK includes a flexible set of peripheral drivers designed
to speed up and simplify development of embedded applications. Along with the
peripheral drivers, the MCUXpresso SDK provides an extensive and rich set of example
applications covering everything from basic peripheral use case examples to full
demo applications. The MCUXpresso SDK contains optional RTOS integrations
such as FreeRTOS and Azure RTOS, and various other middleware to support rapid
development.

For supported toolchain versions, see MCUXpresso SDK Release Notes (document
MCUXSDKRN).

For more details about MCUXpresso SDK, see MCUXpresso Software Development Kit
(SDK).

Application Code

Stacks and Middleware
(Connectivity, Security,
DMA, Filesystem, etc,)

Board Support

Peripheral Drivers
Real Time Kernel

(FreeRTOS)

CMSIS-CORE and CMSIS-DSP
(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSP Library)

Microcontroller Hardware

Figure 1. MCUXpresso SDK layers

2 MCUXpresso SDK board support package folders

MCUXpresso SDK board support package provides example applications for NXP
development and evaluation boards for Arm Cortex-M cores including Freedom, Tower
System, and LPCXpresso boards. Board support packages are found inside the top-
level boards folder and each supported board has its own folder (an MCUXpresso SDK
package can support multiple boards). Within each <board_name> folder, there are
various subfolders to classify the type of examples it contains. These include (but are not
limited to):

• cmsis_driver_examples: Simple applications intended to show how to use CMSIS
drivers.

• demo_apps: Full-featured applications that highlight key functionality and use cases
of the target MCU. These applications typically use multiple MCU peripherals and may
leverage stacks and middleware.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
2 / 48

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

• driver_examples: Simple applications that show how to use the MCUXpresso
SDK’s peripheral drivers for a single use case. These applications typically only use a
single peripheral but there are cases where multiple peripherals are used (for example,
SPI conversion using DMA).

• emwin_examples: Applications that use the emWin GUI widgets.
• rtos_examples: Basic FreeRTOSOS examples that show the use of various RTOS

objects (semaphores, queues, and so on) and interfaces with the MCUXpresso SDK’s
RTOS drivers

• usb_examples: Applications that use the USB host/device/OTG stack.

2.1 Example application structure

This section describes how the various types of example applications interact with the
other components in the MCUXpresso SDK. To get a comprehensive understanding
of all MCUXpresso SDK components and folder structure, see MCUXpresso SDK API
Reference Manual.

Each <board_name> folder in the boards directory contains a comprehensive set of
examples that are relevant to that specific piece of hardware. Although we use the
hello_world example (part of the demo_apps folder), the same general rules apply to
any type of example in the <board_name> folder.

In the hello_world application folder you see the following contents:

Figure 2. Application folder structure

All files in the application folder are specific to that example, so it is easy to copy and
paste an existing example to start developing a custom application based on a project
provided in the MCUXpresso SDK.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
3 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

2.2 Locating example application source files

When opening an example application in any of the supported IDEs, various source files
are referenced. The MCUXpresso SDK devices folder is the central component to all
example applications. It means that the examples reference the same source files and, if
one of these files is modified, it could potentially impact the behavior of other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

• devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK
feature file, and a few other files

• devices/<device_name>/cmsis_drivers: All the CMSIS drivers for your specific
MCU

• devices/<device_name>/drivers: All of the peripheral drivers for your specific
MCU

• devices/<device_name>/<tool_name>: Toolchain-specific startup code, including
vector table definitions

• devices/<device_name>/utilities: Items such as the debug console that are
used by many of the example applications

• devices/<devices_name>/project: Project template used in CMSIS PACK new
project creation

For examples containing middleware/stacks or an RTOS, there are references to the
appropriate source code. Middleware source files are located in the middleware folder
and RTOSes are in the rtos folder. The core files of each of these are shared, so
modifying one could have potential impacts on other projects that depend on that file.

3 Run a demo using MCUXpresso IDE

Note: Ensure that the MCUXpresso IDE toolchain is included when generating the
MCUXpresso SDK package.

This section describes the steps required to configure MCUXpresso IDE to build, run,
and debug example applications. The hello_world demo application targeted for the
hardware platform is used as an example, though these steps can be applied to any
example application in the MCUXpresso SDK.

3.1 Select the workspace location
Every time MCUXpresso IDE launches, it prompts the user to select a workspace
location. MCUXpresso IDE is built on top of Eclipse which uses workspace to store
information about its current configuration, and in some use cases, source files for the
projects are in the workspace. The location of the workspace can be anywhere, but it is
recommended that the workspace be located outside the MCUXpresso SDK tree.

3.2 Build an example application

To build an example application, follow these steps.

1. Drag and drop the SDK zip file into the Installed SDKs view to install an SDK. In the
window that appears, click OK and wait until the import has finished.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
4 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 3. Install an SDK
2. On the Quickstart Panel, click Import SDK example(s)….

Figure 4. Import an SDK example
3. Expand the demo_apps folder and select hello_world.
4. Click Next.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
5 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 5. Select hello_world
5. Ensure Redlib: Use floating-point version of printf is selected if the example prints

floating-point numbers on the terminal for demo applications such as adc_basic,
adc_burst, adc_dma, and adc_interrupt. Otherwise, it is not necessary to
select this option. Then, click Finish.

3.3 Run an example application

For more information on debug probe support in the MCUXpresso IDE, see
community.nxp.com.

To download and run the application, perform the following steps:

1. See the table in Section 11 to determine the debug interface that comes loaded on
your specific hardware platform. For LPCXpresso boards, install the DFU jumper for
the debug probe, then connect the debug probe USB connector.
• For boards with CMSIS-DAP/mbed/DAPLink interfaces, visit developer.mbed.org/

handbook/Windows-serial-configuration and follow the instructions to install the
Windowsoperating system serial driver. If running on Linux OS, this step is not
required.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
6 / 48

https://community.nxp.com/message/630901
http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

• For boards with a P&E Micro interface, see PE micro to download and install the
P&E Micro Hardware Interface Drivers package.

• For the MRB-KW01 board, see www.nxp.com/USB2SER to download the serial
driver. This board does not support the OpenSDA. Therefore, an external debug
probe (such as a J-Link) is required. The steps below referencing the OpenSDA do
not apply because there is only a single USB connector for the serial output.

• If using J-Link with either a standalone debug pod or OpenSDA, install the J-Link
software (drivers and utilities) from www.segger.com/jlink-software.html.

• For boards with the OSJTAG interface, install the driver from www.keil.com/
download/docs/408.

2. Connect the development platform to your PC via a USB cable.
3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect

to the debug serial port number (to determine the COM port number, see Section 9).
Configure the terminal with these settings:
a. 115200 or 9600 baud rate, depending on your board (reference

BOARD_DEBUG_UART_BAUDRATE variable in board.h file)
b. No parity
c. 8 data bits
d. 1 stop bit

Figure 6. Terminal (PuTTY) configurations

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
7 / 48

http://www.pemicro.com/support/downloads_find.cfm
www.nxp.com/USB2SER
www.segger.com/jlink-software.html
www.keil.com/download/docs/408
www.keil.com/download/docs/408

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

4. On the Quickstart Panel, click Debug to launch the debug session.
5. The first time you debug a project, the Debug Emulator Selection dialog is

displayed, showing all supported probes that are attached to your computer. Select
the probe through which you want to debug and click OK. (For any future debug
sessions, the stored probe selection is automatically used, unless the probe cannot
be found.)

Figure 7. Attached Probes: debug emulator selection

6. The application is downloaded to the target and automatically runs to main().
7. Start the application by clicking Resume.

Figure 8. Resume button

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
8 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

The hello_world application is now running and a banner is displayed on the terminal.
If not, check your terminal settings and connections.

Figure 9. Text display of the hello_world demo

3.4 Build a multicore example application

This section describes the steps required to configure MCUXpresso IDE to build, run,
and debug multicore example applications. The following steps can be applied to any
multicore example application in the MCUXpresso SDK. Here, the dual-core version of
hello_world example application targeted for the LPCXpresso54114 hardware platform is
used as an example.

1. Multicore examples are imported into the workspace in a similar way as single
core applications, explained in Section 3.2. When the SDK zip package for
LPCXpresso54114 is installed and available in the Installed SDKs view, click Import
SDK example(s)… on the Quickstart Panel. In the window that appears, expand the
LPCxx folder and select LPC54114J256. Then, select lpcxpresso54114 and click
Next.

2. Expand the multicore_examples/hello_world folder and select cm4. The
cm0plus counterpart project is automatically imported with the cm4 project, because
the multicore examples are linked together and there is no need to select it explicitly.
Click Finish.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
9 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 10. Select the hello_world multicore example
3. Now, two projects should be imported into the workspace. To start building the

multicore application, highlight the lpcxpresso54114_multicore_examples_
hello_world_cm4 project (multicore master project) in the Project Explorer. Then
choose the appropriate build target, Debug or Release, by clicking the downward
facing arrow next to the hammer icon, as shown in Figure 11. For this example, select
Debug.

Figure 11. Selection of the build target in MCUXpresso IDE

The project starts building after the build target is selected. Because of the project
reference settings in multicore projects, triggering the build of the primary core
application (cm4) also causes the referenced auxiliary core application (cm0plus) to
build.

Note: When the Release build is requested, it is necessary to change the build
configuration of both the primary and auxiliary core application projects first. To do this,
select both projects in the Project Explorer view and then right click which displays the
context-sensitive menu. Select Build Configurations -> Set Active -> Release. This
alternate navigation using the menu item is Project -> Build Configuration -> Set
Active -> Release. After switching to the Release build configuration, the build of the
multicore example can be started by triggering the primary core application (cm4) build.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
10 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 12. Switching multicore projects into the Release build configuration

3.5 Run a multicore example application

The primary core debugger handles flashing of both the primary and the auxiliary core
applications into the SoC flash memory. To download and run the multicore application,
switch to the primary core application project and perform all steps as described in
Section 3.3. These steps are common for both single-core applications and the primary
side of dual-core applications, ensuring both sides of the multicore application are
properly loaded and started. However, there is one additional dialogue that is specific to
multicore examples which requires selecting the target core. See the following figures as
reference.

Figure 13. Debug "frdmk32l3a6_hello_world_cm4" case

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
11 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 14. Attached Probes: debug emulator selection

Figure 15. Target core selection dialogue

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
12 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 16. Stop the primary core application at main() when running debugging

After clicking the "Resume All Debug sessions" button, the hello_world multicore
application runs and a banner is displayed on the terminal. If this is not the case, check
your terminal settings and connections.

Figure 17. Hello World from the primary core message

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core
has been released from the reset and running correctly. It is also possible to debug both
sides of the multicore application in parallel. After creating the debug session for the
primary core, perform same steps also for the auxiliary core application. Highlight the
lpcxpresso54114_multicore_examples_hello_world_cm0plus project (multicore slave

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
13 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

project) in the Project Explorer. On the Quickstart Panel, click “Debug ‘lpcxpresso54114_
multicore_examples_hello_world_cm0plus’ [Debug]” to launch the second debug
session.

Figure 18. Debug "lpcxpresso54114_multicore_examples_hello_world_cm0plus" case

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
14 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 19. Two opened debug sessions

Now, the two debug sessions should be opened, and the debug controls can be used
for both debug sessions depending on the debug session selection. Keep the primary
core debug session selected by clicking the "Resume" button. The hello_world multicore
application then starts running. The primary core application starts the auxiliary core
application during runtime, and the auxiliary core application stops at the beginning of the
main() function. The debug session of the auxiliary core application is highlighted. After
clicking the “Resume” button, it is applied to the auxiliary core debug session. Therefore,
the auxiliary core application continues its execution.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
15 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 20. Auxiliary core application stops at the main function

At this point, it is possible to suspend and resume individual cores independently. It is
also possible to make synchronous suspension and resumption of both the cores. This is
done either by selecting both opened debug sessions (multiple selections) and clicking
the “Suspend” / "Resume” control button, or just using the “Suspend All Debug sessions”
and the “Resume All Debug sessions” buttons.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
16 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 21. Synchronous suspension/resumption of both cores using the multiple
selections of debug sessions and “Suspend”/"Resume” controls

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
17 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 22. Synchronous suspension/resumption of both cores using the “Suspend All
Debug sessions” and the “Resume All Debug sessions” controls

4 Run a demo application using IAR

This section describes the steps required to build, run, and debug example applications
provided in the MCUXpresso SDK.

Note: IAR Embedded Workbench for Arm version 8.32.3 is used in the following
example, and the IAR toolchain should correspond to the latest supported version, as
described in the MCUXpresso SDK Release Notes.

4.1 Build an example application

Do the following steps to build the hello_world example application.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
18 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

1. Open the desired demo application workspace. Most example application workspace
files can be located using the following path:
<install_dir>/boards/<board_name>/<example_type>/<application_name>/iar

Other example applications may have additional folders in their path.
2. Select the desired build target from the drop-down menu.

For this example, select hello_world – debug.

Figure 23. Demo build target selection
3. To build the demo application, click Make, highlighted in red in Figure 24.

Figure 24. Build the demo application
4. The build completes without errors.

4.2 Run an example application

To download and run the application, perform these steps:

1. See the table in Section 11 to determine the debug interface that comes loaded on
your specific hardware platform.
• The user should install LPCScrypt or MCUXpresso IDE to ensure that LPC board

drivers are installed.
• For boards with P&E Micro interfaces, visit www.pemicro.com/support/downloads_

find.cfm and download the P&E Micro Hardware Interface Drivers package.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
19 / 48

http://www.pemicro.com/support/downloads_find.cfm
http://www.pemicro.com/support/downloads_find.cfm

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

2. Connect the development platform to your PC via USB cable.
3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect

to the debug COM port (to determine the COM port number, see Section 9).
Configure the terminal with these settings:
a. 115200 or 9600 baud rate, depending on your board (reference

BOARD_DEBUG_UART_BAUDRATE variable in the board.h file)
b. No parity
c. 8 data bits
d. 1 stop bit

Figure 25. Terminal (PuTTY) configuration
4. In IAR, click the Download and Debug button to download the application to the

target.

Figure 26. Download and Debug button
5. The application is then downloaded to the target and automatically runs to the

main() function.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
20 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 27. Stop at main() when running debugging
6. Run the code by clicking the Go button.

Figure 28. Go button
7. The hello_world application is now running and a banner is displayed on the

terminal. If it does not appear, check your terminal settings and connections.

Figure 29. Text display of the hello_world demo

4.3 Build a multicore example application

This section describes the steps to build and run a dual-core application. The demo
applications workspace files are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/
<core_type>/iar

Begin with a simple dual-core version of the Hello World application. The multicore Hello
World IAR workspaces are located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm0plus/
iar/hello_world_cm0plus.eww

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/iar/
hello_world_cm4.eww

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
21 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Build both applications separately by clicking the Make button. Build the application for
the auxiliary core (cm0plus) first, because the primary core application project (cm4)
must know the auxiliary core application binary when running the linker. It is not possible
to finish the primary core linker when the auxiliary core application binary is not ready.

4.4 Run a multicore example application

The primary core debugger handles flashing both primary and the auxiliary core
applications into the SoC flash memory. To download and run the multicore application,
switch to the primary core application project and perform steps 1 – 4 as described in
Section 4.2. These steps are common for both single core and dual-core applications in
IAR.

After clicking the “Download and Debug" button, the auxiliary core project is opened in
the separate EWARM instance. Both the primary and auxiliary images are loaded into the
device flash memory and the primary core application is executed. It stops at the default
C language entry point in the main() function.

Run both cores by clicking the "Start all cores" button to start the multicore application.

Figure 30. Start all cores button

During the primary core code execution, the auxiliary core is released from the reset.
The hello_world multicore application is now running and a banner is displayed on the
terminal. If this does not appear, check the terminal settings and connections.

Figure 31. Hello World from primary core message

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core
has been released from the reset and is running correctly. When both cores are running,
use the "Stop all cores", and "Start all cores" control buttons to stop or run both cores
simultaneously.

Figure 32. "Stop all cores" and "Start all cores" control buttons

5 Run a demo using Keil MDK/μVision

This section describes the steps required to build, run, and debug example applications
provided in the MCUXpresso SDK.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
22 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

5.1 Install CMSIS device pack

After the MDK tools are installed, Cortex Microcontroller Software Interface Standard
(CMSIS) device packs must be installed to fully support the device from a debug
perspective. These packs include things such as memory map information, register
definitions, and flash programming algorithms. Follow these steps to install the
appropriate CMSIS pack.

1. Open the MDK IDE, which is called μVision. In the IDE, select the Pack Installer
icon.

Figure 33. Launch the Pack Installer
2. After the installation finishes, close the Pack Installer window and return to the

μVision IDE.

5.2 Build an example application

1. Open the desired example application workspace in:
<install_dir>/boards/<board_name>/<example_type>/<application_name>/mdk

The workspace file is named as <demo_name>.uvmpw. For this specific example,
the actual path is:

2. To build the demo project, select Rebuild, highlighted in red.

Figure 34. Build the demo
3. The build completes without errors.

5.3 Run an example application

To download and run the application, perform these steps:

1. See the table in Section 11 to determine the debug interface that comes loaded on
your specific hardware platform.
• For boards with the CMSIS-DAP/mbed/DAPLink interface, visit mbed Windows

serial configuration and follow the instructions to install the Windows operating
system serial driver. If running on Linux OS, this step is not required.

• The user should install LPCScrypt or MCUXpresso IDE to ensure that LPC board
drivers are installed.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
23 / 48

https://developer.mbed.org/handbook/Windows-serial-configuration
https://developer.mbed.org/handbook/Windows-serial-configuration

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

• For boards with a P&E Micro interface, visit www.pemicro.com/support/downloads_
find.cfm and download and install the P&E Micro Hardware Interface Drivers
package.

• If using J-Link either a standalone debug pod or OpenSDA, install the J-Link
software (drivers and utilities) from www.segger.com/jlink-software.html.

• For boards with the OSJTAG interface, install the driver from www.keil.com/
download/docs/408.

2. Connect the development platform to your PC via USB cable using OpenSDA USB
connector.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm and connect
to the debug serial port number (to determine the COM port number, see Section 9).
Configure the terminal with these settings:
a. 115200 or 9600 baud rate, depending on your board (reference

BOARD_DEBUG_UART_BAUDRATE variable in the board.h file)
b. No parity
c. 8 data bits
d. 1 stop bit

Figure 35. Terminal (PuTTY) configurations
4. In μVision, after the application is built, click the Download button to download the

application to the target.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
24 / 48

http://www.pemicro.com/support/downloads_find.cfm
http://www.pemicro.com/support/downloads_find.cfm
www.segger.com/jlink-software.html
http://www.keil.com/download/docs/408.asp
http://www.keil.com/download/docs/408.asp

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 36. Download button
5. After clicking the Download button, the application downloads to the target and

is running. To debug the application, click the Start/Stop Debug Session button,
highlighted in red.

Figure 37. Stop at main() when run debugging
6. Run the code by clicking the Run button to start the application.

Figure 38. Go button

The hello_world application is now running and a banner is displayed on the
terminal. If this does not appear, check your terminal settings and connections.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
25 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 39. Text display of the hello_world demo

5.4 Build a multicore example application

This section describes the steps to build and run a dual-core application. The demo
applications workspace files are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/
<core_type>/mdk

Begin with a simple dual-core version of the Hello World application. The multicore Hello
World Keil MSDK/μVision workspaces are located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm0plus/
mdk/hello_world_cm0plus.uvmpw

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/mdk/
hello_world_cm4.uvmpw

Build both applications separately by clicking the Rebuild button. Build the application
for the auxiliary core (cm0plus) first because the primary core application project (cm4)
must know the auxiliary core application binary when running the linker. It is not possible
to finish the primary core linker when the auxiliary core application binary is not ready.

5.5 Run a multicore example application

The primary core debugger flashes both the primary and the auxiliary core applications
into the SoC flash memory. To download and run the multicore application, switch to the
primary core application project and perform steps 1 – 5 as described in Section 5.3.
These steps are common for both single-core and dual-core applications in μVision.

Both the primary and the auxiliary image is loaded into the device flash memory. After
clicking the “Run" button, the primary core application is executed. During the primary
core code execution, the auxiliary core is released from the reset. The hello_world
multicore application is now running and a banner is displayed on the terminal. If this
does not appear, check your terminal settings and connections.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
26 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 40. Hello World from primary core message

An LED controlled by the auxiliary core starts flashing indicating that the auxiliary core
has been released from the reset and is running correctly.

Attach the running application of the auxiliary core by opening the auxiliary core project
in the second μVision instance and clicking the “Start/Stop Debug Session” button. After
this, the second debug session is opened and the auxiliary core application can be
debugged.

Figure 41. Debugging the auxiliary core application

Arm describes multicore debugging using the NXP LPC54114 Cortex-M4/M0+ dual-core
processor and Keil uVision IDE in Application Note 318 at www.keil.com/appnotes/docs/
apnt_318.asp. The associated video can be found here.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
27 / 48

http://www.keil.com/appnotes/docs/apnt_318.asp
http://www.keil.com/appnotes/docs/apnt_318.asp
https://www.youtube.com/watch?v=lMX-2lrv7Zs

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

6 Run a demo using Arm GCC

This section describes the steps to configure the command-line Arm GCC tools to
build, run, and debug demo applications and necessary driver libraries provided in the
MCUXpresso SDK. The hello_world demo application is targeted which is used as an
example.

6.1 Set up toolchain

This section contains the steps to install the necessary components required to build and
run an MCUXpresso SDK demo application with the Arm GCC toolchain, as supported
by the MCUXpresso SDK. There are many ways to use Arm GCC tools, but this example
focuses on a Windows operating system environment.

6.1.1 Install GCC Arm Embedded tool chain

Download and run the installer from GNU Arm Embedded Toolchain. This is the
actual toolset (in other words, compiler, linker, and so on). The GCC toolchain should
correspond to the latest supported version, as described in MCUXpresso SDK Release
Notes.

6.1.2 Install MinGW (only required on Windows OS)

The Minimalist GNU for Windows (MinGW) development tools provide a set of tools
that are not dependent on third-party C-Runtime DLLs (such as Cygwin). The build
environment used by the MCUXpresso SDK does not use the MinGW build tools, but
does leverage the base install of both MinGW and MSYS. MSYS provides a basic shell
with a Unix-like interface and tools.

1. Download the latest MinGW mingw-get-setup installer from MinGW.
2. Run the installer. The recommended installation path is C:\MinGW, however, you

may install to any location.
Note: The installation path cannot contain any spaces.

3. Ensure that the mingw32-base and msys-base are selected under Basic Setup.

Figure 42. Set up MinGW and MSYS
4. In the Installation menu, click Apply Changes and follow the remaining instructions

to complete the installation.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
28 / 48

http://sourceforge.net/projects/mingw/files/Installer/

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 43. Complete MinGW and MSYS installation
5. Add the appropriate item to the Windows operating system path environment

variable. It can be found under Control Panel->System and Security->System-
>Advanced System Settings in the Environment Variables... section. The path is:

<mingw_install_dir>\bin

Assuming the default installation path, C:\MinGW, an example is shown below. If the
path is not set correctly, the toolchain will not work.
Note: If you have C:\MinGW\msys\x.x\bin in your PATH variable (as required
by Kinetis SDK 1.0.0), remove it to ensure that the new GCC build system works
correctly.

Figure 44. Add Path to systems environment

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
29 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

6.1.3 Add a new system environment variable for ARMGCC_DIR

Create a new system environment variable and name it as ARMGCC_DIR. The value of
this variable should point to the Arm GCC Embedded tool chain installation path. For this
example, the path is:

C:\Program Files (x86)\GNU Tools Arm Embedded\8 2018-q4-major

See the installation folder of the GNU Arm GCC Embedded tools for the exact pathname
of your installation.

Short path should be used for path setting, you could convert the path to short path by
running command for %I in (.) do echo %~sI in above path.

Figure 45. Convert path to short path

Figure 46. Add ARMGCC_DIR system variable

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
30 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

6.1.4 Install CMake

1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.
2. Install CMake, ensuring that the option Add CMake to system PATH is selected

when installing. The user chooses to select whether it is installed into the PATH for all
users or just the current user. In this example, it is installed for all users.

Figure 47. Install CMake
3. Follow the remaining instructions of the installer.
4. You may need to reboot your system for the PATH changes to take effect.
5. Make sure sh.exe is not in the Environment Variable PATH. This is a limitation of

mingw32-make.

6.2 Build an example application

To build an example application, follow these steps.

1. Open a GCC Arm Embedded tool chain command window. To launch the window,
from the Windows operating system Start menu, go to Programs >GNU Tools Arm
Embedded <version> and select GCC Command Prompt.

Figure 48. Launch command prompt
2. Change the directory to the example application project directory which has a path

similar to the following:

<install_dir>/boards/<board_name>/<example_type>/
<application_name>/armgcc

For this example, the exact path is:
Note: To change directories, use the cd command.

3. Type build_debug.bat on the command line or double click on build_debug.bat file
in Windows Explorer to build it. The output is as shown in Figure 49.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
31 / 48

http://www.cmake.org/cmake/resources/software.html

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 49. hello_world demo build successful

6.3 Run an example application

This section describes steps to run a demo application using J-Link GDB Server
application. To update the onboard LPC-Link2 debugger to Jlink firmware, see
Section 12.

Note: J-Link GDB Server application is not supported for TFM examples. Use CMSIS
DAP instead of J-Link for flashing and debugging TFM examples.

After the J-Link interface is configured and connected, follow these steps to download
and run the demo applications:

1. Connect the development platform to your PC via USB cable between the LPC-
Link2 USB connector (may be named OSJTAG for some boards) and the PC USB
connector. If using a standalone J-Link debug pod, connect it to the SWD/JTAG
connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect
to the debug serial port number (to determine the COM port number, see Section 9).
Configure the terminal with these settings:
a. 115200 or 9600 baud rate, depending on your board (reference

BOARD_DEBUG_UART_BAUDRATE variable in board.h file)
b. No parity
c. 8 data bits
d. 1 stop bit

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
32 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 50. Terminal (PuTTY) configurations
Note: Make sure that the board is set to FlexSPI flash boot mode (ISP2: ISP1: ISP0
= ON, OFF, ON) before use GDB debug.

3. Open the J-Link GDB Server application. Assuming the J-Link software is installed,
the application can be launched by going to the Windows operating system Start
menu and selecting Programs -> SEGGER -> J-Link <version> J-Link GDB
Server.

4. After it is connected, the screen should look like this figure:

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
33 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 51. SEGGER J-Link GDB Server screen after successful connection
5. If not already running, open a GCC Arm Embedded tool chain command window. To

launch the window, from the Windows operating system Start menu, go to Programs
-> GNU Tools Arm Embedded <version> and select GCC Command Prompt.

Figure 52. Launch command prompt
6. Change to the directory that contains the example application output. The output can

be found in using one of these paths, depending on the build target selected:

<install_dir>/boards/<board_name>/<example_type>/
<application_name>/armgcc/debug

<install_dir>/boards/<board_name>/<example_type>/
<application_name>/armgcc/release

For this example, the path is:

<install_dir>/boards/frdmk32l3a6/demo_apps/hello_world/cm4/
armgcc/debug

7. Run the arm-none-eabi-gdb.exe <application_name>.elf command. For
this example, it is arm-none-eabi-gdb.exe hello_world.elf.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
34 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 53. Run arm-none-eabi-gdb
8. Run these commands:

a. target remote localhost:2331
b. monitor reset
c. monitor halt
d. load
e. monitor reset

9. The application is now downloaded and halted at the watchpoint. Execute the
monitor go command to start the demo application.
The hello_world application is now running and a banner is displayed on the
terminal. If this does not appear, check your terminal settings and connections.

Figure 54. Text display of the hello_world demo

6.4 Build a multicore example application
This section describes the steps to build and run a dual-core application. The demo
application build scripts are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/
<core_type>/armgcc

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
35 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Begin with a simple dual-core version of the Hello World application. The multicore Hello
World GCC build scripts are located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm0plus/
armgcc/build_debug.bat

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/armgcc/
build_debug.bat

Build both applications separately following steps for single core examples as described
in Section 6.2.

Figure 55. hello_world_cm0plus example build successful

Figure 56. hello_world_cm4 example build successful

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
36 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

6.5 Run a multicore example application
When running a multicore application, the same prerequisites for J-Link/J-Link OpenSDA
firmware, and the serial console as for the single-core application, applies, as described
in Section 6.3.

The primary core debugger handles flashing of both the primary and the auxiliary core
applications into the SoC flash memory. To download and run the multicore application,
switch to the primary core application project and perform steps 1 to 10, as described in
Section 6.3. These steps are common for both single-core and dual-core applications in
Arm GCC.

Both the primary and the auxiliary image is loaded into the SPI flash memory. After
execution of the monitor go command, the primary core application is executed.
During the primary core code execution, the auxiliary core code is reallocated from
the flash memory to the RAM, and the auxiliary core is released from the reset. The
hello_world multicore application is now running and a banner is displayed on the
terminal. If this is not true, check your terminal settings and connections.

Figure 57. Loading and running the multicore example

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
37 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 58. Hello World from primary core message

7 MCUXpresso Config Tools

MCUXpresso Config Tools can help configure the processor and generate initialization
code for the on chip peripherals. The tools are able to modify any existing example
project, or create a new configuration for the selected board or processor. The generated
code is designed to be used with MCUXpresso SDK version 2.x.

Table 1 describes the tools included in the MCUXpresso Config Tools.

Config Tool Description Image

Pins tool For configuration of pin routing
and pin electrical properties.

Clock tool For system clock configuration

Peripherals tools For configuration of other
peripherals

TEE tool Configures access policies for
memory area and peripherals
helping to protect and
isolate sensitive parts of the
application.

Device Configuration tool Configures Device
Configuration Data (DCD)
contained in the program
image that the Boot ROM code
interprets to set up various on-
chip peripherals prior to the
program launch.

Table 1. MCUXpresso Config Tools

MCUXpresso Config Tools can be accessed in the following products:

• Integrated in the MCUXpresso IDE. Config tools are integrated with both compiler and
debugger which makes it the easiest way to begin the development.

• Standalone version available for download from www.nxp.com/mcuxpresso.
Recommended for customers using IAR Embedded Workbench, Keil MDK µVision, or
Arm GCC.

• Online version available on mcuxpresso.nxp.com. Recommended doing a quick
evaluation of the processor or use the tool without installation.

Each version of the product contains a specific Quick Start Guide document
MCUXpresso IDE Config Tools installation folder that can help start your work.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
38 / 48

http://www.nxp.com/mcuxpresso
http://mcuxpresso.nxp.com

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

8 MCUXpresso IDE New Project Wizard

MCUXpresso IDE features a new project wizard. The wizard provides functionality for the
user to create new projects from the installed SDKs (and from pre-installed part support).
It offers user the flexibility to select and change multiple builds. The wizard also includes
a library and provides source code options. The source code is organized as software
components, categorized as drivers, utilities, and middleware.

To use the wizard, start the MCUXpresso IDE. This is located in the QuickStart Panel
at the bottom left of the MCUXpresso IDE window. Select New project, as shown in
Figure 59.

Figure 59. MCUXpresso IDE Quickstart Panel

For more details and usage of new project wizard, see the
MCUXpresso_IDE_User_Guide.pdf in the MCUXpresso IDE installation folder.

9 How to determine COM port

This section describes the steps necessary to determine the debug COM port number
of your NXP hardware development platform. All NXP boards ship with a factory
programmed, onboard debug interface, whether it is based on OpenSDA or the legacy
P&E Micro OSJTAG interface. To determine what your specific board ships with, see
Section 11.

1. Linux: The serial port can be determined by running the following command after the
USB Serial is connected to the host:
$ dmesg | grep "ttyUSB"
 [503175.307873] usb 3-12: cp210x converter now attached
 to ttyUSB0
 [503175.309372] usb 3-12: cp210x converter now attached
 to ttyUSB1

There are two ports, one is Cortex-A core debug console and the other is for Cortex
M4.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
39 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

2. Windows: To determine the COM port open Device Manager in the Windows
operating system. Click the Start menu and type Device Manager in the search bar.

3. In the Device Manager, expand the Ports (COM & LPT) section to view the available
ports. The COM port names are different for all the NXP boards.
a. OpenSDA – CMSIS-DAP/mbed/DAPLink interface:

Figure 60. OpenSDA – CMSIS-DAP/mbed/DAPLink interface
b. OpenSDA – P&E Micro:

Figure 61. OpenSDA – P&E Micro
c. OpenSDA – J-Link:

Figure 62. OpenSDA – J-Link
d. P&E Micro OSJTAG:

Figure 63. P&E Micro OSJTAG
e. MRB-KW01:

Figure 64. MRB-KW01

10 How to define IRQ handler in CPP files

With MCUXpresso SDK, users could define their own IRQ handler in application level to
override the default IRQ handler. For example, to override the default PIT_IRQHandler
define in startup_DEVICE.s, application code like app.c can be implement like:

c
void PIT_IRQHandler(void)
{
 // Your code
}

When application file is CPP file, like app.cpp, then extern "C" should be used to
ensure the function prototype alignment.

cpp

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
40 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

extern "C" {
 void PIT_IRQHandler(void);
}
void PIT_IRQHandler(void)
{
 // Your code
}

11 Default debug interfaces

The MCUXpresso SDK supports various hardware platforms that come loaded with
various factory programmed debug interface configurations. Table 2 lists the hardware
platforms supported by the MCUXpresso SDK, their default debug interface, and any
version information that helps differentiate a specific interface configuration.

Note: The OpenSDA details column in Table 2 is not applicable to LPC.

Hardware platform Default interface OpenSDA details

EVK-MC56F83000 P&E Micro OSJTAG N/A

EVK-MIMXRT595 CMSIS-DAP N/A

EVK-MIMXRT685 CMSIS-DAP N/A

FRDM-K22F CMSIS-DAP/mbed/DAPLink OpenSDA v2.1

FRDM-K28F DAPLink OpenSDA v2.1

FRDM-K32L2A4S CMSIS-DAP OpenSDA v2.1

FRDM-K32L2B CMSIS-DAP OpenSDA v2.1

FRDM-K32W042 CMSIS-DAP N/A

FRDM-K64F CMSIS-DAP/mbed/DAPLink OpenSDA v2.0

FRDM-K66F J-Link OpenSDA OpenSDA v2.1

FRDM-K82F CMSIS-DAP OpenSDA v2.1

FRDM-KE15Z DAPLink OpenSDA v2.1

FRDM-KE16Z CMSIS-DAP/mbed/DAPLink OpenSDA v2.2

FRDM-KL02Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL03Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL25Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL26Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL27Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL28Z P&E Micro OpenSDA OpenSDA v2.1

FRDM-KL43Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL46Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL81Z CMSIS-DAP OpenSDA v2.0

FRDM-KL82Z CMSIS-DAP OpenSDA v2.0

FRDM-KV10Z CMSIS-DAP OpenSDA v2.1

FRDM-KV11Z P&E Micro OpenSDA OpenSDA v1.0

Table 2. Hardware platforms supported by MCUXpresso SDK

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
41 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Hardware platform Default interface OpenSDA details

FRDM-KV31F P&E Micro OpenSDA OpenSDA v1.0

FRDM-KW24 CMSIS-DAP/mbed/DAPLink OpenSDA v2.1

FRDM-KW36 DAPLink OpenSDA v2.2

FRDM-KW41Z CMSIS-DAP/DAPLink OpenSDA v2.1 or greater

Hexiwear CMSIS-DAP/mbed/DAPLink OpenSDA v2.0

HVP-KE18F DAPLink OpenSDA v2.2

HVP-KV46F150M P&E Micro OpenSDA OpenSDA v1

HVP-KV11Z75M CMSIS-DAP OpenSDA v2.1

HVP-KV58F CMSIS-DAP OpenSDA v2.1

HVP-KV31F120M P&E Micro OpenSDA OpenSDA v1

JN5189DK6 CMSIS-DAP N/A

LPC54018 IoT Module N/A N/A

LPCXpresso54018 CMSIS-DAP N/A

LPCXpresso54102 CMSIS-DAP N/A

LPCXpresso54114 CMSIS-DAP N/A

LPCXpresso51U68 CMSIS-DAP N/A

LPCXpresso54608 CMSIS-DAP N/A

LPCXpresso54618 CMSIS-DAP N/A

LPCXpresso54628 CMSIS-DAP N/A

LPCXpresso54S018M CMSIS-DAP N/A

LPCXpresso55s16 CMSIS-DAP N/A

LPCXpresso55s28 CMSIS-DAP N/A

LPCXpresso55s69 CMSIS-DAP N/A

MAPS-KS22 J-Link OpenSDA OpenSDA v2.0

MIMXRT1170-EVK CMSIS-DAP N/A

TWR-K21D50M P&E Micro OSJTAG N/AOpenSDA v2.0

TWR-K21F120M P&E Micro OSJTAG N/A

TWR-K22F120M P&E Micro OpenSDA OpenSDA v1.0

TWR-K24F120M CMSIS-DAP/mbed OpenSDA v2.1

TWR-K60D100M P&E Micro OSJTAG N/A

TWR-K64D120M P&E Micro OpenSDA OpenSDA v1.0

TWR-K64F120M P&E Micro OpenSDA OpenSDA v1.0

TWR-K65D180M P&E Micro OpenSDA OpenSDA v1.0

TWR-K65D180M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV10Z32 P&E Micro OpenSDA OpenSDA v1.0

TWR-K80F150M CMSIS-DAP OpenSDA v2.1

Table 2. Hardware platforms supported by MCUXpresso SDK...continued

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
42 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Hardware platform Default interface OpenSDA details

TWR-K81F150M CMSIS-DAP OpenSDA v2.1

TWR-KE18F DAPLink OpenSDA v2.1

TWR-KL28Z72M P&E Micro OpenSDA OpenSDA v2.1

TWR-KL43Z48M P&E Micro OpenSDA OpenSDA v1.0

TWR-KL81Z72M CMSIS-DAP OpenSDA v2.0

TWR-KL82Z72M CMSIS-DAP OpenSDA v2.0

TWR-KM34Z75M P&E Micro OpenSDA OpenSDA v1.0

TWR-KM35Z75M DAPLink OpenSDA v2.2

TWR-KV10Z32 P&E Micro OpenSDA OpenSDA v1.0

TWR-KV11Z75M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV31F120M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV46F150M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV58F220M CMSIS-DAP OpenSDA v2.1

TWR-KW24D512 P&E Micro OpenSDA OpenSDA v1.0

USB-KW24D512 N/A External probe N/A

USB-KW41Z CMSIS-DAP\DAPLink OpenSDA v2.1 or greater

Table 2. Hardware platforms supported by MCUXpresso SDK...continued

12 Updating debugger firmware

12.1 Updating OpenSDA firmware

Any NXP hardware platform that comes with an OpenSDA-compatible debug interface
has the ability to update the OpenSDA firmware. This typically means to switch from
the default application (either CMSIS-DAP/mbed/DAPLink or P&E Micro) to a SEGGER
J-Link. This section contains the steps to switch the OpenSDA firmware to a J-Link
interface. However, the steps can be applied to restoring the original image also. For
reference, OpenSDA firmware files can be found at the links below:

• J-Link: Download appropriate image from www.segger.com/opensda.html. Choose
the appropriate J-Link binary based on the table in Section 11. Any OpenSDA v1.0
interface should use the standard OpenSDA download (in other words, the one with no
version). For OpenSDA 2.0 or 2.1, select the corresponding binary.

• CMSIS-DAP/mbed/DAPLink: DAPLink OpenSDA firmware is available at
www.nxp.com/opensda.

• P&E Micro: Downloading P&E Micro OpenSDA firmware images requires registration
with P&E Micro (www.pemicro.com).

Perform the following steps to update the OpenSDA firmware on your board for Windows
and Linux OS users:

1. Unplug the board's USB cable.
2. Press the Reset button on the board. While still holding the button, plug the USB

cable back into the board.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
43 / 48

http://www.segger.com/opensda.html
http://www.nxp.com/opensda
http://www.pemicro.com/opensda/index.cfm

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

3. When the board re-enumerates, it shows up as a disk drive called MAINTENANCE.

Figure 65. MAINTENANCE drive
4. Drag and drop the new firmware image onto the MAINTENANCE drive.

Note: If for any reason the firmware update fails, the board can always reenter
maintenance mode by holding down Reset button and power cycling.

These steps show how to update the OpenSDA firmware on your board for Mac OS
users.

1. Unplug the board's USB cable.
2. Press the Reset button of the board. While still holding the button, plug the USB

cable back into the board.
3. For boards with OpenSDA v2.0 or v2.1, it shows up as a disk drive called

BOOTLOADER in Finder. Boards with OpenSDA v1.0 may or may not show up
depending on the bootloader version. If you see the drive in Finder, proceed to the
next step. If you do not see the drive in Finder, use a PC with Windows OS 7 or an
earlier version to either update the OpenSDA firmware, or update the OpenSDA
bootloader to version 1.11 or later. The bootloader update instructions and image can
be obtained from P&E Microcomputer website.

4. For OpenSDA v2.1 and OpenSDA v1.0 (with bootloader 1.11 or later) users, drag the
new firmware image onto the BOOTLOADER drive in Finder.

5. For OpenSDA v2.0 users, type these commands in a Terminal window:
> sudo mount -u -w -o sync /Volumes/BOOTLOADER
> cp -X <path to update file> /Volumes/BOOTLOADER

Note: If for any reason the firmware update fails, the board can always reenter
bootloader mode by holding down the Reset button and power cycling.

12.2 Updating LPCXpresso board firmware

The LPCXpresso hardware platform comes with a CMSIS-DAP-compatible debug
interface (known as LPC-Link2). This firmware in this debug interface may be updated
using the host computer utility called LPCScrypt. This typically used when switching
between the default debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating
this firmware with new releases of these. This section contains the steps to reprogram
the debug probe firmware.

Note: If MCUXpresso IDE is used and the jumper making DFUlink is installed on the
board (JP5 on some boards, but consult the board user manual or schematic for specific
jumper number), LPC-Link2 debug probe boots to DFU mode, and MCUXpresso IDE
automatically downloads the CMSIS-DAP firmware to the probe before flash memory
programming (after clicking Debug). Using DFU mode ensures that most up-to-date/
compatible firmware is used with MCUXpresso IDE.

NXP provides the LPCScrypt utility, which is the recommended tool for programming
the latest versions of CMSIS-DAP and J-Link firmware onto LPC-Link2 or LPCXpresso
boards. The utility can be downloaded from www.nxp.com/lpcutilities.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
44 / 48

http://www.nxp.com/lpcutilities

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

These steps show how to update the debugger firmware on your board for Windows
operating system. For Linux OS, follow the instructions described in LPCScrypt user
guide (www.nxp.com/lpcutilities, select LPCScrypt, and then the documentation tab).

1. Install the LPCScript utility.
2. Unplug the board's USB cable.
3. Make the DFU link (install the jumper labeled DFUlink).
4. Connect the probe to the host via USB (use Link USB connector).
5. Open a command shell and call the appropriate script located in the LPCScrypt

installation directory (<LPCScrypt install dir>).
a. To program CMSIS-DAP debug firmware: <LPCScrypt install dir>/

scripts/program_CMSIS
b. To program J-Link debug firmware: <LPCScrypt install dir>/scripts/

program_JLINK
6. Remove DFU link (remove the jumper installed in Step 3).
7. Repower the board by removing the USB cable and plugging it in again.

13 Revision history

This table summarizes revisions to this document.

Revision
number

Date Substantive changes

2.13.0 22 December 2022 Updated for MCUXpresso SDK v2.13.0

Table 3. Revision history

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
45 / 48

http://www.nxp.com/lpcutilities

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

14 Legal information

14.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

14.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

14.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,
ULINKpro, μVision, Versatile — are trademarks or registered trademarks
of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related
technology may be protected by any or all of patents, copyrights, designs
and trade secrets. All rights reserved.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
46 / 48

mailto:PSIRT@nxp.com

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Bluetooth — the Bluetooth wordmark and logos are registered trademarks
owned by Bluetooth SIG, Inc. and any use of such marks by NXP
Semiconductors is under license.

Tower — is a trademark of NXP B.V.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.13.0 — 22 December 2022
47 / 48

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Contents
1 Overview .. 2
2 MCUXpresso SDK board support package

folders .. 2
2.1 Example application structure3
2.2 Locating example application source files 4
3 Run a demo using MCUXpresso IDE4
3.1 Select the workspace location 4
3.2 Build an example application4
3.3 Run an example application 6
3.4 Build a multicore example application 9
3.5 Run a multicore example application11
4 Run a demo application using IAR18
4.1 Build an example application18
4.2 Run an example application 19
4.3 Build a multicore example application 21
4.4 Run a multicore example application22
5 Run a demo using Keil MDK/μVision 22
5.1 Install CMSIS device pack23
5.2 Build an example application23
5.3 Run an example application 23
5.4 Build a multicore example application 26
5.5 Run a multicore example application26
6 Run a demo using Arm GCC 28
6.1 Set up toolchain ...28
6.1.1 Install GCC Arm Embedded tool chain 28
6.1.2 Install MinGW (only required on Windows

OS) ...28
6.1.3 Add a new system environment variable for

ARMGCC_DIR ...30
6.1.4 Install CMake ...31
6.2 Build an example application31
6.3 Run an example application 32
6.4 Build a multicore example application 35
6.5 Run a multicore example application37
7 MCUXpresso Config Tools 38
8 MCUXpresso IDE New Project Wizard39
9 How to determine COM port 39
10 How to define IRQ handler in CPP files40
11 Default debug interfaces 41
12 Updating debugger firmware 43
12.1 Updating OpenSDA firmware 43
12.2 Updating LPCXpresso board firmware 44
13 Revision history .. 45
14 Legal information ..46

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 22 December 2022
Document identifier: MCUXSDKGSUG

	1 Overview
	2 MCUXpresso SDK board support package folders
	2.1 Example application structure
	2.2 Locating example application source files

	3 Run a demo using MCUXpresso IDE
	3.1 Select the workspace location
	3.2 Build an example application
	3.3 Run an example application
	3.4 Build a multicore example application
	3.5 Run a multicore example application

	4 Run a demo application using IAR
	4.1 Build an example application
	4.2 Run an example application
	4.3 Build a multicore example application
	4.4 Run a multicore example application

	5 Run a demo using Keil MDK/μVision
	5.1 Install CMSIS device pack
	5.2 Build an example application
	5.3 Run an example application
	5.4 Build a multicore example application
	5.5 Run a multicore example application

	6 Run a demo using Arm GCC
	6.1 Set up toolchain
	6.1.1 Install GCC Arm Embedded tool chain
	6.1.2 Install MinGW (only required on Windows OS)
	6.1.3 Add a new system environment variable for ARMGCC_DIR
	6.1.4 Install CMake

	6.2 Build an example application
	6.3 Run an example application
	6.4 Build a multicore example application
	6.5 Run a multicore example application

	7 MCUXpresso Config Tools
	8 MCUXpresso IDE New Project Wizard
	9 How to determine COM port
	10 How to define IRQ handler in CPP files
	11 Default debug interfaces
	12 Updating debugger firmware
	12.1 Updating OpenSDA firmware
	12.2 Updating LPCXpresso board firmware

	13 Revision history
	14 Legal information
	Contents

