
MCUXSDKGSUG
Getting Started with MCUXpresso SDK
Rev. 2.15.000 — 10 January 2024 User guide

Document information
Information Content

Keywords MCUXSDKGSUG, Getting Started, MCUXpresso SDK, MCUXSDK

Abstract This document describes the steps to get started with MCUXpresso SDK.

https://www.nxp.com

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

1 Overview

The NXP MCUXpresso software and tools offer comprehensive development solutions designed to optimize,
ease, and help accelerate embedded system development of applications based on general purpose,
crossover, and Bluetooth-enabled MCUs from NXP. The MCUXpresso SDK includes a flexible set of peripheral
drivers designed to speed up and simplify development of embedded applications. Along with the peripheral
drivers, the MCUXpresso SDK provides an extensive and rich set of example applications covering everything
from basic peripheral use case examples to full demo applications. The MCUXpresso SDK contains optional
RTOS integrations such as FreeRTOS and Azure RTOS, and various other middleware to support rapid
development.

For supported toolchain versions, see MCUXpresso SDK Release Notes (document MCUXSDKRN).

For more details about MCUXpresso SDK, see MCUXpresso Software Development Kit (SDK).

Application Code

Stacks and Middleware
(Connectivity, Security,
DMA, Filesystem, etc,)

Board Support

Peripheral Drivers
Real Time Kernel

(FreeRTOS)

CMSIS-CORE and CMSIS-DSP
(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSP Library)

Microcontroller Hardware

Figure 1. MCUXpresso SDK layers

2 MCUXpresso SDK board support package folders

MCUXpresso SDK board support package provides example applications for NXP development and evaluation
boards for Arm Cortex-M cores including Freedom, Tower System, and LPCXpresso boards. Board support
packages are found inside the top-level boards folder and each supported board has its own folder (an
MCUXpresso SDK package can support multiple boards). Within each <board_name> folder, there are various
subfolders to classify the type of examples it contains. These include (but are not limited to):

• cmsis_driver_examples: Simple applications intended to show how to use CMSIS drivers.
• demo_apps: Full-featured applications that highlight key functionality and use cases of the target MCU. These

applications typically use multiple MCU peripherals and may leverage stacks and middleware.
• driver_examples: Simple applications that show how to use the MCUXpresso SDK’s peripheral drivers for

a single use case. These applications typically only use a single peripheral but there are cases where multiple
peripherals are used (for example, SPI conversion using DMA).

• emwin_examples: Applications that use the emWin GUI widgets.
• rtos_examples: Basic FreeRTOSOS examples that show the use of various RTOS objects (semaphores,

queues, and so on) and interfaces with the MCUXpresso SDK’s RTOS drivers
• usb_examples: Applications that use the USB host/device/OTG stack.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
2 / 53

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

2.1 Example application structure

This section describes how the various types of example applications interact with the other components in the
MCUXpresso SDK. To get a comprehensive understanding of all MCUXpresso SDK components and folder
structure, see MCUXpresso SDK API Reference Manual.

Each <board_name> folder in the boards directory contains a comprehensive set of examples that are relevant
to that specific piece of hardware. Although we use the hello_world example (part of the demo_apps folder),
the same general rules apply to any type of example in the <board_name> folder.

In the hello_world application folder you see the following contents:

Figure 2. Application folder structure

All files in the application folder are specific to that example, so it is easy to copy and paste an existing example
to start developing a custom application based on a project provided in the MCUXpresso SDK.

2.2 Locating example application source files

When opening an example application in any of the supported IDEs, various source files are referenced.
The MCUXpresso SDK devices folder is the central component to all example applications. It means that the
examples reference the same source files and, if one of these files is modified, it could potentially impact the
behavior of other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

• devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file, and a few other
files

• devices/<device_name>/cmsis_drivers: All the CMSIS drivers for your specific MCU
• devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU
• devices/<device_name>/<tool_name>: Toolchain-specific startup code, including vector table

definitions
• devices/<device_name>/utilities: Items such as the debug console that are used by many of the

example applications
MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
3 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

• devices/<devices_name>/project: Project template used in CMSIS PACK new project creation

For examples containing middleware/stacks or an RTOS, there are references to the appropriate source code.
Middleware source files are located in the middleware folder and RTOSes are in the rtos folder. The core
files of each of these are shared, so modifying one could have potential impacts on other projects that depend
on that file.

3 Run a demo using MCUXpresso IDE

Note: Ensure that the MCUXpresso IDE toolchain is included when generating the MCUXpresso SDK
package.

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug example
applications. The hello_world demo application targeted for the hardware platform is used as an example,
though these steps can be applied to any example application in the MCUXpresso SDK.

3.1 Select the workspace location
Every time MCUXpresso IDE launches, it prompts the user to select a workspace location. MCUXpresso IDE is
built on top of Eclipse which uses workspace to store information about its current configuration, and in some
use cases, source files for the projects are in the workspace. The location of the workspace can be anywhere,
but it is recommended that the workspace be located outside the MCUXpresso SDK tree.

3.2 Build an example application

To build an example application, follow these steps.

1. Drag and drop the SDK zip file into the Installed SDKs view to install an SDK. In the window that appears,
click OK and wait until the import has finished.

Figure 3. Install an SDK
2. On the Quickstart Panel, click Import SDK example(s)….

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
4 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 4. Import an SDK example
3. Expand the demo_apps folder and select hello_world.
4. Click Next.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
5 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 5. Select hello_world
5. Ensure Redlib: Use floating-point version of printf is selected if the example prints floating-point

numbers on the terminal for demo applications such as adc_basic, adc_burst, adc_dma, and
adc_interrupt. Otherwise, it is not necessary to select this option. Then, click Finish.

3.3 Run an example application

For more information on debug probe support in the MCUXpresso IDE, see community.nxp.com.

To download and run the application, perform the following steps:

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
6 / 53

https://community.nxp.com/message/630901

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

1. See the table in Section 11 to determine the debug interface that comes loaded on your specific hardware
platform. For LPCXpresso boards, install the DFU jumper for the debug probe, then connect the debug
probe USB connector.
• For boards with CMSIS-DAP/mbed/DAPLink interfaces, visit developer.mbed.org/handbook/Windows-

serial-configuration and follow the instructions to install the Windowsoperating system serial driver. If
running on Linux OS, this step is not required.

• For boards with a P&E Micro interface, see PE micro to download and install the P&E Micro Hardware
Interface Drivers package.

• For the MRB-KW01 board, see www.nxp.com/USB2SER to download the serial driver. This board does
not support the OpenSDA. Therefore, an external debug probe (such as a J-Link) is required. The steps
below referencing the OpenSDA do not apply because there is only a single USB connector for the serial
output.

• If using J-Link with either a standalone debug pod or OpenSDA, install the J-Link software (drivers and
utilities) from www.segger.com/jlink-software.html.

• For boards with the OSJTAG interface, install the driver from www.keil.com/download/docs/408.
2. Connect the development platform to your PC via a USB cable.
3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port

number (to determine the COM port number, see Section 9). Configure the terminal with these settings:
a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE

variable in board.h file)
b. No parity
c. 8 data bits
d. 1 stop bit

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
7 / 53

http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
http://www.pemicro.com/support/downloads_find.cfm
www.nxp.com/USB2SER
www.segger.com/jlink-software.html
www.keil.com/download/docs/408

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 6. Terminal (PuTTY) configurations
4. On the Quickstart Panel, click Debug to launch the debug session.
5. The first time you debug a project, the Debug Emulator Selection dialog is displayed, showing all

supported probes that are attached to your computer. Select the probe through which you want to debug
and click OK. (For any future debug sessions, the stored probe selection is automatically used, unless the
probe cannot be found.)

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
8 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 7. Attached Probes: debug emulator selection

6. The application is downloaded to the target and automatically runs to main().
7. Start the application by clicking Resume.

Figure 8. Resume button

The hello_world application is now running and a banner is displayed on the terminal. If not, check your
terminal settings and connections.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
9 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 9. Text display of the hello_world demo

3.4 Build a multicore example application

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug multicore
example applications. The following steps can be applied to any multicore example application in the
MCUXpresso SDK. Here, the dual-core version of hello_world example application targeted for the
LPCXpresso54114 hardware platform is used as an example.

1. Multicore examples are imported into the workspace in a similar way as single core applications, explained
in Section 3.2. When the SDK zip package for LPCXpresso54114 is installed and available in the Installed
SDKs view, click Import SDK example(s)… on the Quickstart Panel. In the window that appears, expand
the LPCxx folder and select LPC54114J256. Then, select lpcxpresso54114 and click Next.

2. Expand the multicore_examples/hello_world folder and select cm4. The cm0plus counterpart
project is automatically imported with the cm4 project, because the multicore examples are linked together
and there is no need to select it explicitly. Click Finish.

Figure 10. Select the hello_world multicore example

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
10 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

3. Now, two projects should be imported into the workspace. To start building the multicore application,
highlight the lpcxpresso54114_multicore_examples_hello_world_cm4 project (multicore master
project) in the Project Explorer. Then choose the appropriate build target, Debug or Release, by clicking the
downward facing arrow next to the hammer icon, as shown in Figure 11. For this example, select Debug.

Figure 11. Selection of the build target in MCUXpresso IDE

The project starts building after the build target is selected. Because of the project reference settings in
multicore projects, triggering the build of the primary core application (cm4) also causes the referenced auxiliary
core application (cm0plus) to build.

Note: When the Release build is requested, it is necessary to change the build configuration of both the
primary and auxiliary core application projects first. To do this, select both projects in the Project Explorer view
and then right click which displays the context-sensitive menu. Select Build Configurations -> Set Active -
> Release. This alternate navigation using the menu item is Project -> Build Configuration -> Set Active ->
Release. After switching to the Release build configuration, the build of the multicore example can be started by
triggering the primary core application (cm4) build.

Figure 12. Switching multicore projects into the Release build configuration

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
11 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

3.5 Run a multicore example application

The primary core debugger handles flashing of both the primary and the auxiliary core applications into the SoC
flash memory. To download and run the multicore application, switch to the primary core application project and
perform all steps as described in Section 3.3. These steps are common for both single-core applications and the
primary side of dual-core applications, ensuring both sides of the multicore application are properly loaded and
started. However, there is one additional dialogue that is specific to multicore examples which requires selecting
the target core. See the following figures as reference.

Figure 13. Debug "frdmk32l3a6_hello_world_cm4" case

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
12 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 14. Attached Probes: debug emulator selection

Figure 15. Target core selection dialogue

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
13 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 16. Stop the primary core application at main() when running debugging

After clicking the "Resume All Debug sessions" button, the hello_world multicore application runs and a banner
is displayed on the terminal. If this is not the case, check your terminal settings and connections.

Figure 17. Hello World from the primary core message
MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
14 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has been released from
the reset and running correctly. It is also possible to debug both sides of the multicore application in parallel.
After creating the debug session for the primary core, perform same steps also for the auxiliary core application.
Highlight the lpcxpresso54114_multicore_examples_hello_world_cm0plus project (multicore slave project)
in the Project Explorer. On the Quickstart Panel, click “Debug ‘lpcxpresso54114_multicore_examples_hello_
world_cm0plus’ [Debug]” to launch the second debug session.

Figure 18. Debug "lpcxpresso54114_multicore_examples_hello_world_cm0plus" case

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
15 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 19. Two opened debug sessions

Now, the two debug sessions should be opened, and the debug controls can be used for both debug sessions
depending on the debug session selection. Keep the primary core debug session selected by clicking the
"Resume" button. The hello_world multicore application then starts running. The primary core application starts
the auxiliary core application during runtime, and the auxiliary core application stops at the beginning of the

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
16 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

main() function. The debug session of the auxiliary core application is highlighted. After clicking the “Resume”
button, it is applied to the auxiliary core debug session. Therefore, the auxiliary core application continues its
execution.

Figure 20. Auxiliary core application stops at the main function

At this point, it is possible to suspend and resume individual cores independently. It is also possible to make
synchronous suspension and resumption of both the cores. This is done either by selecting both opened debug
sessions (multiple selections) and clicking the “Suspend” / "Resume” control button, or just using the “Suspend
All Debug sessions” and the “Resume All Debug sessions” buttons.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
17 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 21. Synchronous suspension/resumption of both cores using the multiple selections of debug sessions
and “Suspend”/"Resume” controls

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
18 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 22. Synchronous suspension/resumption of both cores using the “Suspend All Debug sessions” and the
“Resume All Debug sessions” controls

4 Run a demo application using IAR

This section describes the steps required to build, run, and debug example applications provided in the
MCUXpresso SDK.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
19 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Note: IAR Embedded Workbench for Arm version 8.32.3 is used in the following example, and the IAR
toolchain should correspond to the latest supported version, as described in the MCUXpresso SDK Release
Notes.

4.1 Build an example application

Do the following steps to build the hello_world example application.

1. Open the desired demo application workspace. Most example application workspace files can be located
using the following path:
<install_dir>/boards/<board_name>/<example_type>/<application_name>/iar

Other example applications may have additional folders in their path.
2. Select the desired build target from the drop-down menu.

For this example, select hello_world – debug.

Figure 23. Demo build target selection
3. To build the demo application, click Make, highlighted in red in Figure 24.

Figure 24. Build the demo application
4. The build completes without errors.

4.2 Run an example application

To download and run the application, perform these steps:

1. See the table in Section 11 to determine the debug interface that comes loaded on your specific hardware
platform.
• The user should install LPCScrypt or MCUXpresso IDE to ensure that LPC board drivers are installed.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
20 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

• For boards with P&E Micro interfaces, visit www.pemicro.com/support/downloads_find.cfm and download
the P&E Micro Hardware Interface Drivers package.

2. Connect the development platform to your PC via USB cable.
3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug COM port

(to determine the COM port number, see Section 9). Configure the terminal with these settings:
a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE

variable in the board.h file)
b. No parity
c. 8 data bits
d. 1 stop bit

Figure 25. Terminal (PuTTY) configuration
4. In IAR, click the Download and Debug button to download the application to the target.

Figure 26. Download and Debug button
5. The application is then downloaded to the target and automatically runs to the main() function.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
21 / 53

http://www.pemicro.com/support/downloads_find.cfm

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 27. Stop at main() when running debugging
6. Run the code by clicking the Go button.

Figure 28. Go button
7. The hello_world application is now running and a banner is displayed on the terminal. If it does not

appear, check your terminal settings and connections.

Figure 29. Text display of the hello_world demo

4.3 Build a multicore example application

This section describes the steps to build and run a dual-core application. The demo applications workspace files
are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/iar

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
22 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Begin with a simple dual-core version of the Hello World application. The multicore Hello World IAR workspaces
are located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm0plus/iar/
hello_world_cm0plus.eww

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/iar/hello_world_cm4.eww

Build both applications separately by clicking the Make button. Build the application for the auxiliary core
(cm0plus) first, because the primary core application project (cm4) must know the auxiliary core application
binary when running the linker. It is not possible to finish the primary core linker when the auxiliary core
application binary is not ready.

4.4 Run a multicore example application

The primary core debugger handles flashing both primary and the auxiliary core applications into the SoC flash
memory. To download and run the multicore application, switch to the primary core application project and
perform steps 1 – 4 as described in Section 4.2. These steps are common for both single core and dual-core
applications in IAR.

After clicking the “Download and Debug" button, the auxiliary core project is opened in the separate EWARM
instance. Both the primary and auxiliary images are loaded into the device flash memory and the primary core
application is executed. It stops at the default C language entry point in the main() function.

Run both cores by clicking the "Start all cores" button to start the multicore application.

Figure 30. Start all cores button

During the primary core code execution, the auxiliary core is released from the reset. The hello_world multicore
application is now running and a banner is displayed on the terminal. If this does not appear, check the terminal
settings and connections.

Figure 31. Hello World from primary core message

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has been released from
the reset and is running correctly. When both cores are running, use the "Stop all cores", and "Start all cores"
control buttons to stop or run both cores simultaneously.

Figure 32. "Stop all cores" and "Start all cores" control buttons

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
23 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

5 Run a demo using Keil MDK/μVision

This section describes the steps required to build, run, and debug example applications provided in the
MCUXpresso SDK.

5.1 Install CMSIS device pack

After the MDK tools are installed, Cortex Microcontroller Software Interface Standard (CMSIS) device packs
must be installed to fully support the device from a debug perspective. These packs include things such as
memory map information, register definitions, and flash programming algorithms. Follow these steps to install
the appropriate CMSIS pack.

1. Open the MDK IDE, which is called μVision. In the IDE, select the Pack Installer icon.

Figure 33. Launch the Pack Installer
2. After the installation finishes, close the Pack Installer window and return to the μVision IDE.

5.2 Build an example application

1. Open the desired example application workspace in:
<install_dir>/boards/<board_name>/<example_type>/<application_name>/mdk

The workspace file is named as <demo_name>.uvmpw. For this specific example, the actual path is:
2. To build the demo project, select Rebuild, highlighted in red.

Figure 34. Build the demo
3. The build completes without errors.

5.3 Run an example application

To download and run the application, perform these steps:

1. See the table in Section 11 to determine the debug interface that comes loaded on your specific hardware
platform.
• For boards with the CMSIS-DAP/mbed/DAPLink interface, visit mbed Windows serial configuration and

follow the instructions to install the Windows operating system serial driver. If running on Linux OS, this
step is not required.

• The user should install LPCScrypt or MCUXpresso IDE to ensure that LPC board drivers are installed.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
24 / 53

https://developer.mbed.org/handbook/Windows-serial-configuration

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

• For boards with a P&E Micro interface, visit www.pemicro.com/support/downloads_find.cfm and download
and install the P&E Micro Hardware Interface Drivers package.

• If using J-Link either a standalone debug pod or OpenSDA, install the J-Link software (drivers and utilities)
from www.segger.com/jlink-software.html.

• For boards with the OSJTAG interface, install the driver from www.keil.com/download/docs/408.
2. Connect the development platform to your PC via USB cable using OpenSDA USB connector.
3. Open the terminal application on the PC, such as PuTTY or TeraTerm and connect to the debug serial port

number (to determine the COM port number, see Section 9). Configure the terminal with these settings:
a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE

variable in the board.h file)
b. No parity
c. 8 data bits
d. 1 stop bit

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
25 / 53

http://www.pemicro.com/support/downloads_find.cfm
www.segger.com/jlink-software.html
http://www.keil.com/download/docs/408.asp

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 35. Terminal (PuTTY) configurations
4. In μVision, after the application is built, click the Download button to download the application to the target.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
26 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 36. Download button
5. After clicking the Download button, the application downloads to the target and is running. To debug the

application, click the Start/Stop Debug Session button, highlighted in red.

Figure 37. Stop at main() when run debugging
6. Run the code by clicking the Run button to start the application.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
27 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 38. Go button

The hello_world application is now running and a banner is displayed on the terminal. If this does not
appear, check your terminal settings and connections.

Figure 39. Text display of the hello_world demo

5.4 Build a multicore example application

This section describes the steps to build and run a dual-core application. The demo applications workspace files
are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/mdk

Begin with a simple dual-core version of the Hello World application. The multicore Hello World Keil MSDK/
μVision workspaces are located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm0plus/mdk/
hello_world_cm0plus.uvmpw

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/mdk/hello_world_cm4.uvmpw

Build both applications separately by clicking the Rebuild button. Build the application for the auxiliary core
(cm0plus) first because the primary core application project (cm4) must know the auxiliary core application

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
28 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

binary when running the linker. It is not possible to finish the primary core linker when the auxiliary core
application binary is not ready.

5.5 Run a multicore example application

The primary core debugger flashes both the primary and the auxiliary core applications into the SoC flash
memory. To download and run the multicore application, switch to the primary core application project and
perform steps 1 – 5 as described in Section 5.3. These steps are common for both single-core and dual-core
applications in μVision.

Both the primary and the auxiliary image is loaded into the device flash memory. After clicking the “Run" button,
the primary core application is executed. During the primary core code execution, the auxiliary core is released
from the reset. The hello_world multicore application is now running and a banner is displayed on the terminal.
If this does not appear, check your terminal settings and connections.

Figure 40. Hello World from primary core message

An LED controlled by the auxiliary core starts flashing indicating that the auxiliary core has been released from
the reset and is running correctly.

Attach the running application of the auxiliary core by opening the auxiliary core project in the second μVision
instance and clicking the “Start/Stop Debug Session” button. After this, the second debug session is opened
and the auxiliary core application can be debugged.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
29 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 41. Debugging the auxiliary core application

Arm describes multicore debugging using the NXP LPC54114 Cortex-M4/M0+ dual-core processor and Keil
uVision IDE in Application Note 318 at www.keil.com/appnotes/docs/apnt_318.asp. The associated video can
be found here.

6 Run a demo using Arm GCC

This section describes the steps to configure the command-line Arm GCC tools to build, run, and debug demo
applications and necessary driver libraries provided in the MCUXpresso SDK. The hello_world demo
application is targeted which is used as an example.

6.1 Set up toolchain

This section contains the steps to install the necessary components required to build and run an MCUXpresso
SDK demo application with the Arm GCC toolchain, as supported by the MCUXpresso SDK. There are many
ways to use Arm GCC tools, but this example focuses on a Windows operating system environment.

6.1.1 Install GCC Arm Embedded tool chain

Download and run the installer from GNU Arm Embedded Toolchain. This is the actual toolset (in other words,
compiler, linker, and so on). The GCC toolchain should correspond to the latest supported version, as described
in MCUXpresso SDK Release Notes.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
30 / 53

http://www.keil.com/appnotes/docs/apnt_318.asp
https://www.youtube.com/watch?v=lMX-2lrv7Zs

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

6.1.2 Install MinGW (only required on Windows OS)

The Minimalist GNU for Windows (MinGW) development tools provide a set of tools that are not dependent on
third-party C-Runtime DLLs (such as Cygwin). The build environment used by the MCUXpresso SDK does not
use the MinGW build tools, but does leverage the base install of both MinGW and MSYS. MSYS provides a
basic shell with a Unix-like interface and tools.

1. Download the latest MinGW mingw-get-setup installer from MinGW.
2. Run the installer. The recommended installation path is C:\MinGW, however, you may install to any

location.
Note: The installation path cannot contain any spaces.

3. Ensure that the mingw32-base and msys-base are selected under Basic Setup.

Figure 42. Set up MinGW and MSYS
4. In the Installation menu, click Apply Changes and follow the remaining instructions to complete the

installation.

Figure 43. Complete MinGW and MSYS installation
5. Add the appropriate item to the Windows operating system path environment variable. It can be found

under Control Panel->System and Security->System->Advanced System Settings in the Environment
Variables... section. The path is:

<mingw_install_dir>\bin

Assuming the default installation path, C:\MinGW, an example is shown below. If the path is not set
correctly, the toolchain will not work.
Note: If you have C:\MinGW\msys\x.x\bin in your PATH variable (as required by Kinetis SDK 1.0.0),
remove it to ensure that the new GCC build system works correctly.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
31 / 53

http://sourceforge.net/projects/mingw/files/Installer/

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 44. Add Path to systems environment

6.1.3 Add a new system environment variable for ARMGCC_DIR

Create a new system environment variable and name it as ARMGCC_DIR. The value of this variable should point
to the Arm GCC Embedded tool chain installation path. For this example, the path is:

C:\Program Files (x86)\GNU Tools Arm Embedded\8 2018-q4-major

See the installation folder of the GNU Arm GCC Embedded tools for the exact pathname of your installation.

Short path should be used for path setting, you could convert the path to short path by running command for
%I in (.) do echo %~sI in above path.

Figure 45. Convert path to short path

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
32 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 46. Add ARMGCC_DIR system variable

6.1.4 Install CMake

1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.
2. Install CMake, ensuring that the option Add CMake to system PATH is selected when installing. The user

chooses to select whether it is installed into the PATH for all users or just the current user. In this example, it
is installed for all users.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
33 / 53

http://www.cmake.org/cmake/resources/software.html

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 47. Install CMake
3. Follow the remaining instructions of the installer.
4. You may need to reboot your system for the PATH changes to take effect.
5. Make sure sh.exe is not in the Environment Variable PATH. This is a limitation of mingw32-make.

6.2 Build an example application

To build an example application, follow these steps.

1. Open a GCC Arm Embedded tool chain command window. To launch the window, from the Windows
operating system Start menu, go to Programs >GNU Tools Arm Embedded <version> and select GCC
Command Prompt.

Figure 48. Launch command prompt
2. Change the directory to the example application project directory which has a path similar to the following:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc

For this example, the exact path is:
Note: To change directories, use the cd command.

3. Type build_debug.bat on the command line or double click on build_debug.bat file in Windows Explorer to
build it. The output is as shown in Figure 49.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
34 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 49. hello_world demo build successful

6.3 Run an example application

This section describes steps to run a demo application using J-Link GDB Server application. To update the
onboard LPC-Link2 debugger to Jlink firmware, see Section 12.

Note: J-Link GDB Server application is not supported for TFM examples. Use CMSIS DAP instead of J-Link for
flashing and debugging TFM examples.

After the J-Link interface is configured and connected, follow these steps to download and run the demo
applications:

1. Connect the development platform to your PC via USB cable between the LPC-Link2 USB connector (may
be named OSJTAG for some boards) and the PC USB connector. If using a standalone J-Link debug pod,
connect it to the SWD/JTAG connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port
number (to determine the COM port number, see Section 9). Configure the terminal with these settings:
a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE

variable in board.h file)
b. No parity
c. 8 data bits
d. 1 stop bit

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
35 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 50. Terminal (PuTTY) configurations
Note: Make sure that the board is set to FlexSPI flash boot mode (ISP2: ISP1: ISP0 = ON, OFF, ON)
before use GDB debug.

3. Open the J-Link GDB Server application. Assuming the J-Link software is installed, the application can be
launched by going to the Windows operating system Start menu and selecting Programs -> SEGGER -> J-
Link <version> J-Link GDB Server.

4. After it is connected, the screen should look like this figure:

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
36 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 51. SEGGER J-Link GDB Server screen after successful connection
5. If not already running, open a GCC Arm Embedded tool chain command window. To launch the window,

from the Windows operating system Start menu, go to Programs -> GNU Tools Arm Embedded
<version> and select GCC Command Prompt.

Figure 52. Launch command prompt
6. Change to the directory that contains the example application output. The output can be found in using one

of these paths, depending on the build target selected:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/
debug

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/
release

For this example, the path is:

<install_dir>/boards/frdmk32l3a6/demo_apps/hello_world/cm4/armgcc/debug

7. Run the arm-none-eabi-gdb.exe <application_name>.elf command. For this example, it is arm-
none-eabi-gdb.exe hello_world.elf.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
37 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 53. Run arm-none-eabi-gdb
8. Run these commands:

a. target remote localhost:2331
b. monitor reset
c. monitor halt
d. load
e. monitor reset

9. The application is now downloaded and halted at the watchpoint. Execute the monitor go command to
start the demo application.
The hello_world application is now running and a banner is displayed on the terminal. If this does not
appear, check your terminal settings and connections.

Figure 54. Text display of the hello_world demo

6.4 Build a multicore example application
This section describes the steps to build and run a dual-core application. The demo application build scripts are
located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/armgcc

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
38 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Begin with a simple dual-core version of the Hello World application. The multicore Hello World GCC build
scripts are located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm0plus/armgcc/build_debug.bat

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/armgcc/build_debug.bat

Build both applications separately following steps for single core examples as described in Section 6.2.

Figure 55. hello_world_cm0plus example build successful

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
39 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 56. hello_world_cm4 example build successful

6.5 Run a multicore example application
When running a multicore application, the same prerequisites for J-Link/J-Link OpenSDA firmware, and the
serial console as for the single-core application, applies, as described in Section 6.3.

The primary core debugger handles flashing of both the primary and the auxiliary core applications into the SoC
flash memory. To download and run the multicore application, switch to the primary core application project and
perform steps 1 to 10, as described in Section 6.3. These steps are common for both single-core and dual-core
applications in Arm GCC.

Both the primary and the auxiliary image is loaded into the SPI flash memory. After execution of the monitor
go command, the primary core application is executed. During the primary core code execution, the auxiliary
core code is reallocated from the flash memory to the RAM, and the auxiliary core is released from the reset.
The hello_world multicore application is now running and a banner is displayed on the terminal. If this is not
true, check your terminal settings and connections.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
40 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 57. Loading and running the multicore example

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
41 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 58. Hello World from primary core message

7 MCUXpresso Config Tools

MCUXpresso Config Tools can help configure the processor and generate initialization code for the on chip
peripherals. The tools are able to modify any existing example project, or create a new configuration for the
selected board or processor. The generated code is designed to be used with MCUXpresso SDK version 2.x.

Table 1 describes the tools included in the MCUXpresso Config Tools.

Config Tool Description Image

Pins tool For configuration of pin routing and pin
electrical properties.

Clock tool For system clock configuration

Peripherals tools For configuration of other peripherals

TEE tool Configures access policies for memory
area and peripherals helping to protect
and isolate sensitive parts of the
application.

Device Configuration tool Configures Device Configuration Data
(DCD) contained in the program image
that the Boot ROM code interprets to
set up various on-chip peripherals prior
to the program launch.

Table 1. MCUXpresso Config Tools

MCUXpresso Config Tools can be accessed in the following products:

• Integrated in the MCUXpresso IDE. Config tools are integrated with both compiler and debugger which
makes it the easiest way to begin the development.

• Standalone version available for download from www.nxp.com/mcuxpresso. Recommended for customers
using IAR Embedded Workbench, Keil MDK µVision, or Arm GCC.

• Online version available on mcuxpresso.nxp.com. Recommended doing a quick evaluation of the processor
or use the tool without installation.

Each version of the product contains a specific Quick Start Guide document MCUXpresso IDE Config Tools
installation folder that can help start your work.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
42 / 53

http://www.nxp.com/mcuxpresso
http://mcuxpresso.nxp.com

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

8 MCUXpresso IDE New Project Wizard

MCUXpresso IDE features a new project wizard. The wizard provides functionality for the user to create new
projects from the installed SDKs (and from pre-installed part support). It offers user the flexibility to select and
change multiple builds. The wizard also includes a library and provides source code options. The source code is
organized as software components, categorized as drivers, utilities, and middleware.

To use the wizard, start the MCUXpresso IDE. This is located in the QuickStart Panel at the bottom left of the
MCUXpresso IDE window. Select New project, as shown in Figure 59.

Figure 59. MCUXpresso IDE Quickstart Panel

For more details and usage of new project wizard, see the MCUXpresso_IDE_User_Guide.pdf in the
MCUXpresso IDE installation folder.

9 How to determine COM port

This section describes the steps necessary to determine the debug COM port number of your NXP hardware
development platform. All NXP boards ship with a factory programmed, onboard debug interface, whether it is
based on OpenSDA or the legacy P&E Micro OSJTAG interface. To determine what your specific board ships
with, see Section 11.

1. Linux: The serial port can be determined by running the following command after the USB Serial is
connected to the host:
$ dmesg | grep "ttyUSB"
 [503175.307873] usb 3-12: cp210x converter now attached to ttyUSB0
 [503175.309372] usb 3-12: cp210x converter now attached to ttyUSB1

There are two ports, one is Cortex-A core debug console and the other is for Cortex M4.
2. Windows: To determine the COM port open Device Manager in the Windows operating system. Click the

Start menu and type Device Manager in the search bar.
3. In the Device Manager, expand the Ports (COM & LPT) section to view the available ports. The COM port

names are different for all the NXP boards.
a. OpenSDA – CMSIS-DAP/mbed/DAPLink interface:

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
43 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Figure 60. OpenSDA – CMSIS-DAP/mbed/DAPLink interface
b. OpenSDA – P&E Micro:

Figure 61. OpenSDA – P&E Micro
c. OpenSDA – J-Link:

Figure 62. OpenSDA – J-Link
d. P&E Micro OSJTAG:

Figure 63. P&E Micro OSJTAG
e. MRB-KW01:

Figure 64. MRB-KW01

10 How to define IRQ handler in CPP files

With MCUXpresso SDK, users could define their own IRQ handler in application level to override the default
IRQ handler. For example, to override the default PIT_IRQHandler define in startup_DEVICE.s,
application code like app.c can be implement like:

c
void PIT_IRQHandler(void)
{
 // Your code
}

When application file is CPP file, like app.cpp, then extern "C" should be used to ensure the function
prototype alignment.

cpp
extern "C" {
 void PIT_IRQHandler(void);
}
void PIT_IRQHandler(void)
{
 // Your code

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
44 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

}

11 Default debug interfaces

The MCUXpresso SDK supports various hardware platforms that come loaded with various factory programmed
debug interface configurations. Table 2 lists the hardware platforms supported by the MCUXpresso SDK, their
default debug interface, and any version information that helps differentiate a specific interface configuration.

Note: The OpenSDA details column in Table 2 is not applicable to LPC.

Hardware platform Default interface OpenSDA details

EVK-MC56F83000 P&E Micro OSJTAG N/A

EVK-MIMXRT595 CMSIS-DAP N/A

EVK-MIMXRT685 CMSIS-DAP N/A

FRDM-K22F CMSIS-DAP/mbed/DAPLink OpenSDA v2.1

FRDM-K28F DAPLink OpenSDA v2.1

FRDM-K32L2A4S CMSIS-DAP OpenSDA v2.1

FRDM-K32L2B CMSIS-DAP OpenSDA v2.1

FRDM-K32W042 CMSIS-DAP N/A

FRDM-K64F CMSIS-DAP/mbed/DAPLink OpenSDA v2.0

FRDM-K66F J-Link OpenSDA OpenSDA v2.1

FRDM-K82F CMSIS-DAP OpenSDA v2.1

FRDM-KE15Z DAPLink OpenSDA v2.1

FRDM-KE16Z CMSIS-DAP/mbed/DAPLink OpenSDA v2.2

FRDM-KL02Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL03Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL25Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL26Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL27Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL28Z P&E Micro OpenSDA OpenSDA v2.1

FRDM-KL43Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL46Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL81Z CMSIS-DAP OpenSDA v2.0

FRDM-KL82Z CMSIS-DAP OpenSDA v2.0

FRDM-KV10Z CMSIS-DAP OpenSDA v2.1

FRDM-KV11Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KV31F P&E Micro OpenSDA OpenSDA v1.0

FRDM-KW24 CMSIS-DAP/mbed/DAPLink OpenSDA v2.1

FRDM-KW36 DAPLink OpenSDA v2.2

FRDM-KW41Z CMSIS-DAP/DAPLink OpenSDA v2.1 or greater

Table 2. Hardware platforms supported by MCUXpresso SDK

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
45 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Hardware platform Default interface OpenSDA details

Hexiwear CMSIS-DAP/mbed/DAPLink OpenSDA v2.0

HVP-KE18F DAPLink OpenSDA v2.2

HVP-KV46F150M P&E Micro OpenSDA OpenSDA v1

HVP-KV11Z75M CMSIS-DAP OpenSDA v2.1

HVP-KV58F CMSIS-DAP OpenSDA v2.1

HVP-KV31F120M P&E Micro OpenSDA OpenSDA v1

JN5189DK6 CMSIS-DAP N/A

LPC54018 IoT Module N/A N/A

LPCXpresso54018 CMSIS-DAP N/A

LPCXpresso54102 CMSIS-DAP N/A

LPCXpresso54114 CMSIS-DAP N/A

LPCXpresso51U68 CMSIS-DAP N/A

LPCXpresso54608 CMSIS-DAP N/A

LPCXpresso54618 CMSIS-DAP N/A

LPCXpresso54628 CMSIS-DAP N/A

LPCXpresso54S018M CMSIS-DAP N/A

LPCXpresso55s16 CMSIS-DAP N/A

LPCXpresso55s28 CMSIS-DAP N/A

LPCXpresso55s69 CMSIS-DAP N/A

MAPS-KS22 J-Link OpenSDA OpenSDA v2.0

MIMXRT1170-EVK CMSIS-DAP N/A

TWR-K21D50M P&E Micro OSJTAG N/AOpenSDA v2.0

TWR-K21F120M P&E Micro OSJTAG N/A

TWR-K22F120M P&E Micro OpenSDA OpenSDA v1.0

TWR-K24F120M CMSIS-DAP/mbed OpenSDA v2.1

TWR-K60D100M P&E Micro OSJTAG N/A

TWR-K64D120M P&E Micro OpenSDA OpenSDA v1.0

TWR-K64F120M P&E Micro OpenSDA OpenSDA v1.0

TWR-K65D180M P&E Micro OpenSDA OpenSDA v1.0

TWR-K65D180M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV10Z32 P&E Micro OpenSDA OpenSDA v1.0

TWR-K80F150M CMSIS-DAP OpenSDA v2.1

TWR-K81F150M CMSIS-DAP OpenSDA v2.1

TWR-KE18F DAPLink OpenSDA v2.1

TWR-KL28Z72M P&E Micro OpenSDA OpenSDA v2.1

TWR-KL43Z48M P&E Micro OpenSDA OpenSDA v1.0

Table 2. Hardware platforms supported by MCUXpresso SDK...continued

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
46 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Hardware platform Default interface OpenSDA details

TWR-KL81Z72M CMSIS-DAP OpenSDA v2.0

TWR-KL82Z72M CMSIS-DAP OpenSDA v2.0

TWR-KM34Z75M P&E Micro OpenSDA OpenSDA v1.0

TWR-KM35Z75M DAPLink OpenSDA v2.2

TWR-KV10Z32 P&E Micro OpenSDA OpenSDA v1.0

TWR-KV11Z75M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV31F120M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV46F150M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV58F220M CMSIS-DAP OpenSDA v2.1

TWR-KW24D512 P&E Micro OpenSDA OpenSDA v1.0

USB-KW24D512 N/A External probe N/A

USB-KW41Z CMSIS-DAP\DAPLink OpenSDA v2.1 or greater

Table 2. Hardware platforms supported by MCUXpresso SDK...continued

12 Updating debugger firmware

12.1 Updating OpenSDA firmware

Any NXP hardware platform that comes with an OpenSDA-compatible debug interface has the ability to update
the OpenSDA firmware. This typically means to switch from the default application (either CMSIS-DAP/mbed/
DAPLink or P&E Micro) to a SEGGER J-Link. This section contains the steps to switch the OpenSDA firmware
to a J-Link interface. However, the steps can be applied to restoring the original image also. For reference,
OpenSDA firmware files can be found at the links below:

• J-Link: Download appropriate image from www.segger.com/opensda.html. Choose the appropriate J-Link
binary based on the table in Section 11. Any OpenSDA v1.0 interface should use the standard OpenSDA
download (in other words, the one with no version). For OpenSDA 2.0 or 2.1, select the corresponding binary.

• CMSIS-DAP/mbed/DAPLink: DAPLink OpenSDA firmware is available at www.nxp.com/opensda.
• P&E Micro: Downloading P&E Micro OpenSDA firmware images requires registration with P&E Micro

(www.pemicro.com).

Perform the following steps to update the OpenSDA firmware on your board for Windows and Linux OS users:

1. Unplug the board's USB cable.
2. Press the Reset button on the board. While still holding the button, plug the USB cable back into the board.
3. When the board re-enumerates, it shows up as a disk drive called MAINTENANCE.

Figure 65. MAINTENANCE drive
4. Drag and drop the new firmware image onto the MAINTENANCE drive.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
47 / 53

http://www.segger.com/opensda.html
http://www.nxp.com/opensda
http://www.pemicro.com/opensda/index.cfm

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Note: If for any reason the firmware update fails, the board can always reenter maintenance mode by
holding down Reset button and power cycling.

These steps show how to update the OpenSDA firmware on your board for Mac OS users.

1. Unplug the board's USB cable.
2. Press the Reset button of the board. While still holding the button, plug the USB cable back into the board.
3. For boards with OpenSDA v2.0 or v2.1, it shows up as a disk drive called BOOTLOADER in Finder. Boards

with OpenSDA v1.0 may or may not show up depending on the bootloader version. If you see the drive in
Finder, proceed to the next step. If you do not see the drive in Finder, use a PC with Windows OS 7 or an
earlier version to either update the OpenSDA firmware, or update the OpenSDA bootloader to version 1.11
or later. The bootloader update instructions and image can be obtained from P&E Microcomputer website.

4. For OpenSDA v2.1 and OpenSDA v1.0 (with bootloader 1.11 or later) users, drag the new firmware image
onto the BOOTLOADER drive in Finder.

5. For OpenSDA v2.0 users, type these commands in a Terminal window:
> sudo mount -u -w -o sync /Volumes/BOOTLOADER
> cp -X <path to update file> /Volumes/BOOTLOADER

Note: If for any reason the firmware update fails, the board can always reenter bootloader mode by holding
down the Reset button and power cycling.

12.2 Updating LPCXpresso board firmware

The LPCXpresso hardware platform comes with a CMSIS-DAP-compatible debug interface (known as LPC-
Link2). This firmware in this debug interface may be updated using the host computer utility called LPCScrypt.
This typically used when switching between the default debugger protocol (CMSIS-DAP) to SEGGER J-Link, or
for updating this firmware with new releases of these. This section contains the steps to reprogram the debug
probe firmware.

Note: If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board (JP5 on some
boards, but consult the board user manual or schematic for specific jumper number), LPC-Link2 debug probe
boots to DFU mode, and MCUXpresso IDE automatically downloads the CMSIS-DAP firmware to the probe
before flash memory programming (after clicking Debug). Using DFU mode ensures that most up-to-date/
compatible firmware is used with MCUXpresso IDE.

NXP provides the LPCScrypt utility, which is the recommended tool for programming the latest versions of
CMSIS-DAP and J-Link firmware onto LPC-Link2 or LPCXpresso boards. The utility can be downloaded from
www.nxp.com/lpcutilities.

These steps show how to update the debugger firmware on your board for Windows operating system.
For Linux OS, follow the instructions described in LPCScrypt user guide (www.nxp.com/lpcutilities, select
LPCScrypt, and then the documentation tab).

1. Install the LPCScript utility.
2. Unplug the board's USB cable.
3. Make the DFU link (install the jumper labeled DFUlink).
4. Connect the probe to the host via USB (use Link USB connector).
5. Open a command shell and call the appropriate script located in the LPCScrypt installation directory

(<LPCScrypt install dir>).
a. To program CMSIS-DAP debug firmware: <LPCScrypt install dir>/scripts/program_CMSIS
b. To program J-Link debug firmware: <LPCScrypt install dir>/scripts/program_JLINK

6. Remove DFU link (remove the jumper installed in Step 3).
7. Repower the board by removing the USB cable and plugging it in again.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
48 / 53

http://www.nxp.com/lpcutilities
http://www.nxp.com/lpcutilities

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

13 Revision history

This table summarizes revisions to this document.

Revision number Date Substantive changes

2.13.0 22 December 2022 Updated for MCUXpresso SDK v2.13.0

2.14.0 22 December 2022 Updated for MCUXpresso SDK v2.14.0

2.15.000 10 January 2024 Updated for MCUXpresso SDK v2.15.000

Table 3. Revision history

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
49 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
50 / 53

mailto:PSIRT@nxp.com

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks
owned by Bluetooth SIG, Inc. and any use of such marks by NXP
Semiconductors is under license.
Tower — is a trademark of NXP B.V.

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
51 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Tables
Tab. 1. MCUXpresso Config Tools 42
Tab. 2. Hardware platforms supported by

MCUXpresso SDK ...45

Tab. 3. Revision history ...49

Figures
Fig. 1. MCUXpresso SDK layers2
Fig. 2. Application folder structure3
Fig. 3. Install an SDK ... 4
Fig. 4. Import an SDK example5
Fig. 5. Select hello_world ... 6
Fig. 6. Terminal (PuTTY) configurations8
Fig. 7. Attached Probes: debug emulator selection9
Fig. 8. Resume button ..9
Fig. 9. Text display of the hello_world demo 10
Fig. 10. Select the hello_world multicore example 10
Fig. 11. Selection of the build target in

MCUXpresso IDE ..11
Fig. 12. Switching multicore projects into the

Release build configuration11
Fig. 13. Debug "frdmk32l3a6_hello_world_cm4"

case ...12
Fig. 14. Attached Probes: debug emulator selection 13
Fig. 15. Target core selection dialogue 13
Fig. 16. Stop the primary core application at main()

when running debugging14
Fig. 17. Hello World from the primary core message ... 14
Fig. 18. Debug "lpcxpresso54114_multicore_

examples_hello_world_cm0plus" case15
Fig. 19. Two opened debug sessions16
Fig. 20. Auxiliary core application stops at the main

function ..17
Fig. 21. Synchronous suspension/resumption of

both cores using the multiple selections of
debug sessions and “Suspend”/"Resume”
controls ..18

Fig. 22. Synchronous suspension/resumption of
both cores using the “Suspend All Debug
sessions” and the “Resume All Debug
sessions” controls ... 19

Fig. 23. Demo build target selection20
Fig. 24. Build the demo application20
Fig. 25. Terminal (PuTTY) configuration21
Fig. 26. Download and Debug button21
Fig. 27. Stop at main() when running debugging22
Fig. 28. Go button .. 22
Fig. 29. Text display of the hello_world demo 22

Fig. 30. Start all cores button23
Fig. 31. Hello World from primary core message 23
Fig. 32. "Stop all cores" and "Start all cores" control

buttons ...23
Fig. 33. Launch the Pack Installer24
Fig. 34. Build the demo ..24
Fig. 35. Terminal (PuTTY) configurations26
Fig. 36. Download button ... 27
Fig. 37. Stop at main() when run debugging 27
Fig. 38. Go button .. 28
Fig. 39. Text display of the hello_world demo 28
Fig. 40. Hello World from primary core message 29
Fig. 41. Debugging the auxiliary core application30
Fig. 42. Set up MinGW and MSYS 31
Fig. 43. Complete MinGW and MSYS installation 31
Fig. 44. Add Path to systems environment 32
Fig. 45. Convert path to short path 32
Fig. 46. Add ARMGCC_DIR system variable33
Fig. 47. Install CMake .. 34
Fig. 48. Launch command prompt 34
Fig. 49. hello_world demo build successful35
Fig. 50. Terminal (PuTTY) configurations36
Fig. 51. SEGGER J-Link GDB Server screen after

successful connection 37
Fig. 52. Launch command prompt 37
Fig. 53. Run arm-none-eabi-gdb 38
Fig. 54. Text display of the hello_world demo 38
Fig. 55. hello_world_cm0plus example build

successful ..39
Fig. 56. hello_world_cm4 example build successful40
Fig. 57. Loading and running the multicore example41
Fig. 58. Hello World from primary core message 42
Fig. 59. MCUXpresso IDE Quickstart Panel43
Fig. 60. OpenSDA – CMSIS-DAP/mbed/DAPLink

interface ...44
Fig. 61. OpenSDA – P&E Micro44
Fig. 62. OpenSDA – J-Link .. 44
Fig. 63. P&E Micro OSJTAG .. 44
Fig. 64. MRB-KW01 ..44
Fig. 65. MAINTENANCE drive 47

MCUXSDKGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.000 — 10 January 2024
52 / 53

NXP Semiconductors MCUXSDKGSUG
Getting Started with MCUXpresso SDK

Contents
1 Overview ...2
2 MCUXpresso SDK board support

package folders ... 2
2.1 Example application structure3
2.2 Locating example application source files 3
3 Run a demo using MCUXpresso IDE 4
3.1 Select the workspace location 4
3.2 Build an example application4
3.3 Run an example application 6
3.4 Build a multicore example application 10
3.5 Run a multicore example application12
4 Run a demo application using IAR 19
4.1 Build an example application20
4.2 Run an example application 20
4.3 Build a multicore example application 22
4.4 Run a multicore example application23
5 Run a demo using Keil MDK/μVision 24
5.1 Install CMSIS device pack24
5.2 Build an example application24
5.3 Run an example application 24
5.4 Build a multicore example application 28
5.5 Run a multicore example application29
6 Run a demo using Arm GCC 30
6.1 Set up toolchain ...30
6.1.1 Install GCC Arm Embedded tool chain 30
6.1.2 Install MinGW (only required on Windows

OS) ...31
6.1.3 Add a new system environment variable for

ARMGCC_DIR ...32
6.1.4 Install CMake ...33
6.2 Build an example application34
6.3 Run an example application 35
6.4 Build a multicore example application 38
6.5 Run a multicore example application40
7 MCUXpresso Config Tools42
8 MCUXpresso IDE New Project Wizard 43
9 How to determine COM port43
10 How to define IRQ handler in CPP files 44
11 Default debug interfaces45
12 Updating debugger firmware47
12.1 Updating OpenSDA firmware 47
12.2 Updating LPCXpresso board firmware 48
13 Revision history ...49

Legal information ...50

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 10 January 2024
Document identifier: MCUXSDKGSUG

	1 Overview
	2 MCUXpresso SDK board support package folders
	2.1 Example application structure
	2.2 Locating example application source files

	3 Run a demo using MCUXpresso IDE
	3.1 Select the workspace location
	3.2 Build an example application
	3.3 Run an example application
	3.4 Build a multicore example application
	3.5 Run a multicore example application

	4 Run a demo application using IAR
	4.1 Build an example application
	4.2 Run an example application
	4.3 Build a multicore example application
	4.4 Run a multicore example application

	5 Run a demo using Keil MDK/μVision
	5.1 Install CMSIS device pack
	5.2 Build an example application
	5.3 Run an example application
	5.4 Build a multicore example application
	5.5 Run a multicore example application

	6 Run a demo using Arm GCC
	6.1 Set up toolchain
	6.1.1 Install GCC Arm Embedded tool chain
	6.1.2 Install MinGW (only required on Windows OS)
	6.1.3 Add a new system environment variable for ARMGCC_DIR
	6.1.4 Install CMake

	6.2 Build an example application
	6.3 Run an example application
	6.4 Build a multicore example application
	6.5 Run a multicore example application

	7 MCUXpresso Config Tools
	8 MCUXpresso IDE New Project Wizard
	9 How to determine COM port
	10 How to define IRQ handler in CPP files
	11 Default debug interfaces
	12 Updating debugger firmware
	12.1 Updating OpenSDA firmware
	12.2 Updating LPCXpresso board firmware

	13 Revision history
	Legal information
	Tables
	Figures
	Contents

