NXP Semiconductors Document identifier: CMOGFLIBUG
User Guide Rev. 5, 01 November 2021

GFLIB User's Guide

ARM® Cortex® MO+

NXP Semiconductors

Contents
Chapter 1 LIDrary.......cccoo s s e e e annn e e e e e e e 5
I 1 (o Yo T 1 o T 5
I O 17T V=2 5
(R B B - £ I 1Y L= TP PRRPTTPRPT 5
(IR I S o o= 0114 o T 5
(I ST W o] o o]y (=To leTo] 0] 11 =T = T PRSP 6
1.1.5 Library CONfIQUIAtION..........ueiiiii ettt e et e e e e e s enneeeee s 6
1.1.6 SPECIAI ISSUES.eeiiiiieiiie ettt e et e e e e bt e e e e et e e e e e b b e e e e e e nbreeeeeannreas 6
1.2 Library integration into project (MCUXPresso IDE)cccoiiiiiiiiiiiiiee e 6
1.3 Library integration into project (Keil HVISION)oooiiiiiiiiiiie e 9
1.4 Library integration into project (IAR Embedded Workbench)cccccceiiiiiiiiiiiie 17
Chapter 2 Algorithms in detalil...........cooooriimeir e e 23
R B €T o I 1S TS [o TSR TPT 23
D B B AN VZ= 11 = o L IRV Z=T 51 o] o 23
D I B 1= o F= T = (o 1N 24
b IR B LU Tox 1T o TV T < 24
A € o I 1 = T O o 1= 24
i W AN VZ= 1 F= o (IR Z=T 1 o] o 24
A B <o F= T = (o 1SN 25
R B LU o [ox 1[0 o TV T < 25
RS €1 o 1= TN = 1o T TR 25
P B B AN VZ= 11 = o (IR Z=T 1 o] o 26
B I B 1= Tor F= T = (o] o 1N 26
B IR I LU o [ox 1[0 o TV T < 26
A e W LS T N =10) 0, COT TP 27
oy B NV Z= 11 F= o (IR Z=T 1 o] o T 28
A B 1= Tor F= T = (o] 1N 28
G B LU o [ox [0 o TV T < 28
B T 1 1 = TS T | PP 29
P T B AN VZ= 1= o (IR Z=T 51 o] o U 29
A B L= Tor F= T = (o] o 1N 30
IR I LU o [ox 1T o TV T < 30
A ST I 1= T T o1 SRR 30
P T B AN VZ= 1= o (IR Z=T 1 o] o U 30
I B = Tor F= T = (o] 1N 31
IR I LU [ox 1T o TV T < 31
A o 1= T oY= o I o1 TR 31
A A W V7= 1= o LIV Z=T 51 o] o 31
A B <o F= T = (o] 1N 32
R I oLV [ox 1T o TV T < 32
2.8 GFLIB_UPPEILIMIL.....eeeiiiiieeee ettt e e e e e s e e e e e e e e eees 32
P < B B AN VZ= 1= o (IR Z=T 1 o] o 32
R S I B <o F= T = (o o 1N 33
P S IR I LU o [ox T o TV T < 33
e N €1 1= V=T e (o o I T o1 At TR 33
P B B AN VZ= 1= o (IR Z=T 1 o] o 34
2.9.2 GFLIB_VECTORLIMIT_T_F16 type description.............ccccuiiiiiiiiiiiie et 35
S IR T B = Tor F= = (o] 1N 35
2 3 LU o [ox [0 o TV T < 35

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 2/79

NXP Semiconductors

Contents

D O ST o Y S 36
1 O B B N V= 1 =T o] (ST] o 1= 36

o O e [o DS I I 1 TR 37

D LR T B 1Yol =T =1 (o TR N 37
e L0 I U] o T (o] o U 1< T 37

b I 1= U 4 T TR 37
2 T B B N V= 11 = o] (ST T] o 1= 38

Dt T B 1Yo =T = (o o TN 39

b T B B U T 1[0 o U <= T 39

b B €] 1= U { =Y o I TR 39
I B N V= 11 = o] (ST T] o 1= 40
A B 1Yol =T = (o TR N 41
b B U] o T 1[0 o U == T 41

D e T 1 1 S T <= T o] o TP 42
D I Ty B N V= 11 = o] (ST] o 1= 42
2.13.2 GFLIB_RAMP _T _F 1B .ottt ettt e e s e e e e e e e eeaeaaaeeaeeeeereeeeerenes 43
2.13.83 GFLIB_RAMP T B2, ittt ettt e e s e e e e e e eeeaeaaeaeaeeeeereeneerares 43

D BT D 1Yol =T = (o o TR N 44

D B T 3 U] o T [0 o U == T 44

D B] I S T] 3 T o o T 44
U B N V= 11 = o] (ST] o) 1T 45
2.14.2 GFLIB_DRAMP L _T _F 1B ..ot e e e e e e e e e e e e et ettt e e e e e e eeeeeeas 46
2.14.3 GFLIB_DRAMP T 3. . oottt et e e e e e e e e ettt e e e e e e e e eeeeas 47
D D 1Yol =T = (o TR N 47

D R U] o T 1[0 g U == T 47

2.15 GFLIB_FIEXRAMP. ... 48
D T B N V= 11 = o] (ST ZCT] o 1= T 49
2.15.2 GFLIB_FLEXRAMP _T _F 32ttt ettt e e e e e e e e e e e e e e e e e e eeeeereeeeeranes 50

D E TG T B 1Yol =T =1 (o o TR N 50

R o U] o T (o] o U == T 51

2.16 GFLIB_DFIEXRAMIP. ... e saaasesasssasesssesssssssssnssnnnsnnnnnnnes 52
B 1 T B N V= 11 = o] (ST ZCT] o 1T 53
2.16.2 GFLIB_DFLEXRAMP _T _F32. ..ottt et e e ettt e e e e e e eeeeas 54

D L TRCT B 1Yol =T =1 (o TN 55

e L U] o T 1[0 o U == T 55

217 GFLIB_INtEQrator... ..o 56
A B V= 11 = o] (ST] o 1= 57
2.17.2 GFLIB_INTEGRATOR LT A2, . oot eaeeeaanes 58

D AT B 1Yol =T =1 (o TR N 58
A U] o T 1[0 o U <= T 58

2.18 GFLIB_CHrIBetalPPAWV ...ttt ettt ettt e e e e e e e e e e eeseeeeeeeeeeeeeeeeeeeeeeeeeeeeees 59
Pk < T B N V= 11 = o] (ST ZCT] o o 1 61
2.18.2 GFLIB_CTRL_BETA _IP_ P AW T A2 . it e e e e e e e e e e e e e aeaanes 62
B TG T B 1Yol =T =1 (o TR N 62
< T U] o T 1[0 o U =T T 63

2.19 GFLIB_CHIPIPAW. ..., 63
P B B N V= 11 =T o] (ST ZCT] o) o 1= 65
2.19.2 GFLIB_CTRL_PI_P _ AW T A3 . ettt e e e e e e e e eeees 66

D LS IR T B 1Yol =T =1 (o TR 66
S I U] o T (o] o U == T 67
Appendix A Library fypes. ... et e e anas 68

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 3/79

NXP Semiconductors

Contents
YN I o Yo Yo N TR 68
YN U] € PR PTRTRT 68
YN R U1 14 N SRR 69
YN A T[] 2 2 SO TP 70
YT (01 TN ST TR 70
YN[1 T P TR PTRTRTR 71
YA (015 7 SRR 71
YN I i = (o< T PR 72
YN I i = (o L PP 73
YN (O = 1o 2 PR 73
Y I = Ve o 1 T ST 74
Y A= Ve o ¥ ST 75
AL FALSE . ..o e et — et ——— 75
Y I L 1 TP 76
YN S R Y2 O S T PR 76
Y L o Y N Ot < T PR 76
Y A o TN O TR 77
Y <X O Ot < T TR 77
YN E I X O O3 TR 77

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 4/79

NXP Semiconductors

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the General Functions Library (GFLIB) for the family of ARM Cortex MO+ core-based microcontrollers.
This library contains optimized functions.

1.1.2 Data types

GFLIB supports several data types: (un)signed integer, fractional , and accumulator. The integer data types are useful for
general-purpose computation; they are familiar to the MPU and MCU programmers. The fractional data types enable powerful
numeric and digital-signal-processing algorithms to be implemented. The accumulator data type is a combination of both; that
means it has the integer and fractional portions.

The following list shows the integer types defined in the libraries:

* Unsigned 16-bit integer—<0 ; 65535> with the minimum resolution of 1

» Signed 16-bit integer—<-32768 ; 32767> with the minimum resolution of 1

* Unsigned 32-bit integer—<0 ; 4294967295> with the minimum resolution of 1

» Signed 32-bit integer—<-2147483648 ; 2147483647> with the minimum resolution of 1
The following list shows the fractional types defined in the libraries:

+ Fixed-point 16-bit fractional—<-1 ; 1 - 2-15> with the minimum resolution of 2-15

+ Fixed-point 32-bit fractional—<-1 : 1 - 231> with the minimum resolution of 2-31
The following list shows the accumulator types defined in the libraries:

+ Fixed-point 16-bit accumulator—<-256.0 ; 256.0 - 27> with the minimum resolution of 27

« Fixed-point 32-bit accumulator—<-65536.0 ; 65536.0 - 2-15> with the minimum resolution of 2-15

1.1.3 API definition

GFLIB uses the types mentioned in the previous section. To enable simple usage of the algorithms, their names use set prefixes
and postfixes to distinguish the functions' versions. See the following example:

f32Result = MLIB Mac F321ss(f32Accum, flé6Multl, fl6Mult2);

where the function is compiled from four parts:
* MLIB—this is the library prefix
* Mac—the function name—Multiply-Accumulate
* F32—the function output type

» Iss—the types of the function inputs; if all the inputs have the same type as the output, the inputs are
not marked

The input and output types are described in the following table:

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 5/79

NXP Semiconductors

Library

Table 1. Input/output types

Type Output Input
frac16_t F16]
frac32_t F32 I
acc32_t A32 a

1.1.4 Supported compilers

GFLIB for the ARM Cortex MO+ core is written in C language or assembly language with C-callable interface depending on the
specific function. The library is built and tested using the following compilers:

* MCUXpresso IDE
* IAR Embedded Workbench
» Keil pyVision
For the MCUXpresso IDE, the library is delivered in the gfiib.afile.
For the Kinetis Design Studio, the library is delivered in the gflib.afile.
For the IAR Embedded Workbench, the library is delivered in the gfiib.a file.
For the Keil pVision, the library is delivered in the gfiib./ib file.

The interfaces to the algorithms included in this library are combined into a single public interface include file, gfiib.h. This is done
to lower the number of files required to be included in your application.

1.1.5 Library configuration

GFLIB for the ARM Cortex MO+ core is written in C language or assembly language with C-callable interface depending on the
specific function. Some functions from this library are inline type, which are compiled together with project using this library. The
optimization level for inline function is usually defined by the specific compiler setting. It can cause an issue especially when high
optimization level is set. Therefore the optimization level for all inline assembly written functions is defined by compiler pragmas
using macros. The configuration header file RTCESL_cfg.his located in: specific library folderIMLIBlInclude. The optimization
level can be changed by modifying the macro value for specific compiler. In case of any change the library functionality is

not guaranteed.

Similarly as optimization level the Memory-mapped divide and square root module support can be disable or enable by defined
symbol RTCESL_MMDVSQ_ON or RTCESL_MMDVSQ_OFF in project setting described in the Memory-mapped divide and
square root support cheaper for specific compiler.

1.1.6 Special issues

1. The equations describing the algorithms are symbolic. If there is positive 1, the number is the closest number to 1 that
the resolution of the used fractional type allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions that round the result (the API contains Rnd) round to nearest (half up).

1.2 Library integration into project (MCUXpresso IDE)

This section provides a step-by-step guide on how to quickly and easily include GFLIB into any MCUXpresso SDK example or
new SDK project using MCUXpresso IDE. The SDK based project uses RTCESL from SDK package.

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 6/79

NXP Semiconductors

Library
Adding RTCESL component to project

The MCUXpresso SDK package is necessary to add any example or new project and RTCESL component. In case the

package has not been downloaded go to mcuxpresso.nxp.com, build the final MCUXpresso SDK package for required board and
download it.

After package is dowloaded, open the MCUXpresso IDE and drag&drop the SDK package in zip format to the Installed SDK

window of the MCUXpresso IDE. After SDK package is dropped the mesage accepting window appears as can be show in
following figure.

B mic UXpresso IDE - [u}
File Edit Navigate Search Project Configlools Run RTOS Analysis Wi Help
Hmid | @~ &~ A2 N F-O0-Q-i® =R W BRZESR pHERDR
@0 i Ribi-Fl-oT et Q iR
[Project Bx.. 51 i Registers % Faults &, Periphera.. = O =7
8% 7 | |- 8
There are ne projects in your werkspace.
To add a project:
B Creste s new MCUXpresso IDE C/C+ + project.
@ import examples from SDK.) MCUxpresso IDE SDK import - ul 'Y
% Create s project...
Dy Import projects.. ‘."_ j Areyou sure you want to import the following SDK in the
&Y common ' maupresso’ folder?
D:ASDK_2_10_0_HVP-KV31F120Mzzip
@ inst.. 2 [Prop.. [2 Pny]
=]
[Installed SDKs
(1) Quickstart Panel £ (x)= Variables ®g Breakpoints = [Toinstallan SDK, simply drag and lpresy
. A [Installed SDKs . Available Board
- MCUXpresso IDE - Quickstart Panel B | B
0t No t selected Name
project selecte
~+ Create or import a project
p— B New project...
?a
Import SDK le(s)..
@ impo example(s) [] Do not ask for confirmation on SDK Drag and Drop install
® Import project(s) from file system...
~ Build your project
@ o[E ;
o {1 MCUX workspace o

Figure 1. MCUXpresso IDE - imporing the SDK package to MCUXpresso IDE

Click OK to confirm the SDK package import. Find the Quickstart panel in left bottom part of the MCUXpresso IDE and click New
project... item or Import SDK example(s)... to add rtcesl component to the project.

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide 7/79

NXP Semiconductors

Library

8 MCUX workspace - MCU¥presso IDE

File Edit Mavigate Search Project Configlools Run RTOS Analysis Window Help

Al | &~]~ e R H-O0-U-®Y-IRETID N
@il Ril-Fl-o e
[Project Ex.. 5 4! Registers 45 Faults &, Periphera.. = O

28lv|i#% B8
There are no projects in your workspace.
To add a project:
B8 Create a new MCUXpresso IDE C/C++ project.
B Import examples from SDK.
9 Create a project..

i Import projects...

() Installed SDKs
() Quickstart Panel 53 ()= Variables @g Breakpoints =

Installed SDKs

@ inst. 52 [OProp.. (2 Probl.. B Cons.. @Term.. [z Ima..

To install an SDK, simply drag and drop an SOK (zip file/folder] into the Installed SDKs' view. [Common 'mcuxpres

- a x
[N e S hE R
Q K

= 8

@ Debu.. 2 Offfin.. = B

®o D

~
MCUXpresso IDE - Quickstart Panel
No project selected

\DE

Available Boards| Available Devices |

Name

~ Create or import a project

SDK Versien

Manifest Version Location

HHISDK_2.x_HVP-KV31F120M 2100

380 &

Invoke the new SDK project wizard

~ Build your project

@

\SDK_2_10_0_HVP-KY

~ SDK MCUs . Available boards

MCUs from installed SDKs. Please click

above or visit mcuxpresso.mxp.com to
obtain additional SDKs.

Please select an available board for your project.

[Supported boards for device: MKV3TFS120012

vllx — >
Figure 2. MCUXpresso IDE - create new project or Import SDK example(s)
Then select your board, and clik Next button.
) 50K Wizard o x
(D) Cresting project for device: MKV31F5120012 using board: HVP-KV31F120M x @
. Board and/or Device selection page .

NP MKV3TF512300x12

v KV3x
MKV3TF512xxx12

hvpkv31£120m

~ Preinstalled MCUs
MCUs from preinstalled LPC and
generic Cortex-M part support
NXP PN7462AU-C3-00 "
PN7462AU-C2-00
PN7462AU-C3-00
Generic-MD
Generic-Moplus
Generic-M23
Generic-M3
Generic-M33
Generic-M4
Generie-M7

v

Selected Device: MKV31F512300¢12 using board: HVP-KV31F120M
Target Core: emd
Description:

SDKs for selected MCU
Name

Kinetis KV3x-100-120 MHz, Advanced 3ph FOC / Sensorless Motor Control MCUs

based on ARM Cortex-M4 2 SDK_2x_HVP-KVITF120M 2,100

@

SDK Version

Manifest Ve... Location

(49420; 380 JE <Common>\SDK_2_10_0_HVP-KV:

< Back Finish Cancel

Figure 3. MCUXpresso IDE - selecting the board

Find the Middleware tab in the Components part of the window and click on the checkbox to be the rtcesl component ticked. Last

step is to click the Finish button and wait for project creating with all RTCESL libraries and include paths.

User Guide

GFLIB User's Guide, Rev. 5, 01 November 2021

8/79

NXP Semiconductors

Library
3 soK Wizard u] X
i, The source from the SDK will be copied into the workspace. If you want to use linked files, please unzip the 'SDK_2x_HVP-KV31F120M' SDK. VA &
. Configure the project
Project neme: | MKV31F31212_FirstProject] * | Project name suffix:

Use default location

C:\MCUX_workspace\MKV31F51212_FirstProject Browse..
Device Packages Board Project Type Project Options
® MKV3IFS12VLLIZ ® Defaut board files @CProject (O Cr+ Project SDK Debug Console (3 Semihost @) UART
O MKV31F312VLH12 O Empty board files [CMSIS-Core

(O C Static Library () C++ Static Library Copy sources

[Import other files

Components [F] Components selection summary B
Add or remove SDK software companents [ipesotiter |
Operating Systems [Drivers [CMSIS Drivers [Utilities [Widdieware™ Board Components| Abstraction Layer| Software C =
Name Description Ve Info
Middleware B %l ®E £ Drivers
[opesotiter | £ Middlenere
£ Operating Systems
Name Description Version Info = Software Component
[£ FresMASTER £ Utilties
[£ Memories.
[1 = Motor Cantrol
T rice! Real Time Control Embedded Software Library for CM... 110 | Real Time Gontrol Embedded Software Library far CNUF core
@ <Back Next> T

Figure 4. MCUXpresso IDE - selecting rtcesl component

Type the #include syntax into the code where you want to call the library functions. In the left-hand dialog, open the required .c
file. After the file opens, include the following lines into the #include section:

#include "mlib.h"
#include "gflib.h"

When you click the Build icon (hammer), the project is compiled without errors.

1.3 Library integration into project (Keil pVision)

This section provides a step-by-step guide on how to quickly and easily include GFLIB into an empty project or any
MCUXpresso SDK example or demo application projects using Keil pVision. This example uses the default installation path
(C:ANXP\RTCESL\CMO_RTCESL_4.7_KEIL). If you have a different installation path, use that path instead. If any MCUXpresso

SDK project is intended to use (for example hello_world project) go to Memory-mapped divide and square root support chapter
otherwise read next chapter.

NXP pack installation for new project (without MCUXpresso SDK)

This example uses the NXP MKV10Z32xxx7 part, and the default installation path (C:\NXP\RTCESL\CMO_RTCESL_4.7_KEIL)
is supposed. If the compiler has never been used to create any NXP MCU-based projects before, check whether the NXP MCU
pack for the particular device is installed. Follow these steps:

1. Launch Keil yVision.

2. In the main menu, go to Project > Manage > Pack Installer....

3. In the left-hand dialog (under the Devices tab), expand the All Devices > Freescale (NXP) node.

4. Look for a line called "KVxx Series" and click it.

5

. In the right-hand dialog (under the Packs tab), expand the Device Specific node.

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 9/79

NXP Semiconductors

Library

6. Look for a node called "Keil::Kinetis_KVxx_DFP." If there are the Install or Update options, click the button to install/
update the package. See Figure 5.

7. When installed, the button has the "Up to date" title. Now close the Pack Installer.

18 Pack Installer - CKeil vS\VARMIPACK — - B =El =]
File Packs Window Help
[+l ‘ Device: Freescale - KVaox Series
4 Devices | Boards | T Packs | Examples | i
‘ Search: - X Pack Action Description
Device A =1~ Device Specific 1 Pack
I @ Atmel 257 Devices ||| | KeiKinetis Ko DFP | Tnstoll Freescale Kinetis Kixx Series Device Support
@ Fresscale 234 Devices El-Generic 10 Packs
%2 K Series 1 Device RM:CMSIS & Up io daic | CMSIS (Cortex Microcontroller Software Interface Standard)
42 K00 Series 2 Devices eilzARM_Compiler | & _Up to date | Keil ARM Compiler extensions
42 K10 Series 23 Devices eil:Jansson & Install___| Jansson is a C library for encoding, decoding and manipula
42 K20 Series 41 Devices eil:MDK-Middleware | & Update | Keil MDK-ARM Professional Middleware for ARM Cortex-M
42 K0 Series & Devices - Keil:MDK-Network DS | & Install Keil MDK-ARM Professional Middleware Dual-Stack IPud,/IP
42 k40 Series & Devices B-hwiPz P & Install IwIP is 2 light-weight implementation of the TCR/IP protoc
42 K50 Series 11 Devices - Micrium:RTOS & Install Micrium software components
42 K60 Series 18 Devices -Ory Package (CycloneTCP, CycloneSSL and Cyclon
42 K70 Series 4 Devices - wolfSSL::CyaSSL Light weight SSL/TLS and Crypt Library for Embedded Syste
42 K30 Series 2 Devices 1 - YOGITECH:ARSTL_AR. YOGITECH fRSTL Functional Safety EVAL Software Pack for
% KEdoo Series 6 Devices
4 Kb Series 11 Devices
4 Ko Series 54 Devices
% KMo Series 14 Devices
4 Ko Series 26 Devices
% Ko Series 8 Devices
% WPRISI6 Series |1 Device
P e ha | K |

Output 3 x

Refresh Pack descriptions

Update available for Keil:MDK-Middleware (installed: 6.4.0, available: 7.0.0-beta}

Ready [[onme

New project (without MCUXpresso SDK)

To start working on an application, create a new project. If the project already exists and is opened, skip to the next section. Follow

these steps to create a new project:

1. Launch Keil pVision.

2. In the main menu, select Project > New pVision Project..., and the Create New Project dialog appears.

3. Navigate to the folder where you want to create the project, for example C:\KeilProjects\MyProject01. Type the name of the

project, for example MyProject01. Click Save. See Figure 6.

Create New Project

» Computer » System (C:) » KeilProjects » MyProject0l

File name: MyProject0l

Save as type: IPro}act Files (*.uvproj; *.uvprojx)

~ Browse Folders Save

Figure 6. Create New Project dialog

In the next dialog, select the Software Packs in the very first box.

Type 'kv10' into the Search box, so that the device list is reduced to the KV10 devices.
Expand the KV10 node.

Click the MKV10Z32xxx7 node, and then click OK. See Figure 7.

N o o &

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

10/79

NXP Semiconductors

Library

ICPUl

Vendor:
Device:
Toolset:

Search:

- —
Select Device for Target Target 1'.

st D o Tt T 1 — ==

ISoﬂware Packs

Freescale
MKV10Z3200c7
ARM

=]

@ ARM
£ Freescale
2% K Series

qu KWlx
8 MIVI0Z1281007
€ MKV10Z16:007
@
8 MKV10Z641007
8 MKV1171281007

8 o T |

Description:

| |The Kinetis K\ 1x family is the entry point of the V Series

Built upon the ARM Cortex-MO+ core running at 75 MHz with hardware
square root and divide capability, it delivers a 35% increase in
performance in math-ntensive applications versus comparable MCUs,
allowing it to target BLDC as well a5 more computationally demanding
PMSM mators.

Additional features include integrated FexCAN, dual 16-bit analog4o-
digital controllers (ADCs) sampling at up to 1.2 mega samples per
second (MS/z)in 12+bit mode, multiple metor control timers, up to 128
KB of flash memory and a comprehensive enablement suite from
Freescale and third-party resources, including reference designs,
software libraries and motor configuration tools.

OK I Cancel Help

Figure 7. Select Device dialog

8. In the next dialog, expand the Device node, and tick the box next to the Startup node. See Figure 8.

9. Expand the CMSIS node, and tick the box next to the CORE node.

| Software Component
=€ CMmsIS

@ CORE

@ Dsp
1 4 RTOS (APD)
€ CMSIS Driver
& Compiler
£ 4 Device

@ Startup
& File System
& Graphics
€ Network
@ use

| Sel. Variant

=

-

I
MDK-Pro
MDK-Pro
MDK-Pro
MDK-Pro

Version Description

Cortex Microcontroller Software Interface Components

410 CMSIS-CORE for Cortex-M, 50000, and 5C300
145 CMSIS-DSP Library for Cortex-M, SC000, and SC300
10 CMSIS-RTOS AP for Cortex-IM, SC000, and 5C300

Unified Device Drivers compliant to CMSIS-Driver Specifications
ARM Compiler Software Extensions
Startup, System Setup

100 System Startup for Kinetis KV10 75MHz devices

640 File Access on various sterage devices

5261 User Interface on graphical LCD displays

6.4.0 IP Networking using Ethernet or Serial protocols

6.4.0 USB Communication with various device classes

Figure 8. Manage Run-Time Environment dialog

10. Click OK, and a new project is created. The new project is now visible in the left-hand part of Keil yVision. See Figure 9.

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

11/79

NXP Semiconductors

Library

—_—
kA CAKeilProjects\MyProject01\MyProjectD1.uvprojx - pVision

File Edit WView Project Flash Debug Peripherals Toc
N=2% N- Ny .Y | |

,L;'?%E Target 1 |E| £g|
Project q [E
2 Project: MyProjectll
-4 Targetl
{d Source Group1
& cMsis
24 Device
_1 startup_MEV10Z] s (Startup)

_1 systermn_MEV10ZT.c (Startup)

Figure 9. Project

Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated for division and square root. This section shows how to turn the
memory-mapped divide and square root (MMDVSQ) support on and off.

1.
2.
3.

In the main menu, go to Project > Options for Target 'Target1'..., and a dialog appears.
Select the C/C++ tab. See Figure 10.
In the Include Preprocessor Symbols text box, type the following:
+ RTCESL_MMDVSQ_ON—to turn the hardware division and square root support on
+ RTCESL_MMDVSQ_OFF—to turn the hardware division and square root support off

If neither of these two defines is defined, the hardware division and square root support is turned off by default.

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide 12/79

NXP Semiconductors

4.

Library

De\ricel Target | Outputl Listingl User C/Cer Iﬂsm | Linkerl Debug | Uilities |

B

— Prep Symbals

Define: |RTCESL_MMDVSQ_ON

Undefine: I

— Language / Code Generation
I™ Erecuteniy Code I Sirict ANSIC Wamings
Optimization: lm ™ Enum Container ahways int All Wamings j'
I~ Optimize for Time [Plain Charis Signed [T Thumb Mode
™ Split Load and Store Multiple [~ Read-Only Position Independent ™ No Auto Includes
[™ One ELF Section per Function I~ Read-Wiite Position Independent [~ €33 Mode

Include I
Paths

Misc I
Controls

Compiler |- —cpu Cortex-M4fp -D__EVAL -g 00 -apcs=interwork
contral || C:\KeilProjects \MyProject01\RTE
string

Defaults

Figure 10. Preprocessor symbols

Click OK in the main dialog.

See the device reference manual to verify whether the device contains the MMDVSQ module.

Linking the files into the project

GFLIB requires MLIB to be included too. The following steps show how to include all dependent modules.

To include the library files in the project, create groups and add them.

1.

Right-click the Target 1 node in the left-hand part of the Project tree, and select Add Group... from the menu. A new group
with the name New Group is added.

Click the newly created group, and press F2 to rename it to RTCESL.
Right-click the RTCESL node, and select Add Existing Files to Group 'RTCESL'... from the menu.

Navigate into the library installation folder C:\NXP\ARTCESL\CMO_RTCESL_4.7_KEIL\MLIB\Include, and select the mi/ib.h
file. If the file does not appear, set the Files of type filter to Text file. Click Add. See Figure 11.

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide 13/79

NXP Semiconductors

Library

Lookin: | | Include j = £ Edv 1
Mame : Date modified il
i mlib.h 16.10.2014 9:19 iE |
| MLIB_Abs_F16.h 21.10.2014 9:45 W
| MLB_Abs_F32.h 16.10.2014 9:19

_ | MLB_Add_A32.h 16.10.2014 9:19

_ | MLIB_Add_F1&.h 16.10.2014 9:19

| MLIB_Add_F32.h 16.10.2014 9:19

_ | MLIB_Add4_F16.h 16.10.2014 9:19

| MLIB_Add4 _F32.h 16.10.2014 9:19

| MLIB_BiShift_F16.h 16.10.2014 2:19

| MLIB_BiShift_F32.h 16.10.2014 9:19

-

RALTR il F4E L

1 | n |

R W TG %

Add I
| Close |

File name: |mlib.h

Files of type: | Teut file ("bd; *h; *inc)

Figure 11. Adding .h files dialog

5. Navigate to the parent folder C:ANXP\RTCESL\CMO_RTCESL_4.7_KEIL\MLIB, and select the m/ib./ib file. If the file does
not appear, set the Files of type filter to Library file. Click Add. See Figure 12.

Lookin: | . MLIB ~| & Bk E- |

MName Date modified Ty
/Include 20102014 15:37 Fi
|| MLIB.lib 16.10.2014 9:19 LI

4| (1

Add I
~| Close |

File name: |MLIE.Iib

Files of type: IIJblaryﬁIe {*lib)

Figure 12. Adding .lib files dialog

6. Navigate into the library installation folder C:\NXP\RTCESL\CMO_RTCESL_4.7_KEIL\GFLIB\Include, and select the gfiib.h
file. If the file does not appear, set the Files of type filter to Text file. Click Add.

7. Navigate to the parent folder C:\NXP\RTCESL\CMO_RTCESL_4.7_KEIL\GFLIB, and select the gfiib./ibfile. If the file does
not appear, set the Files of type filter to Library file. Click Add.

8. Now, all necessary files are in the project tree; see Figure 13. Click Close.

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 14/79

NXP Semiconductors

Library

| Project 1 &
- Project: MyProjectll
g Targetl
. J Sowurce Group 1
=5 RTCESL
1 mlib.h
1 MLIB.lib
1 gflib.h
] GFLIB.lib
& omsis
=% Device

Figure 13. Project workspace

Library path setup

The following steps show the inclusion of all dependent modules.
1. In the main menu, go to Project > Options for Target 'Target1'..., and a dialog appears.
2. Select the C/C++ tab. See Figure 14.

3. Inthe Include Paths text box, type the following paths (if there are more paths, they must be separated by ';') or add them
by clicking the ... button next to the text box:

+ "C:\NXP\RTCESL\CMO_RTCESL_4.7_KEIL\MLIB\Include"
+ "C:\NXP\RTCESL\CMO_RTCESL_4.7_KEIL\GFLIB\Include"
4. Click OK.
5. Click OK in the main dialog.

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 15/79

NXP Semiconductors

Library

k] Options for Target ‘Target 1

Devicel Target | Oulpull Listingl User C/Ce+ |.&'sm I Linkerl Debug | Ltilities |

Symbals

Define: I
Undefine: I

— Language / Code Generation

I~ Stict ANSIC e
Optimization: lm I™ Enum Container abways int All'Wamings j'
I Optimize for Time ™ Plain Char is Signed = Thurmb Mode
I~ Split Load and Store Muttiple [~ Read-Cnly Position Independent [~ No Auto Includes
[~ One ELF Section per Function [~ Read-Write Postion Independert [~ C39 Mode

Include ||
Paths

Misc I
Controls

Compiler |-¢ —cpu Cortex-M0+ -D__EVAL -g -00 —apcs=interwork
control [C:\KeilProjects \MyProject01\RTE
string

Figure 14. Library path addition

Type the #include syntax into the code. Include the library into a source file. In the new project, it is necessary to create a
source file:

1. Right-click the Source Group 1 node, and Add New Item to Group 'Source Group 1'... from the menu.

2. Select the C File (.c) option, and type a name of the file into the Name box, for example 'main.c. See Figure 15.

: e e o o ompe
v o s or T

Create a new C source file and add it to the projec
C | CFile{c)

@ C++ File {.cpp)
\ﬂ Asm File ()

@ Header File (h)
é Text File (bd)
Qg\ Image File (%
1@ User Code Template

Type: I

Mame: I main.

Location: I C:\KeilProjects\MyProjectd1

Figure 15. Adding new source file dialog

3. Click Add, and a new source file is created and opened up.

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 16/79

NXP Semiconductors

Library
4. In the opened source file, include the following lines into the #include section, and create a main function:

#include "mlib.h"
#include "gflib.h"

int main (void)
{

while (1) ;
}

When you click the Build (F7) icon, the project will be compiled without errors.

1.4 Library integration into project (IAR Embedded Workbench)

This section provides a step-by-step guide on how to quickly and easily include the GFLIB into an empty project or any
MCUXpresso SDK example or demo application projects using IAR Embedded Workbench. This example uses the default
installation path (C:\NXP\RTCESL\CMO_RTCESL_4.7_IAR). If you have a different installation path, use that path instead. If any
MCUXpresso SDK project is intended to use (for example hello_world project) go to Memory-mapped divide and square root
support chapter otherwise read next chapter.

New project (without MCUXpresso SDK)

This example uses the NXP MKV10Z32xxx7 part, and the default installation path (C:\NXP\RTCESL\CMO_RTCESL_4.7_IAR) is
supposed. To start working on an application, create a new project. If the project already exists and is opened, skip to the next
section. Perform these steps to create a new project:

1. Launch IAR Embedded Workbench.

2. In the main menu, select Project > Create New Project... so that the "Create New Project" dialog appears. See Figure 16.

-~ =

Tool chain: | AFiM -

Froject templates:

[asm -
[C++

-+ DLIB [T, Co+ with exceptions and ATTI)
DLIB [C, Extended Embedded C++)

N el WOy R S RpppRpRp ey Y P

m m
00

Description:

C project uzing default tool settings inchuding an emply main.c file.

Figure 16. Create New Project dialog

3. Expand the C node in the tree, and select the "main" node. Click OK.

4. Navigate to the folder where you want to create the project, for example, C:\IARProjects\MyProject01. Type the name of the
project, for example, MyProject01. Click Save, and a new project is created. The new project is now visible in the left-hand
part of IAR Embedded Workbench. See Figure 17.

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 17179

NXP Semiconductors

Library

& 1AR Embedded Workbench IDE

File Edit View Project Simulator

Tools Window Help

Figure 17. New project

Ded@ ESliabR(v v <
Workspace * main.cl
[Debug -
|| Files 2 O ot mainl)
- {
=f&]MyProjectdl -Deb... [« | | return 0
main.c . }
L@ 3 Output

5. In the main menu, go to Project > Options..., and a dialog appears.

6. Inthe Target tab, select the Device option, and click the button next to the dialog to select the MCU. In this example, select
NXP > KV1x > NXP MKV10Z32xxx7 Click OK. See Figure 18.

Options for node "MyProject01”

Cateqary:

Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
QOutput Converter
Custom Build
Build Actions
Linker
Debuager
Simulator
Angel
CMSIS DAP
GDE Server
TAR. ROM-monitor
T4et/TTAG]et
J-Link/1-Trace
TI Stellaris
Macraigor
PE micro
RDI

Target | Qutput | Library Configuration | Library Options | MISRAC:200/ « | »

Processor varant

|:::| Core Cortex-M0+

@ Device NXP MKV10Z32007
Endian mode Floating point settings
© Litle EFPU None
Eig
BE32 [registers
@ BEB

Adwvanced SIMD (NEON)

ST-LINK

Third-Party Driver
TI XDS

oK

] [Cancel

LS

Figure 18. Options dialog

Memory-mapped divide and square root support

Some Kinetis platforms contain a peripheral module dedicated to division and square root. This section shows how to turn the
memory-mapped divide and square root (MMDVSQ) support on and off.

1. In the main menu, go to Project > Options..., and a dialog appears.

2. In the left-hand column, select C/C++ Compiler.

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

18/79

NXP Semiconductors

3. In the right-hand part of the dialog, click the Preprocessor tab (it can be hidden in the right; use the arrow icons

for navigation).

4. In the text box (at the Defined symbols: (one per line)), type the following (See Figure 19):

+ RTCESL_MMDVSQ_ON—to turn the hardware division and square root support on
+ RTCESL_MMDVSQ_OFF—to turn the hardware division and square root support off

If neither of these two defines is defined, the hardware division and square root support is turned off by default.

Library

Options for node "MyProject01” |

5T |

Categony:

General Options
Static Analysis
Runtime Checking

C/C++ Compiler

Assembler
Qutput Converter
Custom Build
Build Actions
Linker
Debugger

Simulator

Angel

CMS3IS DAP

GDE Server

IAR ROM-monitor

Ijet/ITAGjet
J-Link/1-Trace
TI Stellaris
Macraigor

PE micro

RDI

ST-LINK

Third-Party Driver

TIXDs

Factary Settings

[] Multi-file Campilation

Dizcard Unuzed Publice

| Language 2 I Code I Cptimizations I Cutput I List

[Ignore standard include directories

Additional include directories: (one per ling)

- [

Preinclude file:

]

Defined symbaols: (one per ling)
RTCESL_MMDVSQ_ON » [C]Preprocessor output to file
Preserve comments

Generate Hine directives

|Preprocessor Ak

ak.] [Cahicel

Figure 19. Defined symbols

5. Click OK in the main dialog.

See the device reference manual to verify whether the device contains the MMDVSQ module.

Library path variable

To make the library integration easier, create a variable that will hold the information about the library path.

1. In the main menu, go to Tools > Configure Custom Argument Variables..., and a dialog appears.

2. Click the New Group button, and another dialog appears. In this dialog, type the name of the group PATH, and click OK.

See Figure 20.

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

19/79

NXP Semiconductors

Library
1 ' Configure Custom Argument Variables | = |
Workspace | Global
Enable Group
Mew Group | 3 | E_OUD”'
Fiable...
MName: PATH _iable. .
_ete
oK l [Cancel IF
s
Expand/Collapse All
[Hide disabled groups
oK l l Cancel
Figure 20. New Group

3. Click on the newly created group, and click the Add Variable button. A dialog appears.
4. Type this name: RTCESL_LOC

5. To set up the value, look for the library by clicking the "..." button, or just type the installation path into the box:
C:\NXP\RTCESL\CMO_RTCESL_4.7_IAR. Click OK.

6. In the main dialog, click OK. See Figure 21.

B ' Configure Custom Argument Variables | 23 |

Workspace | Global
7 PATH Disable Group

Add Variable et

Mame: RCTESL_LOC

Value: | C:\NYPRTCESL\CMO_FSLESL_XX_IAR E]

OK H Cancel]
|

Figure 21. New variable

Linking the files into the project
GFLIB requires MLIB to be included too. The following steps show the inclusion of all dependent modules.
To include the library files into the project, create groups and add them.
1. Go to the main menu Project > Add Group...
2. Type RTCESL, and click OK.
3. Click on the newly created node RTCESL, go to Project > Add Group..., and create a MLIB subgroup.
4

. Click on the newly created node MLIB, and go to the main menu Project > Add Files... See Figure 23.

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 20/79

NXP Semiconductors

Library

Navigate into the library installation folder C\ANXP\RTCESL\CMO_RTCESL_4.7_IAR\MLIB\Include, and select the miib.h
file. (If the file does not appear, set the file-type filter to Source Files.) Click Open. See Figure 22.

Navigate into the library installation folder C:\NXP\RTCESL\CMO_RTCESL_4.7_IAR\MLIB, and select the ml/ib.afile. If the
file does not appear, set the file-type filter to Library / Object files. Click Open.

. . |
b System (C:) » NXP » RTCESL » CMO_RTCESL 4.3 IAR » MLIE » Include
R
i Marne : Date modified Type
| mlib.h 16.10.2015 9:38 H File
| MLIB_Abs_F16.h 16.10.2015 9:38 H File
Figure 22. Add Files dialog

Click on the RTCESL node, go to Project > Add Group..., and create a GFLIB subgroup.
Click on the newly created node GFLIB, and go to the main menu Project > Add Files....

Navigate into the library installation folder C:\NXP\RTCESL\CMO_RTCESL_4.7_IAR\GFLIB\Include, and select the gfiib.h
file. (If the file does not appear, set the file-type filter to Source Files.) Click Open.

10. Navigate into the library installation folder C:\NXP\RTCESL\CMO_RTCESL_4.7_IAR\GFLIB, and select the gfiib.afile. If

the file does not appear, set the file-type filter to Library / Object files. Click Open.

11. Now you will see the files added in the workspace. See Figure 23.

Workspace x
[Debug -

Files £
& G MyProjectd1 - Deb... v
- CIRTCESL
FaCOGFLB
| —[OIGFLB=
| Y [k olibh
o Co (Y=
— [MLUEB.a
L— [mlikh
FrIEin.c *
& [Cutput

Figure 23. Project workspace

Library path setup

The following steps show the inclusion of all dependent modules:

1.
2.
3.

In the main menu, go to Project > Options..., and a dialog appears.
In the left-hand column, select C/C++ Compiler.

In the right-hand part of the dialog, click on the Preprocessor tab (it can be hidden in the right; use the arrow icons
for navigation).

In the text box (at the Additional include directories title), type the following folder (using the created variable):
+ $RTCESL_LOCS$\MLIB\Include
+ $RTCESL_LOCS$\GFLIB\Include

Click OK in the main dialog. See Figure 24.

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide 21/79

NXP Semiconductors

Library

Categony:

,

===

General Options
Static Analysis
Runtime Checking

C/C++ Compiler

Assembler
Qutput Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
Angel
CMS3IS DAP
GDE Server
IAR ROM-monitor
I4et/ITAGjet
J-Link/1-Trace
TI Stellaris
Macraigor
PE micro
RDI
ST-LIMK
Third-Party Driver
TI XDS

[] Multi-file Campilation

Dizcard Unuzed Publice

Factary Settings

| Language 1 I Language 2 I Code I Cptimizations I Output I List

||:< b

[Ignore standard include directories

Additional include directories: (one per ling)

SRTCESL_LOCS\MLIBinclude

SRTCESL_LOCS\GFLIBnclude|

Preinclude file:

Defined symbaols: (one per ling)

.

[Preprocessor output to file

Preserve comments

Generate Hine directives

]

Figure 24. Library path adition

ak.] [Cahicel

Type the #include syntax into the code. Include the library included into the main.cfile. In the workspace tree, double-click the
main.cfile. After the main.c file opens up, include the following lines into the #include section:

#include "mlib.h"
#include "gflib.h"

When you click the Make icon, the project will be compiled without errors.

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

22/79

NXP Semiconductors

Chapter 2
Algorithms in detall

2.1 GFLIB_Sin

The GFLIB_Sin function implements the polynomial approximation of the sine function. It provides a computational method for
the calculation of a standard trigonometric sine function sin(x), using the 9™ order Taylor polynomial approximation. The Taylor
polynomial approximation of a sine function is expressed as follows:

. 3 x5 x7 ¥
s1n(x):x-%+%-% +%

Figure 25.

sin(x) = x(d + xAd3+ xAd s+ xHd7 + x2d))))

Figure 26.

where the constants are:

The fractional arithmetic is limited to the range <-1; 1), so the input argument can only be within this range. The input argument
is the multiplier of : sin(1T - X), where the user passes the x argument. Example: if the input is -0.5, it corresponds to -0.51.

The fractional function sin(T - x) is expressed using the 9t order Taylor polynomial as follows:

sin(mx) = x(c; + x2c; + xXcs + xH(c; + x2co))))

Figure 27.

where:
¢ =dl=n
3= d3‘7r3 = — %.3
cs=dsm5= %,5
= d7.7r7 =—-3
cy=don9=g

2.1.1 Available versions

The function is available in the following versions:

» Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result
may saturate.

The available versions of the GFLIB_Sin function are shown in the following table:

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 23/79

NXP Semiconductors

Algorithms in detail

Table 2. Function versions

Function name | Input type | Result type Description

GFLIB_Sin_F16 |frac16_t frac16_t Calculation of the sin(1T - x), where the input argument is a 16-bit fractional value
normalized to the range <-1 ; 1) that represents an angle in radians within the
range <-r;). The output is a 16-bit fractional value within the range <-1; 1).

2.1.2 Declaration

The available GFLIB_Sin functions have the following declarations:

fracl6e _t GFLIB Sin Flé6(fracl6 t flé6Angle)

2.1.3 Function use

The use of the GFLIB_Sin function is shown in the following examples:

Fixed-point version:
#include "gflib.h"

static fracl6é t fl6Result;
static fracl6 t fl6Angle;

void main (void)
{
fl6Angle = FRAC16(0.333333); /* fl6Angle = 0.333333 [60°] */

/* fl6Result = sin(fl6Angle); (n * fl6Angle[rad]) = deg * (mx / 180) */
fl6Result = GFLIB_Sin F16 (fl6Angle) ;

2.2 GFLIB_Cos

The GFLIB_Cos function implements the polynomial approximation of the cosine function. This function computes the cos(x) using
the ninth-order Taylor polynomial approximation of the sine function, and its equation is as follows:

cos(x) = sin[% + M]
Figure 28.

Because the fractional arithmetic is limited to the range <-1 ; 1), the input argument can only be within this range. The input
argument is the multiplier of 1r: cos(1T - x), where the user passes the x argument. For example, if the input is -0.5, it corresponds
to -0.51r.

2.2.1 Available versions

This function is available in the following versions:

» Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result
may saturate.

The available versions of the GFLIB_Cos function are shown in the following table:

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 24/79

NXP Semiconductors

Algorithms in detail

Table 3. Function versions

Function name | Input type | Result type Description

GFLIB_Cos_F16 |frac16_t frac16_t Calculation of cos(1 - x), where the input argument is a 16-bit fractional value,
normalized to the range <-1 ; 1) that represents an angle in radians within the
range <- 1;). The output is a 16-bit fractional value within the range <-1; 1).

2.2.2 Declaration

The available GFLIB_Cos functions have the following declarations:

fracl6 tGFLIB Cos_Fl6(fraclée t flé6Angle)

2.2.3 Function use

The use of the GFLIB_Cos function is shown in the following examples:

Fixed-point version:
#include "gflib.h"

static fracl6é t fl6Result;
static fracl6 t fl6Angle;

void main (void)
{
fl6Angle = FRAC16(0.333333); /* fl6Angle = 0.333333 [60°] */

/* fl6Result = cos(fl6Angle); fl6Angle[rad] = deg * (mx / 180) */
fl6Result = GFLIB Cos F16(f16Angle);

2.3 GFLIB_Atan

The GFLIB_Atan function implements the polynomial approximation of the arctangent function. It provides a computational
method for calculating the standard trigonometric arctangent function arctan(x), using the piece-wise minimax polynomial
approximation. Function arctan(x) takes a ratio, and returns the angle of two sides of a right-angled triangle. The ratio is the length

of the side opposite to the angle divided by the length of the side adjacent to the angle. The graph of the arctan(x) is shown in the
following figure:

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 25/79

NXP Semiconductors

Algorithms in detail

e e
2
et _
l—— __________ //"
4 K i .
‘\\\@ | The function GFLIB_Atan
vgb‘\ | is not defined for this range
</ |
S
< -
I | | 1 ‘ | |
I I T * T I I 1
-4 -3 -2 -1 1 2 3 4
|
|
|
] | 7
,’/’/ 4
3
,, . B
Figure 29. Course of the GFLIB_Atan function

The fractional arithmetic version of the GFLIB_Atan function is limited to a certain range of inputs <-1; 1). Because the arctangent
values are the same, with just an opposite sign for the input ranges <-1; 0) and <0 ; 1), the approximation of the arctangent function
over the entire defined range of input ratios can be simplified to the approximation for a ratio in the range <0 ; 1). After that, the
result will be negated, depending on the input ratio.

2.3.1 Available versions

The function is available in the following versions:

» Fractional output - the output is the fractional portion of the result; the result is within the range <-0.25 ; 0.25), which
corresponds to the angle <-1/ 4 ; 1/ 4).

The available versions of the GFLIB_Atan function are shown in the following table:

Table 4. Function versions

Function name | Input type | Result type Description

GFLIB_Atan_F16 |frac16_t frac16_t Input argument is a 16-bit fractional value within the range <-1; 1). The output
is the arctangent of the input as a 16-bit fractional value, normalized within the
range <-0.25 ; 0.25), which represents an angle (in radians) in the range <-17 /
4 ;1 /4)<-45°; 45°).

2.3.2 Declaration

The available GFLIB_Atan functions have the following declarations:

fracl6 tGFLIB Atan Flé6(fraclée t flé6Val)
2.3.3 Function use

The use of the GFLIB_Atan function is shown in the following examples:

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 26/79

NXP Semiconductors

Algorithms in detail

Fixed-point version:
#include "gflib.h"

static fracl6 t fl6Result;
static fracle6_t fleval;

void main (void)
{
fléval = FRAC16(0.1666666) ; /* fl6Val = 0.1666666 (30°) */

/* fl6Result = atan(fl6Val); fl6Result * 180 => angle[degree]
fl6Result = GFLIB Atan F16(fl6Val);

*/

2.4 GFLIB_AtanYX

The GFLIB_AtanYX function computes the angle, where its tangent is y / x (see the figure below). This calculation is based on the

input argument division (y divided by x), and the piece-wise polynomial approximation.

Atanx(<-1, 1=, <1, 1=)

o e S
e e G L
o e L
T e ot
e e
e

Atany ¥y, x)

Figure 30. Course of the GFLIB_AtanYX function

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

27/79

NXP Semiconductors

Algorithms in detail

The first parameter Y is the ordinate (the x coordinate), and the second parameter X is the abscissa (the x coordinate). The
counter-clockwise direction is assumed to be positive, and thus a positive angle is computed if the provided ordinate (Y) is
positive. Similarly, a negative angle is computed for the negative ordinate. The calculations are performed in several steps. In
the first step, the angle is positioned within the correct half-quarter of the circumference of a circle by dividing the angle into two
parts: the integral multiple of 45° (half-quarter), and the remaining offset within the 45° range. Simple geometric properties of the
Cartesian coordinate system are used to calculate the coordinates of the vector with the calculated angle offset. In the second
step, the vector ordinate is divided by the vector abscissa (y / x) to obtain the tangent value of the angle offset. The angle offset
is computed by applying the GFLIB_Atan function. The sum of the integral multiple of half-quarters and the angle offset within a
single halfquarter form the angle is computed.

The function returns 0 if both input arguments equal 0, and sets the output error flag; in other cases, the output flag is cleared.
When compared to the GFLIB_Atan function, the GFLIB_AtanYX function places the calculated angle correctly within the
fractional range <-11 ; Tr>.

In the fractional arithmetic, both input parameters are assumed to be in the fractional range <-1; 1). The output is within the range
<-1; 1), which corresponds to the real range <-11 ;).

2.4.1 Available versions

This function is available in the following versions:

» Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1), which corresponds
to the angle <-1r; m).

The available versions of the GFLIB_AtanYX function are shown in the following table:

Table 5. Function versions

Function name Input type Output type Result type

Y X Error flag

GFLIB_AtanYX_F16 |frac16_t frac16_t bool_t * frac16_t

The first input argument is a 16-bit fractional value that contains the ordinate of the input vector (y
coordinate). The second input argument is a 16-bit fractional value that contains the abscissa of the
input vector (x coordinate). The result is the arctangent of the input arguments as a 16-bit fractional
value within the range <-1; 1), which corresponds to the real angle range <- 11; 7). The function sets the
boolean error flag pointed to by the output parameter if both inputs are zero; in other cases, the output
flag is cleared.

NOTE
This algorithm can use the MMDVSAQ peripheral module. See the following chapters for more details:

» #unique_35 in Kinetis Design Studio
* Memory-mapped divide and square root support in Keil yVision

* Memory-mapped divide and square root support in IAR Embedded Workbench

2.4.2 Declaration

The available GFLIB_AtanYX functions have the following declarations:

fracl6é tGFLIB AtanYX Fl6(fracl6 t fleY, fraclé t f16X, bool t *pbErrFlag)

2.4.3 Function use

The use of the GFLIB_AtanYX function is shown in the following examples:

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 28/79

NXP Semiconductors

Algorithms in detail

Fixed-point version:
#include "gflib.h"

static fracl6 t fl6Result;
static fraclé t fley, fl6X;
static bool t bErrFlag;

void main (void)

{
fley FRAC16(0.9); /* fley
f16X = FRAC16(0.3); /* £16X

9.9 =/
0.3 */

/* fl6Result = atan(fleY / £f16X); fl6Result * 180 => angle [degree] */
fl6Result = GFLIB AtanYX F16(fl6Y, fl6X, &bErrFlag);

2.5 GFLIB_Sqrt

The GFLIB_Sqrt function returns the square root of the input value. The input must be a non-negative number, otherwise the
function returns undefined results. See the following equation:

>
GFLIB_Sqrt(x) = . x20
undefined, x<0

Figure 31. Algorithm formula

2.5.1 Available versions
This function is available in the following versions:

» Fractional output - the output is the fractional portion of the result; the result is within the range <0 ; 1). The function is only
defined for non-negative inputs. The function returns undefined results out of this condition.

The available versions of the GFLIB_Sqrt function are shown in the following table:

Table 6. Function versions

Function name Input Result Description
type type
GFLIB_Sqrt_F16 frac16_t |frac16_t | The input value is a 16-bit fractional value, limited to the range <0 ; 1). The function

is not defined out of this range. The output is a 16-bit fractional value within the range
<0;1).

GFLIB_Sqrt_F16l |frac32_t |frac16_t | The input value is a 32-bit fractional value, limited to the range <0 ; 1). The function
is not defined out of this range. The output is a 16-bit fractional value within the range
<0;1).

NOTE
This algorithm can use the MMDVSAQ peripheral module. See the following chapters for more details:

» #unique_35 in Kinetis Design Studio
* Memory-mapped divide and square root support in Keil uVision

* Memory-mapped divide and square root support in IAR Embedded Workbench

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 29/79

NXP Semiconductors

Algorithms in detail

2.5.2 Declaration
The available GFLIB_Sqrt functions have the following declarations:
fraclé t GFLIB Sqrt Fl6(fraclé6 t flé6Val)

fraclé t GFLIB_Sqrt F161(frac32 t f32Val)

2.5.3 Function use

The use of the GFLIB_Sqrt function is shown in the following examples:

Fixed-point version:
#include "gflib.h"

static fracl6 t fl6Result;
static fraclé6 t flé6vVal;

void main (void)
{
fl6val = FRAC16(0.5); /* fléval = 0.5 */

/* fl6Result = sqgrt(fleval) */
fl6Result = GFLIB Sqrt Fl16(fléVval);

2.6 GFLIB_Limit

The GFLIB_Limit function returns the value limited by the upper and lower limits. See the following equation:

min, x <min
GFLIB_Limit(x, min, max) = {max, x> max
X, else

Figure 32. Algorithm formula

2.6.1 Available versions
This function is available in the following versions:

« Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result
may saturate.

The available versions of the GFLIB_Limit functions are shown in the following table:

Table 7. Function versions

Function name Input type Result Description
t
Input Lower Upper ype
limit limit

GFLIB_Limit_F16 |[frac16_t |frac16_t |[frac16_t |frac16_t | The inputs are 16-bit fractional values within the range <-1;

1). The function returns a 16-bit fractional value in the range
<f16LLim ; f16ULIim>.

Table continues on the next page...

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 30/79

NXP Semiconductors

Table 7. Function versions (continued)

Algorithms in detail

Function name Input type Result Description
type

Input Lower Upper
limit limit

<f32LLim ; f32ULim>.

GFLIB_Limit_F32 |frac32_t |frac32_t |frac32_t |frac32_t | The inputs are 32-bit fractional values within the range <-1 ;
1). The function returns a 32-bit fractional value in the range

2.6.2 Declaration
The available GFLIB_Limit functions have the following declarations:
fracl6 t GFLIB Limit Fl6(fracl6 t fleVal, fraclée t fl6LLim, fraclé t f16ULim)

frac32 t GFLIB Limit F32(frac32 t £f32Val, frac32 t £32LLim, frac32 t £32ULim)

2.6.3 Function use

The use of the GFLIB_Limit function is shown in the following examples:

Fixed-point version:
#include "gflib.h"
static fraclé t fl6Val, £f16ULim, f16LLim, fl6Result;

void main (void)

{
f16ULim = FRAC16(0.8);
fl16LLim FRAC16(-0.3) ;
fl6Val = FRAC16(0.9);

fl6Result = GFLIB Limit F16(fl6Val, f16LLim, f£16ULim);

2.7 GFLIB_LowerLimit

The GFLIB_LowerLimit function returns the value limited by the lower limit. See the following equation:

o min, x <min
GFLIB_LowerLimit (x, min) = else

Figure 33. Algorithm formula

2.7.1 Available versions

This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result

may saturate.

The available versions of the GFLIB_LowerLimit functions are shown in the following table:

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

31/79

NXP Semiconductors

Algorithms in detail

Table 8. Function versions

Function name Input type Result Description
t
Input Lower ype
limit

GFLIB_LowerLimit_F16 frac16_t |frac16_t |frac16_t | The inputs are 16-bit fractional values within the range <-1 ;
1). The function returns a 16-bit fractional value in the range
<f16LLIm ; 1).

GFLIB_LowerLimit_F32 frac32_t |frac32_t |frac32_t |The inputs are 32-bit fractional values within the range <-1 ;
1). The function returns a 32-bit fractional value in the range
<f32LLim ; 1).

2.7.2 Declaration
The available GFLIB_LowerLimit functions have the following declarations:
fracl6é t GFLIB LowerLimit F16(fracl6 t flé6Val, fracl6 t f16LLim)

frac32 t GFLIB LowerLimit F32(frac32_ t f32Val, frac32 t £32LLim)

2.7.3 Function use

The use of the GFLIB_LowerLimit function is shown in the following examples:

Fixed-point version:
#include "gflib.h"
static fraclé t fl6Val, fl6LLim, fl6Result;
void main (void)
{
f16LLim = FRAC16(0.3);

fléval = FRAC16(0.1);

fl6Result = GFLIB LowerLimit F16(fl6Val, fl6LLim);

2.8 GFLIB_UpperLimit

The GFLIB_UpperLimit function returns the value limited by the upper limit. See the following equation:

o max, X > max
GFLIB_UpperLimit(x, max) = { X else

Figure 34. Algorithm formula

2.8.1 Available versions
This function is available in the following versions:

» Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result
may saturate.

The available versions of the GFLIB_UpperLimit functions are shown in the following table:

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 32/79

NXP Semiconductors

Algorithms in detail

Table 9. Function versions

Function name Input type Result Description
type
Input Upper yp
limit

GFLIB_UpperLimit_F16 |frac16_t |frac16_t |frac16_t | The inputs are 16-bit fractional values within the range <-1 ;

1). The function returns a 16-bit fractional value in the range
<-1; f16ULIim>.

GFLIB_UpperLimit_F32 frac32_t |frac32_t |frac32_t |The inputs are 32-bit fractional values within the range <-1 ;

1). The function returns a 32-bit fractional value in the range
<-1; f32ULim>.

2.8.2 Declaration
The available GFLIB_UpperLimit functions have the following declarations:
fraclé t GFLIB UpperLimit Fl16(fraclé t fleéVal, fracl6 t f16ULim)

frac32 t GFLIB UpperLimit F32(frac32_t f32Val, frac32 t £32ULim)

2.8.3 Function use

The use of the GFLIB_UpperLimit function is shown in the following examples:

Fixed-point version:
#include "gflib.h"
static fraclé t fl6Val, f16ULim, fl6Result;
void main (void)
{
£f16ULim = FRAC16(0.3);

fléval = FRAC16(0.9);

fl6Result = GFLIB UpperLimit F16(fl6Val, f16ULim) ;

2.9 GFLIB_VectorLimit1

The GFLIB_VectorLimit1 function returns the limited vector by an amplitude. This limitation is calculated to achieve that the first
component remains unchanged (if the limitation factor allows).

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 33/79

NXP Semiconductors

Algorithms in detail

Out: B

L J

Figure 35. Input and releated output

The GFLIB_VectorLimit1 function limits the amplitude of the input vector. The input vector a, b components are passed to the
function as the input arguments. The resulting limited vector is transformed back into the a, b components. The limitation is

performed according to the following equations:

7{ a, la| <lim
~ \limesgn(a), else

b* =

b, \b| < \lim? — a*2
\’limz—a*2 esgn(b), else

where:
* a, b are the vector coordinates
* a* b* are the vector coordinates after limitation
¢ lim is the maximum amplitude
The relationship between the input and limited output vectors is shown in Figure 35.

If the amplitude of the input vector is greater than the input Lim value, the function calculates the new coordinates from the Lim
value; otherwise the function copies the input values to the output.

2.9.1 Available versions

The function is available in the following versions:
 Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result

may saturate.

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide 34/79

NXP Semiconductors

Algorithms in detail
The available versions of the GFLIB_VectorLimit1 function are shown in the following table:

Table 10. Function versions

Function name Input type Output type Result

Input Limit type

GFLIB_VectorLimit1_F16 GFLIB_VECTORLIMIT_T_F16 * frac16_t | GFLIB_VECTORLIMIT_T_F16 * void

Limitation of a two-component 16-bit fractional vector within the range <-1 ; 1) with a 16-bit
fractional limitation amplitude. The function returns a two-component 16-bit fractional vector.

NOTE
This algorithm can use the MMDVSQ peripheral module. See the following sections for more details:

» #unique_35 in Kinetis Design Studio
* Memory-mapped divide and square root support in Keil yVision

* Memory-mapped divide and square root support in IAR Embedded Workbench

2.9.2 GFLIB_VECTORLIMIT_T_F16 type description

Variable name Input type Description
f16A frac16_t A-component; 16-bit fractional type.
f16B frac16_t B-component; 16-bit fractional type.

2.9.3 Declaration

The available GFLIB_VectorLimit1 functions have the following declarations:

fraclé t GFLIB VectorLimitl F16(const GFLIB VECTORLIMIT T F16 *psVectorlIn,

fracle t fléLim,
GFLIB VECTORLIMIT T F16 *psVectorOut)

2.9.4 Function use

The use of the GFLIB_VectorLimit1 function is shown in the following examples:

Fixed-point version:
#include "gflib.h"

static GFLIB_VECTORLIMIT T _F1l6 sVector, sResult;
static fracl6_t fl6MaxAmpl;

void main (void)

{
fle6MaxAmpl = FRAC16(0.5);
sVector.f1l6A = FRAC1l6(-0.4);
sVector.f16B = FRAC16(0.2);

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide 35/79

NXP Semiconductors

Algorithms in detail

GFLIB VectorLimitl F16(&sVector, fl6MaxAmpl, &sResult);

2.10 GFLIB_Hyst

The GFLIB_Hyst function represents a hysteresis (relay) function. The function switches the output between two predefined
values. When the input is higher than the upper threshold, the output is high; when the input is lower than the lower threshold, the
output is low. When the input is between the two thresholds, the output retains its value. See the following figure:

A
Out

OutVaLOn

A 4

HystOff HystOn In

A J

OutValOff

Figure 36. GFLIB_Hyst functionality

The four points in the figure are to be set up in the parameters structure of the function. For a proper functionality, the HystOn point
must be greater than the HystOff point.
2.10.1 Available versions
This function is available in the following versions:
» Fractional output - the output is the fractional portion of the result, and the result is within the range <-1; 1).

The available versions of the GFLIB_Hyst function are shown in the following table.

Table 11. Function versions

Function name Input Parameters Result Description
type type
GFLIB_Hyst_F16 |frac16_t |GFLIB_HYST_T_F16* frac16_t | The input is a 16-bit fractional value within the

range <-1; 1). The output is a two-state 16-bit
fractional value.

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 36/79

NXP Semiconductors

2.10.2 GFLIB_HYST_T_F16

Algorithms in detail

Variable name Input Description
type

f16HystOn frac16_t | The point where the output sets the output to the f160utValOn value when the input rises.
Set by the user.

f16HystOff frac16_t | The point where the output sets the output to the f160utValOff value when the input falls.
Set by the user.

f160utValOn frac16_t | The ON value. Set by the user.

f160utValOff frac16_t | The OFF value. Set by the user.

f160utState frac16_t | The output state. Set by the algorithm. Must be initialized by the user.

2.10.3 Declaration

The available GFLIB_Hyst functions have the following declarations:

fracl6 t GFLIB Hyst F16(fraclé t fl6val, GFLIB HYST T F16 *psParam)

2.10.4 Function use

The use of the GFLIB_Hyst function is shown in the following examples:

Fixed-point version:
#include "gflib.h"

static fracl6 t fl6Result, fl6InVal;
static GFLIB_HYST T F16 sParam;

void main (void)

{
f16Inval = FRACl6(-0.11);
sParam.fl6HystOn = FRAC16(0.5);
sParam.fl6HystOff = FRAC16(-0.1);
sParam.fl60utValOn = FRAC16(0.7);
sParam.fl60utvValOff = FRAC16(0.3);
sParam.floOutState = FRAC1l6(0.0);

fl6Result = GFLIB Hyst F16(fl6InVal, &sParam);

2.11 GFLIB_Lut1D

The GFLIB_Lut1D function implements the one-dimensional look-up table.

=N
Y=yt o= x)

Figure 37.

where:

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

37/79

NXP Semiconductors

Algorithms in detail

* yis the interpolated value
* y4 and y, are the ordinate values at the beginning and end of the interpolating interval, respectively
* X4 and x, are the abscissa values at the beginning and end of the interpolating interval, respectively

» X is the input value provided to the function in the X input argument

/ Table points

Figure 38. Algorithm diagram - fractional version

The GFLIB_Lut1D function fuses a table of the precalculated function points. These points are selected with a fixed step.

The fractional version of the algorithm has a defined interval of inputs within the range <-1; 1>. The last table point is intended for
the real value of 1, not the value of 1 from the fraction numbers, which is lower than the real value of 1. The calculations are based
on the same intervals among the table points. The number of points must be 2" + 1, where n can range from 1 through to 15.

The function finds two nearest precalculated points of the input argument, and calculates the output value using the linear
interpolation between these two points.

2.11.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is within the range <-1; 1).
The available versions of the GFLIB_Lut1D function are shown in the following table:

Table 12. Function versions

Function name Input type Parameters Result type

Table Table size

GFLIB_Lut1D_F16 frac16_t frac16_t* uint16_t frac16_t

The input arguments are the 16-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a table which contains the 16-bit fractional values of the look-up
table, and the size of the look-up table. The table size parameter can be in the range <1 ; 15> (that means

Table continues on the next page...

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 38/79

NXP Semiconductors

Algorithms in detail

Table 12. Function versions (continued)

Function name Input type Parameters Result type

Table Table size

the parameter is log, of the number of points + 1). The output is the interpolated 16-bit fractional value
computed from the look-up table.

GFLIB_Lut1D_F32 |frac32_t frac32_t* uint16_t frac32_t

The input arguments are the 32-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a table which contains the 32-bit fractional values of the look-up
table, and the size of the look-up table. The table size parameter can be in the range <1 ; 15> (that means
the parameter is log, of the number of points + 1). The output is the interpolated 32-bit fractional value
computed from the look-up table.

2.11.2 Declaration

The available GFLIB_Lut1D functions have the following declarations:

fracl6 t GFLIB LutlD Fl6(fracl6 tfléX, const fracl6 t *pflé6Table, uintlé t ulé6TableSize)

2.11.3 Function use

The use of the GFLIB_Lut1D function is shown in the following examples:

Fixed-point version:
#include "gflib.h"

static fracl6_t fl6Result, fl6X;

static uintl6 t ulé6TableSize;

static fraclé_t fl6Table[9] = {FRAC16(0.8), FRAC16(0.1), FRAC16(-0.2), FRAC16(0.7),
FRAC16(0.2), FRAC16(-0.3), FRAC16(-0.8), FRAC16(0.91), FRAC16(0.99)};

void main (void)

{
ul6TableSize = 3; /* size of table = 2 ~ 3 + 1 */
f16X = FRAC16(0.625) ; /* fl6X = 0.625 */

/* fléResult = value from look-up table between 7th and 8th position */
fl6Result = GFLIB LutlD F16(f16X, fl6Table, ul6TableSize);

212 GFLIB_LutPer1D

The GFLIB_LutPer1D function approximates the one-dimensional arbitrary user function using the interpolation look-up method.
It is periodic.

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 39/79

NXP Semiconductors

Algorithms in detail

Y™
Y=y tn=x0-x)

Figure 39.

where:
* yis the interpolated value
* y4 and y, are the ordinate values at the beginning and end of the interpolating interval, respectively
* x4 and x, are the abscissa values at the beginning and end of the interpolating interval, respectively

» x is the input value provided to the function in the X input argument

/ Table points

Figure 40. Algorithm diagram - fractional version

The GFLIB_LutPer1D fuses a table of the pre-calculated function points. These points are selected with a fixed step.

The fractional version of the algorithm has a defined interval of inputs within the range <-1; 1>. The last table point is intended
for the real value of 1 not the value of 1 from the fraction numbers, which is lower than the real value of 1. The calculations are
based on the same intervals among the table points. The floating-point version of the algorithm has a defined interval of inputs
within the range <min ; max>, where the min and max values are the parameters of the algorithms. The number of points is within
the range <2 ; 65535>, where the first point lies at the min position, and the last point lies at the max position.

The function finds two nearest precalculated points of the input argument, and calculates the output value using the linear
interpolation between these two points. This algorithm serves for periodical functions. That means that when the input argument
lies behind the last pre-calculated point of the function, the interpolation is calculated between the last and first points of the table.
2.12.1 Available versions

This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is within the range <-1; 1).

The available versions of the GFLIB_LutPer1D function are shown in the following table:

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 40/79

NXP Semiconductors

Algorithms in detail

Table 13. Function versions

Function name Input type Parameters Result type

Table Table size

GFLIB_LutPer1D_F16 frac16_t frac16_t* uint16_t frac16_t

The input arguments are the 16-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a structure which contains the 16-bit fractional values of the
periodic look-up table, and the size of the look-up table. The table size parameter can be in the range
<1 ; 15> (that means the parameter is log, of the number of points). The output is the interpolated
16-bit fractional value computed from the periodic look-up table.

GFLIB_LutPer1D_F32 frac32_t frac32_t* uint16_t frac32_t

The input arguments are the 32-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a table which contains the 32-bit fractional values of the
periodic look-up table, and the size of the periodic look-up table. The table size parameter can be
in the range <1 ; 15> (that means the parameter is log, of the number of points). The output is the
interpolated 32-bit fractional value computed from the periodic look-up table.

2.12.2 Declaration

The available GFLIB_LutPer1D functions have the following declarations:

fraclé_t GFLIB LutPerlD F16(fracl6 tfl6X, const fracl6 t *pfléTable, uintlé t ulé6TableSize)

2.12.3 Function use

The use of the GFLIB_LutPer1D function is shown in the following examples:

Fixed-point version:
#include "gflib.h"

static fracl6 t fl6Result, fl6X;

static uintl6 t ulé6TableSize;

static fraclé_t flé6Table[8] = {FRAC16(0.8), FRAC16(0.1), FRAC16(-0.2), FRAC16(0.7),
FRAC16(0.2), FRAC16(-0.3), FRAC16(-0.8), FRAC16(0.91)};

void main (void)

{
ul6TableSize = 3; /* size of table = 2 ~ 3 */
£f16X = FRAC16(0.25); /* fl6X = 0.25 */

/* fl6Result = value from periodic look-up table at 6th position */
fl6Result = GFLIB LutPerlD F16(f16X, fl6Table, ul6TableSize);

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 41/79

NXP Semiconductors

Algorithms in detail
213 GFLIB_Ramp

The GFLIB_Ramp function calculates the up / down ramp with the defined fixed-step increment / decrement. These two
parameters must be set by the user.
For a proper use, it is recommended that the algorithm is initialized by the GFLIB_Ramplnit function, before using the

GFLIB_Ramp function. The GFLIB_Ramplnit function initializes the internal state variable of the GFLIB_Ramp algorithm with a
defined value. You must call the init function when you want the ramp to be initialized.

The use of the GFLIB_Ramp function is as follows: If the target value is greater than the ramp state value, the function adds the
ramp-up value to the state output value. The output will not trespass the target value, that means it will stop at the target value.
If the target value is lower than the state value, the function subtracts the ramp-down value from the state value. The output is

limited to the target value, that means it will stop at the target value. This function returns the actual ramp output value. As time

passes, it is approaching the target value by step increments defined in the algorithm parameters' structure. The functionality of
the implemented ramp algorithm is explained in the next figure:

A : : ;
Output :
pmmmmms :
. ‘.
i i
: : 1 1
In HE \
f i e i S * [
i : | : L
I H 1
: ll Qut : : :
T A SO SO S SR 1_
1 [
] 1
____________ F A S S [
[} 1
i 1
RampUp H : : ; ‘
i RampDown : ;]
[SRR S AP SR 1
7 1
£ 1
I [}
f 1
P 1
D e e e e -
i 1
13 1
) 1
13 1
& L} :
f ___________ __
;i :
I
i
I
ket k P : : : : : : é Sample
Figure 41. GFLIB_Ramp functionality
2.13.1 Available versions

This function is available in the following versions:
» Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result
may saturate.

The available versions of the GFLIB_Ramplnit functions are shown in the following table:
Table 14. Init function versions

Function name Input Parameters Result Description
type type
GFLIB_Ramplnit_F16 |frac16_t | GFLIB_RAMP_T_F16* |void

Input argument is a 16-bit fractional value that
represents the initialization value. The parameters'

structure is pointed to by a pointer. The input data
value is in the range <-1; 1).

Table continues on the next page...

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide

42/79

NXP Semiconductors

Algorithms in detail

Table 14. Init function versions (continued)

Function name Input Parameters Result Description
type type
GFLIB_Ramplnit_F32 |frac32_t | GFLIB_RAMP_T_F32* |void Input argument is a 32-bit fractional value that

represents the initialization value. The parameters'
structure is pointed to by a pointer. The input data
value is in the range <-1; 1).

The available versions of the GFLIB_Ramp functions are shown in the following table:

Table 15. Function versions

Function name Input Parameters Result Description
type type

GFLIB_Ramp_F16 |frac16_t |GFLIB_RAMP_T_F16* |frac16_t |Input argumentis a 16-bit fractional value that
represents the target output value. The parameters'
structure is pointed to by a pointer. The function returns
a 16-bit fractional value, which represents the actual
ramp output value. The input data value is in the range
<-1; 1), and the output data value is in the range <-1; 1).

GFLIB_Ramp_F32 |frac32_t | GFLIB_RAMP_T_F32* |frac32_t |Input argumentis a 32-bit fractional value that
represents the target output value. The parameters'
structure is pointed to by a pointer. The function returns
a 32-bit fractional value, which represents the actual
ramp output value. The input data value is in the range
<-1;1), and the output data value is in the range <-1; 1).

2.13.2 GFLIB_RAMP_T_F16

Variable name Type Description
f16State frac16_t | Actual value - controlled by the algorithm.
f16RampUp frac16_t | Value of the ramp-up increment. The data value is in the range <0 ; 1). Set by the user.
f16RampDown frac16_t | Value of the ramp-down increment. The data value is in the range <0 ; 1). Set by the user.

2.13.3 GFLIB_RAMP_T_F32

Variable name Type Description
f32State frac32_t | Actual value - controlled by the algorithm.
f32RampUp frac32_t | Value of the ramp-up increment. The data value is in the range <0 ; 1). Set by the user.
f32RampDown frac32_t | Value of the ramp-down increment. The data value is in the range <0 ; 1). Set by the user.

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 43/79

NXP Semiconductors

2.13.4 Declaration

The available GFLIB_Ramplnit functions have the following declarations:

void GFLIB RampInit F16(fracl6 t fl6InitVal, GFLIB RAMP T F16 *psParam)
void GFLIB RampInit F32(frac32 t f32InitVal, GFLIB RAMP T F32 *psParam)

The available GFLIB_Ramp functions have the following declarations:
fraclé t GFLIB Ramp F16(fraclé t flé6Target, GFLIB RAMP T F16 *psParam)

frac32_t GFLIB Ramp F32(frac32 t f32Target, GFLIB RAMP T F32 *psParam)

2.13.5 Function use

The use of the GFLIB_Ramplnit and GFLIB_Ramp functions is shown in the following examples:

Algorithms in detail

Fixed-point version:
#include "gflib.h"

static fraclé t fl6InitVal;
static GFLIB RAMP T F16 sParam;
static fraclé6 t flé6Target, fl6Result;

void Isr (void) ;

void main (void)

{
sParam.fl6RampUp = FRAC16(0.1);
sParam.fl6RampDown = FRAC16(0.02);
fl6Target = FRAC16(0.75);
fl6InitVal = FRAC16(0.9);
GFLIB RampInit F16(fl16InitVal, &sParam);

/* periodically called function */
void Isr ()
{
fl6Result = GFLIB Ramp F16 (fl6Target, &sParam);

2.14 GFLIB_DRamp

The GFLIB_DRamp function calculates the up / down ramp with the defined step increment / decrement. The algorithm
approaches the target value when the stop flag is not set, and/or returns to the instant value when the stop flag is set.

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

44/79

NXP Semiconductors

Algorithms in detail

Ramp output

\ Instant
L]

Ramp-up-satl

Ramp-down-sat

Stop flag ~__

Reachﬂag\
f Prrrttrrrrrerrt et eIty

Dyn. ramp Dyn. ramp Dyn. ramp
initialization periodical call periodical call

Figure 42. GFLIB_DRamp functionality

For a proper use, it is recommended that the algorithm is initialized by the GFLIB_DRamplnit function, before using the
GFLIB_DRamp function. This function initializes the internal state variable of GFLIB_DRamp algorithm with the defined value. You
must call this function when you want the ramp to be initialized.

The GFLIB_DRamp function calculates a ramp with a different set of up / down parameters, depending on the state of the stop
flag. If the stop flag is cleared, the function calculates the ramp of the actual state value towards the target value, using the up or
down increments contained in the parameters' structure. If the stop flag is set, the function calculates the ramp towards the instant
value, using the up or down saturation increments.

If the target value is greater than the state value, the function adds the ramp-up value to the state value. The output cannot be
greater than the target value (case of the stop flag being cleared), nor lower than the instant value (case of the stop flag being set).

If the target value is lower than the state value, the function subtracts the ramp-down value from the state value. The output
cannot be lower than the target value (case of the stop flag being cleared), nor greater than the instant value (case of the stop flag
being set).

If the actual internal state reaches the target value, the reach flag is set.

2.14.1 Available versions
The function is available in the following versions:

» Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result
may saturate.

The available versions of the GFLIB_DRamplnit function are shown in the following table:

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 45/79

NXP Semiconductors

Algorithms in detail

Table 16. Init function versions

Function name Input Parameters Result Description
type type
GFLIB_DRamplnit_F16 |frac16_t |GFLIB_DRAMP_T_F16* |void Input argument is a 16-bit fractional value

that represents the initialization value. The
parameters' structure is pointed to by a pointer.
The input data value is in the range <-1 ; 1).

GFLIB_DRamplnit_F32 |frac32_t |GFLIB_DRAMP_T_F32* |void Input argument is a 32-bit fractional value

that represents the initialization value. The
parameters' structure is pointed to by a pointer.
The input data value is in the range <-1 ; 1).

The available versions of the GFLIB_DRamp function are shown in the following table:

Table 17. Function versions

Function name Input type Parameters Result type
Target Instant Stop flag

GFLIB_DRamp_F1 | frac16_t frac16_t bool_t * GFLIB_DRAMP_T_F16* frac16_t

6
The target and instant arguments are 16-bit fractional values. The parameters' structure is pointed to by a
pointer. The function returns a 16-bit fractional value, which represents the actual ramp output value. The
input data values are in the range of <-1 ; 1), the Stop flag parameter is a pointer to a boolean value, and
the output data value is in the range <-1; 1).

GFLIB_DRamp_F3 | frac32_t frac32_t bool_t * GFLIB_DRAMP_T_F32* frac32_t

2

The target and instant arguments are 32-bit fractional values. The parameters' structure is pointed to by a
pointer. The function returns a 32-bit fractional value, which represents the actual ramp output value. The
input data values are in the range <-1; 1), the Stop flag parameter is a pointer to a boolean value, and the
output data value is in the range <-1; 1).

2.14.2 GFLIB_DRAMP_T_F16

Variable name Type Description

f16State frac16_t | Actual value - controlled by the algorithm.

f16RampUp frac16_t | Value of non-saturation ramp-up increment. The data value is in the range <0 ; 1). Set by the
user.

f16RampDown frac16_t | Value of non-saturation ramp-down increment. The data value is in the range <0 ; 1). Set by
the user.

f16RampUpSat frac16_t | Value of saturation ramp-up increment. The data value is in the range <0 ; 1). Set by the
user.

f16RampDownSat |frac16_t |Value of saturation ramp-down increment. The data value is in the range <0 ; 1). Set by the
user.

bReachFlag bool_t If the actual state value reaches the target value, this flag is set, otherwise, it is cleared. Set
by the algorithm.

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 46 /79

NXP Semiconductors

Algorithms in detail

2.14.3 GFLIB_LDRAMP_T_F32

Variable name Type Description

f32State frac32_t | Actual value - controlled by the algorithm.

f32RampUp frac32_t | Value of non-saturation ramp-up increment. The data value is in the range <0 ; 1). Set by the
user.

f32RampDown frac32_t | Value of non-saturation ramp-down increment. The data value is in the range <0 ; 1). Set by
the user.

f32RampUpSat frac32_t | Value of saturation ramp-up increment. The data value is in the range <0 ; 1). Set by the
user.

f32RampDownSat |frac32_t |Value of saturation ramp-down increment. The data value is in the range <0 ; 1). Set by the
user.

bReachFlag bool_t If the actual state value reaches the target value, this flag is set, otherwise, it is cleared. Set
by the algorithm.

2.14.4 Declaration

The available GFLIB_DRamplnit functions have the following declarations:

void GFLIB DRampInit F16(fracl6 t fl6InitVal, GFLIB DRAMP T F16 *psParam)
void GFLIB DRampInit F32(frac32 t f32InitVal, GFLIB DRAMP T F32 *psParam)

The available GFLIB_DRamp functions have the following declarations:
fraclé t GFLIB DRamp F16(fracl6 t fl6Target, fracl6 t flé6Instant, const bool t *pbStopFlag,
GFLIB DRAMP T F16 *psParam)

frac32_t GFLIB_DRamp F32(frac32 t f32Target, frac32 t f32Instant, const bool t *pbStopFlag,
GFLIB DRAMP T F32 *psParam)

2.14.5 Function use
The use of the GFLIB_DRamplnit and GFLIB_DRamp functions is shown in the following examples:

Fixed-point version:
#include "gflib.h"

static fracl6 t fl6Initval, fl6Target, flé6Instant, flé6Result;
static GFLIB DRAMP T F16 sParam;
static bool t bStopFlag;

void Isr (void);

void main (void)

{
sParam.fl6RampUp = FRAC16(0.05);
sParam.fl6RampbDown = FRAC16(0.02);

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 47179

NXP Semiconductors

Algorithms in detail

sParam. fl16RampUpSat = FRAC16(0.025) ;
sParam.fl6RampDownSat = FRAC16(0.01);
fl6Target = FRACL16(0.7);

fl6Initval = FRAC16(0.3);

fl6Instant = FRAC16(0.6);

bStopFlag = FALSE;

GFLIB DRampInit F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr ()

{
fl6Result = GFLIB DRamp F16 (fl6Target, flé6Instant, &bStopFlag, &sParam);

2.15 GFLIB_FlexRamp

The GFLIB_FlexRamp function calculates the up/down ramp with a fixed-step increment that is calculated according to the
required speed change per a defined duration. These parameters must be set by the user.

The GFLIB_FlexRamp algorithm consists of three functions that must be used for a proper functionality of the algorithm:
* GFLIB_FlexRamplnit - this function initializes the state variable with a defined value and clears the reach flag
» GFLIB_FlexRampCalcincr - this function calculates the increment and clears the reach flag
» GFLIB_FlexRamp - this function calculates the ramp in the periodically called loop

For a proper use, it is recommended to initialize the algorithm by the GFLIB_FlexRamplnit function. The GFLIB_FlexRamplnit
function initializes the internal state variable of the algorithm with a defined value and clears the reach flag. Call the init function
when you want to initialize the ramp.

To calculate the increment, use the GFLIB_FlexRampCalcincr function. This function is called at the point when you want to
change the ramp output value. This function's inputs are the target value and duration. The target value is the destination value
that you want to get to. The duration is the time required to change the ramp output from the actual state to the target value. To be
able to calculate the ramp increment, fill the control structure with the sample time, that means the period of the loop where the
GFLIB_FlexRamp function is called. The structure also contains a variable which determines the maximum value of the increment.
It is necessary to set it up too. The equation for the increment calculation is as follows:

V=V
I= tT ST,

Figure 43.

where:
* |is the increment
* Viis the target value
» Vs is the state (actual) value (in the structure)
» Tis the duration of the ramp (to reach the target value starting at the state value)
* Tgis the sample time, that means the period of the loop where the ramp algorithm is called (set in the structure)
If the increment is greater than the maximum increment (set in the structure), the increment uses the maximum increment value.

As soon as the new increment is calculated, call the GFLIB_FlexRamp algorithm in the periodical control loop. The function works
as follows: The function adds the increment to the state value (from the previous step), which results in a new state. The new state
is returned by the function. As the time passes, the algorithm is approaching the target value. If the new state trespasses the target

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 48 /79

NXP Semiconductors

Algorithms in detail

value, that new state is limited to the target value and the reach flag is set. The functionality of the implemented algorithm is shown

in this figure:

Duration

Duration

,,,

% Increment_l __________________ :.%
Y
R AARARARA RSN ARARRARRARRRIRARRARARRSRRRAN

increment calculation increment calculation

Figure 44. GFLIB_FlexRamp functionality

2.15.1 Available versions

This function is available in the following versions:
» Fractional output - the output is the fractional portion of the result; the result is within the range <-1; 1). The input parameters
are the fractional and accumulator types.

The available versions of the GFLIB_FlexRamplnit function are shown in the following table:

Table 18. Init function versions

Function name Input Parameters Result Description

type type
GFLIB_FLEXRAMP_T_F32* void The input argument is a 16-bit fractional
value that represents the initialization
value. The parameters' structure is
pointed to by a pointer. The input data
value is in the range <-1; 1).

GFLIB_FlexRamplnit_F16 frac16_t

The available versions of the GFLIB_FlexRamp function are shown in the following table:

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide 49/79

NXP Semiconductors

Algorithms in detail

Table 19. Increment calculation function versions

Function name Input type Parameters Result

type

Target Duration

GFLIB_FlexRampCalcincr_F16 frac16_t acc32_t GFLIB_FLEXRAMP_T_F32* void

The input arguments are a 16-bit fractional value in the range <-1; 1) that represents
the target output value and a 32-bit accumulator value in the range (0 ; 65536.0)

that represents the duration of the ramp (in seconds) to reach the target value. The
parameters' structure is pointed to by a pointer.

Table 20. Function versions

Function name Parameters Result Description
type

GFLIB_FlexRamp_F16 GFLIB_FLEXRAMP_T_F32* frac16_t | The parameters' structure is pointed to by a pointer.
The function returns a 16-bit fractional value, which
represents the actual ramp output value. The output
data value is in the range <-1; 1).

2.156.2 GFLIB_FLEXRAMP_T_F32

Variable name Type Description

f32State frac32_t | The actual value. Controlled by the GFLIB_FlexRamplnit_F16 and GFLIB_FlexRamp_F16
algorithms.

f32Incr frac32_t | The value of the flex ramp increment. Controlled by the GFLIB_FlexRampCalclncr_F16
algorithm.

f32Target frac32_t | The target value of the flex ramp algorithm. Controlled by the GFLIB_FlexRampCalclncr_F16
algorithm.

f32Ts frac32_t | The sample time, that means the period of the loop where the GFLIB_FlexRamp_F16
algorithms are periodically called. The data value (in seconds) is in the range (0 ; 1). Set
by the user.

f32IncrMax frac32_t | The maximum value of the flex ramp increment. The data value is in the range (0 ; 1). Set by
the user.

bReachFlag bool_t The reach flag. This flag is controlled by the GFLIB_FlexRamp_F16 algorithm. It is cleared
by the GFLIB_FlexRamplnit_F16 and GFLIB_FlexRampCalclncr_F16 algorithms.

2.15.3 Declaration

The available GFLIB_FlexRamplnit functions have the following declarations:

void GFLIB FlexRampInit F16(fracl6 t f16InitVal, GFLIB FLEXRAMP T F32 *psParam)

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 50/79

NXP Semiconductors

Algorithms in detail

The available GFLIB_FlexRampCalcIncr functions have the following declarations:

void GFLIB FlexRampCalcIncr F16(fraclée_t fléTarget, acc32_t a32Duration,

GFLIB_FLEXRAMP T F32 *psParam)

The available GFLIB_FlexRamp functions have the following declarations:

fracl6_t GFLIB_FlexRamp F16 (GFLIB_FLEXRAMP T F32 *psParam)

2.15.4 Function use

The use of the GFLIB_FlexRamplnit, GFLIB_FlexRampCalclncr, and GFLIB_FlexRamp functions is shown in the
following examples:

Fixed-point version:
#include "gflib.h"

static fraclé t fl6InitVal;

static GFLIB_FLEXRAMP T F32 sFlexRamp;
static fraclé t flé6Target, fl6RampResult;
static acc32 t a32RampDuration;

void Isr (void) ;

void main (void)

{

/* Control loop period is 0.002 s; maximum increment value is 0.15 */
sFlexRamp.f32Ts = FRAC32 (0.002) ;
sFlexRamp.f32IncrMax = FRAC32(0.15);

/* Initial value to 0 */
fl6InitVal = FRAC16(0.0);

/* Flex ramp initialization */
GFLIB FlexRampInit F16(fl16InitVal, &sFlexRamp);

/* Target value is 0.7 in duration of 5.3 s */
fl6Target = FRACL16(0.7);
a32RampDuration = ACC32(5.3);;

/* Flex ramp increment calculation */
GFLIB FlexRampCalcIncr F16(fl6Target, a32RampDuration, &sFlexRamp);

/* periodically called control loop with a period of 2 ms */
void Isr ()

{

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

51/79

NXP Semiconductors

Algorithms in detail

fl6RampResult = GFLIB FlexRamp F16 (&sFlexRamp) ;

2.16 GFLIB_DFlexRamp

The GFLIB_DFlexRamp function calculates the up/down ramp with a fixed-step increment that is calculated according to the
required speed change per a defined duration.These parameters must be set by the user. The algorithm has stop flags. If none
of them is set, the ramp behaves normally. If one of them is set, the ramp can run in the opposite direction.

The GFLIB_DFlexRamp algorithm consists of three functions that must be used for a proper functionality of the algorithm:
» GFLIB_DFlexRamplnit - this function initializes the state variable with a defined value and clears the reach flag
» GFLIB_DFlexRampCalclincr - this function calculates the increment and clears the reach flag
» GFLIB_DFlexRamp - this function calculates the ramp in the periodically called loop

For a proper use, initialize the algorithm by the GFLIB_DFlexRamplnit function. The GFLIB_DFlexRamplnit function initializes the
internal state variable of the algorithm with a defined value and clears the reach flag. Call the init function when you want to initialize
the ramp.

To calculate the increment, use the GFLIB_DFlexRampCalcincr function. Call this function when you want to change the ramp
output value. This function's inputs are the target value and duration, and the ramp increments for motoring and generating
saturation modes. The target value is the destination value that you want to get to. The duration is the time required to change
the ramp output from the actual state to the target value. To calculate the ramp increment, fill the control structure with the sample
time, that means the period of the loop where the GFLIB_DFlexRamp funciton is called. The structure also contains a variable
which determines the maximum value of the increment. It is necessary to set it up too. The equation for the increment calculation
is as follows:

Figure 45.

where:

* |is the increment

» Viis the target value

» V; is the state (actual) value (in the structure)

» Tis the duration of the ramp (to reach the target value starting at the state value)

* T is the sample time, that means the period of the loop where the ramp algorithm is called (set in the structure)
If the increment is greater than the maximum increment (set in the structure), the increment uses the maximum increment value.
The state, target, and instant values must have the same sign, otherwise the saturation modes don't work properly.

As soon as the new increment is calculated, you can call the GFLIB_DFlexRamp algorithm in the periodical control loop. If none
of the stop flags is set, the function works as follows: The function adds the increment to the state value (from the previous step),
which results in a new state. The new state is returned by the function. As time passes, the algorithm is approaching the target
value. If the new state trespasses the target value that new state is limited to, the target value and the reach flag are set. The
functionality of the implemented algorithm is shown in the following figure:

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 52/79

NXP Semiconductors

Algorithms in detail

Duration N . H Duration

Increment
Gen-sat-mode

Increment
Mot-sat-mode

Instant)
\ i |
\ T~ T

Target - State

***** :L*"""”""")r 1 Dyn. flex ramp
Increment ; output (State)

Motoring mode : 1 : Sample time
stop flag | T s
_ ! | |

Generating mode
stop flag

__—— Reachflag

! ‘TTT

Dyn. flex ramp Dyn. flex ramp Dyn. flex ramp
initialization periodical call periodical call
Dyn. flex ramp Dyn. flex ramp
increment calculation increment calculation

Figure 46. GFLIB_DFlexRamp functionality

If the motoring mode stop flag is set and the absolute value of the target value is greater than the absolute value of the state value,
the function uses the increment for the motoring saturation mode to return to the instant value. Use case: when the application is
in the saturation mode and cannot supply more power to increase the speed, then a saturation (motoring mode) flag is generated.
To get out of the saturation, the ramp output value is being reduced.

If the generating mode stop flag is set and the absolute value of the target value is lower than the absolute value of the state value,
the funcion uses the increment for the generating saturation mode to return to the instant value. Use case: when the application is
braking a motor and voltage increases on the DC-bus capacitor, then a saturation (generating mode) flag is generated. To avoid
trespassing the DC-bus safe voltage limit, the speed requirement is increasing to disipate the energy of the capacitor.

2.16.1 Available versions

This function is available in the following versions:

» Fractional output - the output is the fractional portion of the result; the result is within the range <-1; 1). The input parameters
are the fractional and accumulator types.

The available versions of the GFLIB_DFlexRamplnit functions are shown in the following table:

Table 21. Init function versions

Function name Input Parameters Result Description
type type
GFLIB_FlexRamplnit_F16 frac16_t | GFLIB_DFLEXRAMP_T_F32* |void The input argument is a 16-bit fractional

value that represents the initialization
value. The parameters' structure is
pointed to by a pointer. The input data
value is in the range <-1; 1).

The available versions of the GFLIB_DFlexRamp functions are shown in the following table:

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 53/79

NXP Semiconductors

Algorithms in detail

Table 22. Increment calculation function versions

Function name

Input type Parameters Result
type

Target Duration | Incr. sat- | Incr. sat-
mot gen

GFLIB_DFlexRampCalcincr_F16 frac16_t |acc32_t frac32_t |frac32_t | GFLIB_DFLEXRAMP_T_F32* |void

The input arguments are 16-bit fractional values in the range <-1 ; 1) that represent

the target output value and a 32-bit accumulator value in the range (0 ; 65536.0) that
represents the duration (in seconds) of the ramp to reach the target value. The other two
arguments are increments for the saturation mode when in the motoring and generating
modes. The parameters' structure is pointed to by a pointer.

Table 23. Function versions

Function name Input type Parameters Result
e
Instant | Stop flag- | Stop flag- typ
mot gen
GFLIB_DFlexRamp_F16 frac16_t | bool_t* bool_t* GFLIB_DFLEXRAMP_T_F32* frac16_t

The input argument is a 16-bit fractional value in the range <-1 ; 1) that represents the
measured instant value. The stop flags are pointers to the bool_t types. The parameters'
structure is pointed to by a pointer. The function returns a 16-bit fractional value, which
represents the actual ramp output value. The output data value is in the range <-1; 1).

2.16.2 GFLIB_DFLEXRAMP_T_F32

Variable name Type Description

f32State frac32_t | The actual value. Controlled by the GFLIB_FlexRamplnit_F16 and GFLIB_FlexRamp_F16
algorithms.

f32Incr frac32_t | The value of the dyn. flex ramp increment. Controlled by the GFLIB_FlexRampCalcincr_F16
algorithm.

f32IncrSatMot frac32_t | The value of the dyn. flex ramp increment when in the motoring saturation mode. Controlled
by the GFLIB_DFlexRampCalcincr_F16 algorithm.

f32IncrSatGen frac32_t | The value of the dyn. flex ramp increment when in the generating saturation mode.
Controlled by the GFLIB_DFlexRampCalcincr_F16 algorithm.

f32Target frac32_t | The target value of the flex ramp algorithm. Controlled by the
GFLIB_DFlexRampCalclncr_F16 algorithm.

f32Ts frac32_t | The sample time, that means the period of the loop where the GFLIB_DFlexRamp_F16
algorithm is periodically called. The data value (in seconds) is in the range (0 ; 1). Set by the
user.

f32IncrMax frac32_t | The maximum value of the flex ramp increment. The data value is in the range (0 ; 1). Set by
the user.

bReachFlag bool_t Reach flag. This flag is controlled by the GFLIB_DFlexRamp_F16 algorithm. It is cleared by
the GFLIB_DFlexRamplnit_F16 and GFLIB_DFlexRampCalclncr_F16 algorithms.

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

54/79

NXP Semiconductors

Algorithms in detail

2.16.3 Declaration

The available GFLIB_DFlexRamplnit functions have the following declarations:
void GFLIB DFlexRampInit F16 (fracl6 t f16InitVal, GFLIB DFLEXRAMP T F32 *psParam)

The available GFLIB_DFlexRampCalcincr functions have the following declarations:

void GFLIB DFlexRampCalcIncr F16(fracl6 t flé6Target, acc32 t a32Duration, frac32 t f32IncrSatMot,
frac32 t £32IncrSatGen, GFLIB DFLEXRAMP T F32 *psParam)

The available GFLIB_DFlexRamp functions have the following declarations:

fraclé t GFLIB DFlexRamp F16 (fracl6 t flé6Instant, const bool t *pbStopFlagMot, const bool t
*pbStopFlagGen, GFLIB_DFLEXRAMP T _F32 *psParam)

2.16.4 Function use

The use of the GFLIB_DFlexRamplnit, GFLIB_DFlexRampCalcincr, and GFLIB_DFlexRamp functions is shown in the
following examples:

Fixed-point version:
#include "gflib.h"

static fracl6_t fl6InitVal;

static GFLIB_DFLEXRAMP T F32 sDFlexRamp;

static fracl6 t flé6Target, fl6RampResult, flé6Instant;
static acc32 t a32RampDuration;

static frac32 t f32IncrSatMotMode, f32IncrSatGenMode;
static bool t bSatMot, bSatGen;

void Isr(void) ;

void main (void)

{
/* Control loop period is 0.002 s; maximum increment value is 0.15 */
sDFlexRamp.f32Ts = FRAC32(0.002);
sDFlexRamp.f32IncrMax = FRAC32 (0.15);

/* Initial value to 0 */
fl6InitVal = FRAC16(0.0);

/* Dyn. flex ramp initialization */
GFLIB FlexRampInit F16(f16InitVal, &sDFlexRamp) ;

/* Target value is 0.7 in duration of 5.3 s */
fl6Target = FRACL16(0.7);

a32RampDuration = ACC32(5.3);;

/* Saturation increments */

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 55/79

NXP Semiconductors

Algorithms in detail

f32IncrSatMotMode = FRAC32(0.000015) ;
f32IncrSatGenMode = FRAC32 (0.00002) ;

/* Saturation flags init */
bSatMot = FALSE;
bSatGen = FALSE;

/* Dyn. flex ramp increment calculation */

GFLIB DFlexRampCalcIncr F16 (fl6Target, a32RampDuration, f32IncrSatMotMode,
f32IncrSatGenMode, &sDFlexRamp) ;
}

/* periodically called control loop with a period of 2 ms */
void Isr ()

{
fl6RampResult = GFLIB DFlexRamp F16 (fl6Instant, &bSatMot, &bSatGen, &sDFlexRamp) ;

2.17 GFLIB_Integrator

The GFLIB_Integrator function calculates a discrete implementation of the integrator (sum), discretized using a trapezoidal rule
in Tustin's method (bi-linear transformation).

The continuous time domain representation of the integrator is defined as follows:

ut)= '[e(t)dt

Figure 47.

In a continuous time domain, the transfer function for this integrator is described using the Laplace transformation as follows:

U
HE =53 =3

Figure 48.

Transforming the above equation into a digital time domain using the bi-linear transformation leads to the following
transfer function:

U(z) Ty+Tez!
Z{H (S)} TEHo 2T

Figure 49.

where Ty is the sampling period of the system. The discrete implementation of the digital transfer function in the above equation
is expressed as follows:

u(k) = u(k — 1)+ e(k)% +e(k — 1)%

Figure 50.

Considering integrator gain K|, the transfer function leads to the following equation:

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 56/79

NXP Semiconductors

Algorithms in detail

KT, KT,
w (k) = uylh = 1)+ e(k) =5 + ek — =5

Figure 51.

where:
» u(k) is the integrator's output in the actual step
* ui(k - 1) is the integrator's output from the previous step
» e(k) is the integrator's input in the actual step
» e(k - 1) is the integrator's input from the previous step
» K, is the integrator's gain coefficient
» T is the sampling period of the system

Equation 5 can be used in the fractional arithmetic as follows:

e k)+e k—1
ulsc(k).umax = ulsc(k - 1)'umax+K1Ts.% e

max

Figure 52.

where:
* Umax is the integrator output scale
* uisc(k) is the scaled integrator output in the actual step
* Usc(k - 1) is the scaled integrator output from the previous step
* emax is the integrator input scale
* egc(K) is the scaled integrator input in the actual step
* egc(k - 1) is the scaled integrator input in the previous step

For a proper use of this function, it is recommended to initialize the function's data by the GFLIB_Integratorlnit functions, before
using the GFLIB_Integrator function. You must call the init function when you want the integrator to be initialized.

2.17.1 Available versions

This function is available in the following versions:

» Fractional output - the output is the fractional portion of the result, the result is within the range <-1; 1), and it may overflow
from one limit to the other. The parameters use the accumulator types.

The available versions of the GFLIB_Integratorinit function are shown in the following table:

Table 24. Init function versions

Function name Input Parameters Result Description
type type
GFLIB_Integratorlnit_ F16 |frac16_t | GFLIB_INTEGRATOR_T_A32* |void The inputs are a 16-bit fractional initial

value and a pointer to the integrator
parameters' structure.

The available versions of the GFLIB_Integrator function are shown in the following table:

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 57/79

NXP Semiconductors

Algorithms in detail

Table 25. Function versions

Function name Input Parameters Result Description

type type

GFLIB_Integrator_F16 |frac16_t |GFLIB_INTEGRATOR_T_A32* |frac16_t | The inputs are a 16-bit fractional value to
be integrated and a pointer to the integrator
parameters' structure. The output is limited
to range <-1; 1>. When the integrator
reaches the limit, it overflows to the

other limit.
2.17.2 GFLIB_INTEGRATOR_T_A32
Variable name Input Description
type
a32Gain acc32_t | Integrator gain is set up according to Equation 6 as follows:
e,
KT U

The parameter is a 32-bit accumulator type within the range <-65536.0 ; 65536.0). Set by the

user.
f321AccK_1 frac32_t | Integral portion in the step k - 1. Controlled by the algorithm.
f16InValK_1 frac16_t | Input value in the step k - 1. Controlled by the algorithm.

2.17.3 Declaration

The available GFLIB_Integratorinit functions have the following declarations:
void GFLIB IntegratorInit F16(fraclé t f16InitVal, GFLIB INTEGRATOR T A32 *psParam)
The available GFLIB_Integrator functions have the following declarations:

fracl6_t GFLIB Integrator Fl6(fraclé6 t fl6InVal, GFLIB INTEGRATOR T A32 *psParam)

2.17.4 Function use

The use of the GFLIB_Integratorinit and GFLIB_Integrator functions is shown in the following examples:

Fixed-point version:
#include "gflib.h"

static fraclé t fl6Result, flé6InVal, fl6InitVal;
static GFLIBiINTEGRATOR7T7A32 sParam;

void Isr (void);

void main (void)

{
fl6Inval = FRAC16(-0.4);
sParam.a32Gain = ACC32(0.1);

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 58/79

NXP Semiconductors

Algorithms in detail

fl16Initval = FRAC16(0.1);

GFLIB IntegratorInit F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr ()

{
fl6Result = GFLIB Integrator F16(f16InVal, &sParam);

2.18 GFLIB_CtriBetalPpAW

The GFLIB_CtrIBetalPpAW function calculates the parallel form of the Beta-Integral-Proportional (Beta-IP) controller with an
implemented integral anti-windup functionality. The Beta-IP controller is an extended PI controller, which enables to separate
the responses from the setpoint change and the load change (if B = 1, the Beta-IP controller has the same response as the

PI controller). Therefore the Beta-IP controller allows for reducing the overshoot caused by the change of the setpoint without
affecting the load change response. The B parameter can be set in the range from zero to one, where zero means the maximal
overshoot limitation and one means no limitation.

The Beta-IP controller attempts to correct the error between the measured process variable (feedback) and the desired set-point
by calculating a corrective action that can adjust the process accordingly. The GFLIB_CtriBetalPpAW function calculates the
Beta-IP algorithm according to the equations below. The Beta-IP algorithm is implemented in the parallel (non-interacting) form,
enabling you to define the P, |, and 3 parameters independently and without interaction. The controller output is limited and the
limit values (the upper limit and the lower limit) are defined by the user.

The Beta-IP controller algorithm also returns a limitation flag, which indicates that the controller's output is at the limit. If the Beta-IP
controller output reaches the upper or lower limits, the limit flag is set to one. Otherwise, it is zero (integer values).

An anti-windup strategy is implemented by limiting the integral portion. The integral state is limited by the controller limits in the
same way as the controller output. The integration can be stopped by a flag that is pointed to by the function's API.

The Beta-IP algorithm in the continuous time domain can be expressed as follows:

u(t) = Kpr [pw() -p(0) 1+ K, w0 -p(1)]

Figure 53.

where:
* u(t) is the controller output in the continuous time domain
» w(t) is the required value in the continuous time domain
* y(t) is the measured value (feedback) in the continuous time domain
» Kp is the proportional gain
» K, is the integral gain
» Bis the beta gain (overshoot reduction gain in the range from zero to one)

Equation 1 can be expressed using the Laplace transformation as follows:

U(s) = Kp- [-W(s)-Y(5)]+ K, LX)

Figure 54.

The proportional part (up) of Equation 1 is transformed into the discrete time domain as follows:

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 59/79

NXP Semiconductors

Algorithms in detail

up(k) =Kp-[f-w(k)-y(k)]

Figure 55.

where:
 up(k) is the proportional action in the actual step
» w(k) is the required value in the actual step
* y(k) is the measured value in the actual step
» Kp is the proportional gain coefficient
* Bis the beta gain coefficient

Equation 3 can be used in the fractional arithmetic as follows:

Upge (k) * thpax = Kp- [ﬁ'wsc(k) 'ysc(k)] * €max

Figure 56.

where:
* Umax is the action output scale
* upgc(K) is the scaled proportional action in the actual step
* €max is the error input scale
* wgc(K) is the scale required value in the actual step

* ysc(k) is the scale measured value in the actual step

Transforming the integral part (u;) of Equation 1 into a discrete time domain using the bi-linear method (also known as the

trapezoidal approximation) is as follows:

KT
re(k-1)=5=

K,T
up (k) =up(k-1)+[w(k)-y(k)]-—5

Figure 57.

where:
* uy(k) is the integral action in the actual step
» ui(k - 1) is the integral action from the previous step
» w(k) is the required value in the actual step
* y(k) is the measured value in the actual step
» e(k - 1) is the error in the previous step
» Tgis the sampling period of the system
» K is the integral gain coefficient

Equation 5 can be used in the fractional arithmetic as follows:

ewe(k) +ew(k-1)
ulsc'umwf:u]sc(k' 1) 'umax+K1Ts'% " Cmax

Figure 58.

where:

* Umax is the action output scale

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

60/79

NXP Semiconductors

Algorithms in detail

* uisc(K) is the scaled integral action in the actual step

* uisc(k - 1) is the scaled integral action from the previous step
* emax is the error input scale

* eq(K) is the scaled error in the actual step

* egc(k - 1) is the scaled error in the previous step

The output signal limitation is implemented in this controller. The actual output u(k) is bounded not to exceed the given limit values
UpperLimit and LowerLimit. This is either due to the bounded power of the actuator or due to the physical constraints of the plant.

U pperLimit u(k)> U pperLimit
u(k) =4 Lower Limit u(k) < Lower Limit
u(k) else
Figure 59.

The bounds are described by a limitation element, as shown in Equation 7. When the bounds are exceeded, the non-linear
saturation characteristic takes effect and influences the dynamic behavior. The described limitation is implemented on the
integral part accumulator (limitation during the calculation) and the overall controller output. Therefore, if the limitation occurs,
the controller output is clipped to its bounds, and the wind-up occurrence of the accumulator portion is avoided by saturating the
actual sum.

For a proper use of this function, it is recommended to initialize the function data by the GFLIB_CtrIBetalPpAWInit function, before
using the GFLIB_CtrIBetalPpAW function.

2.18.1 Available versions

This function is available in the following versions:

» Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The parameters use
the accumulator types.

The available versions of the GFLIB_CtrIBetalPpAWInit function are shown in the following table:

Table 26. Init function versions

Function name Input Parameters Result Description
type type
GFLIB_CtriBetalPpAWInit_F |frac16_t | GFLIB_.CTRL_BETA_IP_P_AW_T_ | void The inputs are a 16-bit fractional
16 A32* initial value and a pointer to the
controller's parameters structure.

The available versions of the GFLIB_CtrIBetalPpAW function are shown in the following table:

Table 27. Function versions

Function name Input type Parameters Result
type
required value| measured Stop flag yp
value
GFLIB_CtriBetalPpAW_F16 |frac16_t frac16_t bool_t * GFLIB_CTRL_BETA_IP_P_AW_T_ |frac16_t
A32*

The required value input is a 16-bit fractional value within the range <-1; 1). The measured value
input is a 16-bit fractional value within the range <-1 ; 1). The integration of the Beta-IP controller
is suspended if the stop flag is set. When it is cleared, the integration continues. The parameters

Table continues on the next page...

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 61/79

NXP Semiconductors

Algorithms in detail

Table 27. Function versions

Function name Input type Parameters Result
type
required value | measured Stop flag yp
value

are pointed to by an input pointer. The function returns a 16-bit fractional value in the range
<f16LowerLim ; f16UpperLim>.

2.18.2 GFLIB_CTRL_BETA_IP_P_AW_T_A32

Variable name Input Description
type
a32PGain acc32_t | The proportional gain is set up according to Equation 4 as follows:
e,
Kp* Ty

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

a32lGain acc32_t | The integral gain is set up according to Equation 6 as follows:

€,
KI Ts . Emax

”max

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

f321AccK_1 frac32_t | State variable of the internal accumulator (integrator). Controlled by the algorithm.
f16InErrK_1 frac16_t | Input error at the step k - 1. Controlled by the algorithm.
f16UpperLim frac16_t | Upper limit of the controller's output and the internal accumulator (integrator). This parameter

must be greater than f16LowerLim. Set by the user.

f16LowerLim frac16_t | Lower limit of the controller's output and the internal accumulator (integrator). This parameter
must be lower than f16UpperLim. Set by the user.

f16BetaGain frac16_t | The beta gain is a fraction 16-bit type in the range [0 ; 1). The beta gain defines the reduction
overshot when the required value is changed. Set by the user.

bLimFlag bool_t Limitation flag which identifies that the controller's output reached the limits. 1 - the limit is
reached; O - the output is within the limits. Controlled by the application.

2.18.3 Declaration
The available GFLIB_CtrIBetalPpAWInit functions have the following declarations:

void GFLIB CtrlBetalIPpAWInit F16(fracl6 t fl6InitVal, GFLIB CTRL BETA IP P AW T A32 *psParam)

The available GFLIB_CtrIBetalPpAW functions have the following declarations:

fraclé t GFLIB CtrlBetalPpAW F16(fracl6 t fl6InReq, fracl6 t f16In, const bool t *pbStopIntegFlag,
GFLIB CTRL BETA IP P AW T A32 *psParam)

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 62/79

NXP Semiconductors

Algorithms in detail

2.18.4 Function use
The use of the GFLIB_CtrIBetalPpAWInit and GFLIB_CtrIBetalPpAW functions is shown in the following examples:

Fixed-point version:
#include "gflib.h"

static fracl6 t fl6Result, fl6InitVal, fl6InReq, fl16In;
static bool t bStopIntegFlag;
static GFLIB CTRL BETA IP P AW T A32 sParam;

void Isr (void) ;

void main (void)

{
fl16InReq = FRAC16(-0.3);
f16In = FRACLl6(-0.4);
sParam.a32PGain = ACC32(0.1);
sParam.a32IGain = ACC32(0.2);

sParam.fl6UpperLim = FRAC16(0.9);
sParam.fl6LowerLim = FRAC16(-0.9);
sParam.fl6BetaGain = FRAC16(0.5);

bStopIntegFlag = FALSE;

f16Initval = FRAC16(0.0);

GFLIB CtrlBetalIPpAWInit F16(f16InitVal, &sParam);
/* periodically called function */

void Isr ()

{
fl6Result = GFLIB CtrlBetalIPpAW F16(f16InReq, f16In, &bStopIntegFlag, &sParam);

2.19 GFLIB_CtrIPIpAW

The GFLIB_CtrIPIpAW function calculates the parallel form of the Proportional-Integral (Pl) controller with implemented integral
anti-windup functionality.

The PI controller attempts to correct the error between the measured process variable and the desired set-point by calculating a
corrective action that can adjust the process accordingly. The GFLIB_CtrIPIpAW function calculates the Pl algorithm according
to the equations below. The PI algorithm is implemented in the parallel (non-interacting) form, allowing the user to define the P
and | parameters independently and without interaction. The controller output is limited and the limit values (upper limit and lower
limit) are defined by the user.

The PI controller algorithm also returns a limitation flag, which indicates that the controller's output is at the limit. If the Pl controller
output reaches the upper or lower limit, then the limit flag is set to 1, otherwise it is 0 (integer values).

An anti-windup strategy is implemented by limiting the integral portion. The integral state is limited by the controller limits in the
same way as the controller output. The integration can be stopped by a flag that is pointed to by the function's API.

The PI algorithm in the continuous time domain can be expressed as follows:

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 63/79

NXP Semiconductors

Algorithms in detail

0= 0K+ K et

Figure 60.

where:
 u(t) is the controller output in the continuous time domain
*+ e(t) is the input error in the continuous time domain
» Kp is the proportional gain
» K is the integral gain

Equation 1 can be expressed using the Laplace transformation as follows:

Figure 61.

The proportional part (up) of Equation 1 is transformed into the discrete time domain as follows:

uplk) =K p-e(k)
Figure 62.

where:
* up(k) is the proportional action in the actual step
» e(k) is the error in the actual step
» Kp is the proportional gain coefficient

Equation 3 can be used in the fractional arithmetic as follows:

u Psc(k) “Upax = K p es k) epax

Figure 63.

where:
* Umax is the action output scale
* upgc(K) is the scaled proportional action in the actual step
* emax is the error input scale
* egc(K) is the scale error in the actual step

Transforming the integral part (u;) of Equation 1 into a discrete time domain using the bi-linear method, also known as the
trapezoidal approximation, is as follows:

KT, KT,

Figure 64.

where:
» u(k) is the integral action in the actual step

» ui(k - 1) is the integral action from the previous step

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 64 /79

NXP Semiconductors

Algorithms in detail

» e(k) is the error in the actual step

e(k - 1) is the error in the previous step
» T is the sampling period of the system
» K is the integral gain coefficient

Equation 5 can be used in the fractional arithmetic as follows:

max

Esc k +esc k—1
u[sc(k)'umax = u]se(k = D thyne t K]TS'% e

Figure 65.

where:
* Umax is the action output scale
* Usc(K) is the scaled integral action in the actual step
* Usc(k - 1) is the scaled integral action from the previous step
* emay is the error input scale
* esc(K) is the scaled error in the actual step
* egc(k - 1) is the scaled error in the previous step

The output signal limitation is implemented in this controller. The actual output u(k) is bounded not to exceed the given limit values
UpperLimit and LowerLimit. This is due to either the bounded power of the actuator or due to the physical constraints of the plant.

U pperLimit u(k) > U pperLimit
u(k)={ LowerLimit u(k) < Lower Limit
u(k) else

Figure 66.

The bounds are described by a limitation element, as shown in Equation 7. When the bounds are exceeded, the nonlinear
saturation characteristic will take effect and influence the dynamic behavior. The described limitation is implemented on the
integral part accumulator (limitation during the calculation) and on the overall controller output. Therefore, if the limitation occurs,
the controller output is clipped to its bounds, and the wind-up occurrence of the accumulator portion is avoided by saturating the
actual sum.

For a proper use of this function, it is recommended to initialize the function data by the GFLIB_CtrIPIpAWInit functions, before
using the GFLIB_CtrIPIpAW function. You must call this function when you want the PI controller to be initialized.

2.19.1 Available versions

This function is available in the following versions:

» Fractional output - the output is the fractional portion of the result; the result is within the range <-1; 1). The parameters use
the accumulator types.

The available versions of the GFLIB_CtrIPIpAWInit function are shown in the following table:

Table 28. Init function versions

Function name Input Parameters Result Description
type type
GFLIB_CtrlIPIpAWInit_F16 frac16_t | GFLIB_CTRL_PI_P_AW_T_A32* void The inputs are a 16-bit fractional

initial value and a pointer to the
controller's parameters structure.

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 65/79

NXP Semiconductors

Algorithms in detail

The available versions of the GFLIB_CtrIPIpAW function are shown in the following table:

Table 29. Function versions

Function name

Input type Parameters Result type

Error Stop flag

GFLIB_CtrIPIpAW_F16 | frac16_t bool_t * GFLIB_CTRL_PI_P_AW_T_A32* frac16_t

The error input is a 16-bit fractional value within the range <-1 ; 1). The integration of the PI
controller is suspended if the stop flag is set. When it is cleared, the integration continues. The
parameters are pointed to by an input pointer. The function returns a 16-bit fractional value in the
range <f16LowerLim ; f16UpperLim>.

2.19.2 GFLIB_CTRL_PI_P_AW_T_A32

Variable name Input Description
type
a32PGain acc32_t | Proportional gain is set up according to Equation 4 as follows:
emax
Kp Umax
The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.
a321Gain acc32_t |Integral gain is set up according to Equation 6 as follows:
emax
KITS' Umax
The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.
f321AccK_1 frac32_t | State variable of the internal accumulator (integrator). Controlled by the algorithm.
f16InErrK_1 frac16_t | Input error at the step k - 1. Controlled by the algorithm.
f16UpperLim frac16_t | Upper limit of the controller's output and the internal accumulator (integrator). This parameter
must be greater than f16LowerLim. Set by the user.
f16LowerLim frac16_t | Lower limit of the controller's output and the internal accumulator (integrator). This parameter
must be lower than f16UpperLim. Set by the user.
bLimFlag bool_t Limitation flag, which identifies that the controller's output reached the limits. 1 - the limit is
reached; O - the output is within the limits. Controlled by the application.

2.19.3 Declaration

The available GFLIB_CtrIPIpAWInit functions have the following declarations:

void GFLIB CtrlPIpAWInit F16(fracl6é t f16Initval, GFLIB CTRL PI P AW T A32 *psParam)

The available GFLIB_CtrIPIpAW functions have the following declarations:

fraclé t GFLIB CtrlPIpAW F16(fracl6 t fl6InErr, const bool t *pbStopIntegFlag,
GFLIB CTRL PI P AW T A32 *psParam)

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

66/79

NXP Semiconductors

2.19.4 Function use

The use of the GFLIB_CtrlPIpAWInit and GFLIB_CtrIPIpAW functions is shown in the following examples:

Algorithms in detail

Fixed-point version:

#include "gflib.h"

static fracl6_t fl6Result, fl6InitVal, flé6InErr;
static bool t bStopIntegFlag;
static GFLIB_CTRL_PI P AW T A32 sParam;

void Isr (void) ;

void main (void)

{
fl16InErr = FRAC16(-0.4);
sParam.a32PGain = ACC32(0.1);
sParam.a32IGain = ACC32(0.2);
sParam.fl6UpperLim = FRAC16(0.9);
sParam.fl6LowerLim = FRAC16(-0.9);
bStopIntegFlag = FALSE;

fl6Initval = FRAC16(0.0);
GFLIB CtrlPIpAWInit F16(f16InitVal, &sParam);
/* periodically called function */

void Isr ()

{
fl6Result = GFLIB CtrlPIpAW F16(fl6InErr, &bStopIntegFlag,

&sParam) ;

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

67/79

NXP Semiconductors

Appendix A
Library types

A.1 bool_t

The bool_t type is a logical 16-bit type. It is able to store the boolean variables with two states: TRUE (1) or FALSE (0). Its definition

is as follows:
typedef unsigned short bool t;

The following figure shows the way in which the data is stored by this type:

Table 30. Data storage

15 14 13 12 11 10 9 8 7 6 0
Value Unused Logi
cal
TRUE O lolo|o|o0o|O0O|O]|O]oO]|oO 1
0 0 0
FALSE 0 0 0 0 0 0 0 0 0 0 0
0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within the range <0 ; 255>. Its definition is

as follows:
typedef unsigned char uint8_t;

The following figure shows the way in which the data is stored by this type:

Table 31. Data storage

Value Integer

255 1 1 1 1 1

Table continues on the next page...

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

68/79

NXP Semiconductors

Library types
Table 31. Data storage (continued)
11 0 0 0 1 1
0
124 0 1 1 1 0
7
159 1 0 0 1 1
9
A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables within the range <0 ; 65535>. Its definition is

as follows:

typedef unsigned short uintlé6 t;

The following figure shows the way in which the data is stored by this type:

Table 32. Data storage

15 14 13 12 1" 10 7 0
Value Integer

65535 1 1 1 1 1 1 1 1
F

5 0 0 0 0 0 0 0 1
0

15518 0 0 1 1 1 1 1 0
3

40768 1 0 0 1 1 1 0 0
9

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 69/79

NXP Semiconductors

A4 uint32_t

Library types

The uint32_t type is an unsigned 32-bit integer type. Itis able to store the variables within the range <0 ; 4294967295>. Its definition

is as follows:

typedef unsigned long uint32 t;

The following figure shows the way in which the data is stored by this type:

Table 33. Data storage

31 24 23 16 15 7 0
Value Integer
4294967295 F F F F
2147483648 8 0 0 0
55977296 0 3 2 0
3451051828 C D D 4
A.5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the range <-128 ; 127>. Its definition is as follows:

typedef char int8 t;

The following figure shows the way in which the data is stored by this type:

Table 34. Data storage

Table continues on the next page...

GFLIB User's Guide, Rev. 5, 01 November 2021

7 6 5 3 0
Value Sign Integer

127 0 1 1 1 1
7

-128 1 0 0 0 0
8

60 0 0 1 1 0
3

User Guide

70/79

NXP Semiconductors

Library types

Table 34. Data storage (continued)

-97 1 0 0 1 1 1 1 1

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the range <-32768 ; 32767>. Its definition is
as follows:

typedef short intl6 t;

The following figure shows the way in which the data is stored by this type:

Table 35. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Sign Integer
32767 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 F F F
-32768 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0
15518 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0
3 Cc 9 E
-24768 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0
9 F 4 0
A.7 int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the range <-2147483648 ; 2147483647>. Its
definition is as follows:

typedef long int32 t;

The following figure shows the way in which the data is stored by this type:

Table 36. Data storage

Table continues on the next page...

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 71/79

NXP Semiconductors

Library types
Table 36. Data storage (continued)
31 24 23 16 15 8 7 0
Value S Integer
2147483647 7 F F F F F F F
-2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
-843915468 C D B 2 D F 3 4
A.8 frac8_t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within the range <-1 ; 1). Its definition is as follows:
typedef char frac8 t;

The following figure shows the way in which the data is stored by this type:

Table 37. Data storage

7 6 5 4 3 2 1 0
Value Sign Fractional
0.99219 0 1 1 1 1 1 1 1
7 F
-1.0 1 0 0 0 0 0 0 0
8 0
0.46875 0 0 1 1 1 1 0 0
3 C
-0.75781 1 0 0 1 1 1 1 1
9 F

To store a real number as frac8_t, use the FRAC8 macro.

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 72/79

NXP Semiconductors

Library types

A.9 frac16_t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within the range <-1 ; 1). Its definition is
as follows:

typedef short fraclé6 t;

The following figure shows the way in which the data is stored by this type:

Table 38. Data storage

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Sign Fractional
0.99997 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 F F F
-1.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0
0.47357 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0
3 Cc 9 E
-0.75586 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0
9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within the range <-1; 1). Its definition is
as follows:

typedef long frac32 t;

The following figure shows the way in which the data is stored by this type:

Table 39. Data storage

31 24 23 16 15 8 7 0

Value S Fractional

0.9999999995

~
M

F F F F F F

Table continues on the next page...

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 73/79

NXP Semiconductors

Table 39. Data storage (continued)

Library types

-1.0 8 0 0 0 0
0.02606645970 0 3 5 6 2
-0.3929787632 Cc D B 2 D

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acc16_t

The acc16_t type is a signed 16-bit fractional type. It is able to store the variables within the range <-256 ; 256). Its definition is

as follows:
typedef short accl6 t;

The following figure shows the way in which the data is stored by this type:

Table 40. Data storage

15 14 13 12 11 10 9 8 7 6 3
Value Sign Integer Fractional

255.9921875 0 1 1 1 1 1 1 1 1 1 1
7 F F

-256.0 1 0 0 0 0 0 0 0 0 0 0
8 0 0

1.0 0 0 0 0 0 0 0 0 1 0 0
0 0 8

-1.0 1 1 1 1 1 1 1 1 1 0 0
F F 8

13.7890625 0 0 0 0 0 1 1 0 1 1 0
0 6 E

-89.71875 1t /1]0|1|o0o|l0|1]1]|]0]o0O 0
D 3 2

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

74/79

NXP Semiconductors

To store a real number as acc16_t, use the ACC16 macro.

A.12 acc32_t

Library types

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables within the range <-65536 ; 65536). Its

definition is as follows:

typedef long acc32 t;

The following figure shows the way in which the data is stored by this type:

Table 41. Data storage

31 24 23 16 15 8 7 0

Value S Integer Fractional
65535.999969 7 F F F F
-65536.0 8 0 0 0 0
1.0 0 0 0 8 0

-1.0 F F F 8 0
23.789734 0 0 B E 1
-1171.306793 F B 6 5 B

To store a real number as acc32_t, use the ACC32 macro.

A.13 FALSE

The FALSE macro serves to write a correct value standing for the logical FALSE value of the bool_t type. Its definition is as follows:

#define FALSE ((bool t)0)

#include "mlib.h"

static bool t bval;

void main (void)
{

bVal = FALSE;
}

/* bvVal = FALSE */

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

75/79

NXP Semiconductors

Library types

A.14 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of the bool_t type. Its definition is as follows:

#define TRUE ((bool t)1)

#include "mlib.h"
static bool t bval;
void main (void)

{
bval = TRUE; /* bval = TRUE */

A.15 FRACS8

The FRAC8 macro serves to convert a real number to the frac8_t type. Its definition is as follows:

#define FRAC8 (x) ((frac8 t) ((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : O0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; 0x7F>, which corresponds to <-1.0 ; 1.0-27>.

#include "mlib.h"
static frac8_t f8val;
void main (void)

{
f8val = FRAC8(0.187); /* f8Val = 0.187 */

A.16 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is as follows:
#define FRAC16 (x) ((fracl6 t) ((x) < 0.999969482421875 2 ((x) >= -1 2 (x)*0x8000 : 0x8000) : Ox7FFF))

The input is multiplied by 32768 (=215). The output is limited to the range <0x8000 ; 0x7FFF>, which corresponds to
<-1.0; 1.0-21%>,

#include "mlib.h"
static fracle6_t flé6vVal;
void main (void)

{
fl6val = FRAC16(0.736); /* fleval = 0.736 */

GFLIB User's Guide, Rev. 5, 01 November 2021

User Guide 76 /79

NXP Semiconductors

Library types
A.17 FRAC32
The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is as follows:
#define FRAC32 (x) ((frac32 t) ((x) < 1 2 ((x) >= -1 ? (x)*0x80000000 : 0x80000000) : Ox7FFFFFEF))

The inputis multiplied by 2147483648 (=231). The output is limited to the range <0x80000000 ; 0x7FFFFFFF>, which corresponds
to <-1.0; 1.0-2731>.

#include "mlib.h"
static frac32 t f32Val;
void main (void)

{
£32val = FRAC32(-0.1735667) ; /* £32val = -0.1735667 */

A.18 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as follows:
#define ACCL6(x) ((accl6_t) ((x) < 255.9921875 2 ((x) >= -256 2 (x)*0x80 : 0x8000) : Ox7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ; 0x7FFF> that corresponds to
<-256.0 ; 255.9921875>.

#include "mlib.h"
static accl6_t aléval;
void main (void)

{
aléval = ACC16(19.45627) ; /* alé6val = 19.45627 */

A.19 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as follows:

#define ACC32 (x) ((acc32 t) ((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 : 0x80000000)
0x7FFFFFFF))

The input is multiplied by 32768 (=219). The output is limited to the range <0x80000000 ; 0x7FFFFFFF>, which corresponds to
<-65536.0 ; 65536.0-21%>,

#include "mlib.h"
static acc32_t a32val;

void main (void)

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 77179

NXP Semiconductors

Library types

a32Val = ACC32(-13.654437); /* a32val = -13.654437 */

GFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 78/79

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at

the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all

information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer

is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features
that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its
products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products,
regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of
NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, uVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision

Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 01 November 2021
Document identifier: CMOGFLIBUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Library
	1.1 Introduction
	1.1.1 Overview
	1.1.2 Data types
	1.1.3 API definition
	1.1.4 Supported compilers
	1.1.5 Library configuration
	1.1.6 Special issues

	1.2 Library integration into project (MCUXpresso IDE)
	1.3 Library integration into project (Keil µVision)
	1.4 Library integration into project (IAR Embedded Workbench)

	2 Algorithms in detail
	2.1 GFLIB_Sin
	2.1.1 Available versions
	2.1.2 Declaration
	2.1.3 Function use

	2.2 GFLIB_Cos
	2.2.1 Available versions
	2.2.2 Declaration
	2.2.3 Function use

	2.3 GFLIB_Atan
	2.3.1 Available versions
	2.3.2 Declaration
	2.3.3 Function use

	2.4 GFLIB_AtanYX
	2.4.1 Available versions
	2.4.2 Declaration
	2.4.3 Function use

	2.5 GFLIB_Sqrt
	2.5.1 Available versions
	2.5.2 Declaration
	2.5.3 Function use

	2.6 GFLIB_Limit
	2.6.1 Available versions
	2.6.2 Declaration
	2.6.3 Function use

	2.7 GFLIB_LowerLimit
	2.7.1 Available versions
	2.7.2 Declaration
	2.7.3 Function use

	2.8 GFLIB_UpperLimit
	2.8.1 Available versions
	2.8.2 Declaration
	2.8.3 Function use

	2.9 GFLIB_VectorLimit1
	2.9.1 Available versions
	2.9.2 GFLIB_VECTORLIMIT_T_F16 type description
	2.9.3 Declaration
	2.9.4 Function use

	2.10 GFLIB_Hyst
	2.10.1 Available versions
	2.10.2 GFLIB_HYST_T_F16
	2.10.3 Declaration
	2.10.4 Function use

	2.11 GFLIB_Lut1D
	2.11.1 Available versions
	2.11.2 Declaration
	2.11.3 Function use

	2.12 GFLIB_LutPer1D
	2.12.1 Available versions
	2.12.2 Declaration
	2.12.3 Function use

	2.13 GFLIB_Ramp
	2.13.1 Available versions
	2.13.2 GFLIB_RAMP_T_F16
	2.13.3 GFLIB_RAMP_T_F32
	2.13.4 Declaration
	2.13.5 Function use

	2.14 GFLIB_DRamp
	2.14.1 Available versions
	2.14.2 GFLIB_DRAMP_T_F16
	2.14.3 GFLIB_DRAMP_T_F32
	2.14.4 Declaration
	2.14.5 Function use

	2.15 GFLIB_FlexRamp
	2.15.1 Available versions
	2.15.2 GFLIB_FLEXRAMP_T_F32
	2.15.3 Declaration
	2.15.4 Function use

	2.16 GFLIB_DFlexRamp
	2.16.1 Available versions
	2.16.2 GFLIB_DFLEXRAMP_T_F32
	2.16.3 Declaration
	2.16.4 Function use

	2.17 GFLIB_Integrator
	2.17.1 Available versions
	2.17.2 GFLIB_INTEGRATOR_T_A32
	2.17.3 Declaration
	2.17.4 Function use

	2.18 GFLIB_CtrlBetaIPpAW
	2.18.1 Available versions
	2.18.2 GFLIB_CTRL_BETA_IP_P_AW_T_A32
	2.18.3 Declaration
	2.18.4 Function use

	2.19 GFLIB_CtrlPIpAW
	2.19.1 Available versions
	2.19.2 GFLIB_CTRL_PI_P_AW_T_A32
	2.19.3 Declaration
	2.19.4 Function use

	A Library types
	A.1 bool_t
	A.2 uint8_t
	A.3 uint16_t
	A.4 uint32_t
	A.5 int8_t
	A.6 int16_t
	A.7 int32_t
	A.8 frac8_t
	A.9 frac16_t
	A.10 frac32_t
	A.11 acc16_t
	A.12 acc32_t
	A.13 FALSE
	A.14 TRUE
	A.15 FRAC8
	A.16 FRAC16
	A.17 FRAC32
	A.18 ACC16
	A.19 ACC32

