MCUXSDKGSUG

Getting Started with MCUXpresso SDK

Rev. 2.11.0 — 11 November 2021 User Guide
. Contents
1 Overview 1 OVErVIEW......eerireieeere e 1
The NXP MCUXpresso software and tools offer comprehensive development 2 MCUXpresso SDK board support
. . - package folders.......c..ccceerrirereennann 2
solutions designed to optimize, ease and help accelerate embedded system 3 Run a demo using MCUXor IDE
L g presso
development of applications based on general purpose, crossoverand — C 3
Bluetooth™-enabled MCUs from NXP. The MCUXpresso SDK includes 4 Run a demo application using IAR18
a flexible set of peripheral drivers designed to speed up and simplify 5 Run a demo using Keil® MDK/uVision
development of embedded applications. Along with the peripheral drivers, the e 22
MCUXpresso SDK provides an extensive and rich set of example applications 6 Run a demo using Arm°® GCC....... 27
covering everything from basic peripheral use case examples to full demo 7 MCUXpresso Config Tools............ 39
applications. The MCUXpresso SDK contains optional RTOS integrations such 8 MCUXpresso IDE New Project
as FreeRTOS and Azure RTOS, and various other middleware to support WIZArd....ooovconnie e 39
rapid development. 9 How to detfarmine COM por.t 40
10 How to define IRQ handler in CPP
For supported toolchain versions, see MCUXpresso SDK Release Notes L1=T T 41
(document MCUXSDKRN). 11 Default debug interfaces............... 42
12 Updating debugger firmware......... 44
For more details about MCUXpresso SDK, see MCUXpresso Software 13 Revision history.........ccccvveceenrnennn. 46
Development Kit (SDK).

Application Code

Stacks and Middleware
(Connectivity, Security, Board Support
DMA, Filesystem, etc,)

Peripheral Drivers

CMSIS-CORE and CMSIS-DSP
(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSP Library)

Microcontroller Hardware

Figure 1. MCUXpresso SDK layers

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

NXP Semiconductors

MCUXpresso SDK board support package folders

2 MCUXpresso SDK board support package folders

MCUXpresso SDK board support package provides example applications for NXP development and evaluation boards for Arm®
Cortex -M cores including Freedom, Tower System, and LPCXpresso boards. Board support packages are found inside the top
level boards folder and each supported board has its own folder (an MCUXpresso SDK package can support multiple boards).
Within each <board name> folder, there are various sub-folders to classify the type of examples it contain. These include (but are
not limited to):

* cmsis_driver examples: Simple applications intended to show how to use CMSIS drivers.

* demo_apps: Full-featured applications that highlight key functionality and use cases of the target MCU. These applications
typically use multiple MCU peripherals and may leverage stacks and middleware.

* driver examples: Simple applications that show how to use the MCUXpresso SDK’s peripheral drivers for a single use
case. These applications typically only use a single peripheral but there are cases where multiple peripherals are used (for
example, SPI conversion using DMA).

* emwin examples: Applications that use the emWin GUI widgets.

* rtos_examples: Basic FreeRTOS™ OS examples that show the use of various RTOS objects (semaphores, queues, and
so on) and interfaces with the MCUXpresso SDK’s RTOS drivers

* usb_examples: Applications that use the USB host/device/OTG stack.

2.1 Example application structure

This section describes how the various types of example applications interact with the other components in the MCUXpresso SDK.
To get a comprehensive understanding of all MCUXpresso SDK components and folder structure, see MCUXpresso SDK AP/
Reference Manual.

Each <board_name> folder in the boards directory contains a comprehensive set of examples that are relevant to that specific
piece of hardware. Although we use the he11o wor1d example (part of the demo apps folder), the same general rules apply to any
type of example in the <board name> folder.

In the hello world application folder you see the following contents:

armgec
iar — Toolchain folders: project and linker files
mdk
:‘, board.c Board macro definitions (LEDs, buttons, etc)
& board.h

&l cdock_config.c

B dock configh Application-specific clock configuration

hello world.bin » Pre-compiled application

Y

' |
& hello_world.c

B8 hello_world.mex Application-specific MCUXpresso Config Tool configuration

hello_world.xml * Project definition file for MCUXpresso IDE and PG
J'.‘.'.’ pin_mux.c

Application main source file

k

. . Application-specific pin configuration
& pin_mux.h

| readme.txt » Description and instructions for running

Figure 2. Application folder structure

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 2/47

NXP Semiconductors

Run a demo using MCUXpresso IDE

All files in the application folder are specific to that example, so it is easy to copy and paste an existing example to start developing
a custom application based on a project provided in the MCUXpresso SDK.

2.2 Locating example application source files

When opening an example application in any of the supported IDEs, a variety of source files are referenced. The MCUXpresso
SDK devices folder is the central component to all example applications. It means the examples reference the same source files
and, if one of these files is modified, it could potentially impact the behavior of other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:
* devices/<device name>: The device’s CMSIS header file, MCUXpresso SDK feature file and a few other files
* devices/<device name>/cmsis_drivers: All the CMSIS drivers for your specific MCU
* devices/<device name>/drivers: All of the peripheral drivers for your specific MCU
* devices/<device name>/<tool name>: Toolchain-specific startup code, including vector table definitions

* devices/<device name>/utilities: Items such as the debug console that are used by many of the example
applications

* devices/<devices_name>/project: Project template used in CMSIS PACK new project creation

For examples containing middleware/stacks or an RTOS, there are references to the appropriate source code. Middleware source
files are located in the middleware folder and RTOSes are in the rtos folder. The core files of each of these are shared, so
modifying one could have potential impacts on other projects that depend on that file.

3 Run a demo using MCUXpresso IDE

NOTE
Ensure that the MCUXpresso IDE toolchain is included when generating the MCUXpresso SDK package.

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug example applications. The
hello world demo application targeted for the hardware platform is used as an example, though these steps can be applied to
any example application in the MCUXpresso SDK.

3.1 Select the workspace location

Every time MCUXpresso IDE launches, it prompts the user to select a workspace location. MCUXpresso IDE is built on top of
Eclipse which uses workspace to store information about its current configuration, and in some use cases, source files for the
projects are in the workspace. The location of the workspace can be anywhere, but it is recommended that the workspace be
located outside of the MCUXpresso SDK tree.

3.2 Build an example application

To build an example application, follow these steps.

1. Drag and drop the SDK zip file into the Installed SDKs view to install an SDK. In the window that appears, click OK and wait
until the import has finished.

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 3/47

NXP Semiconductors

Run a demo using MCUXpresso IDE

() Installed 5DKs 32 | O] Properties & Console [Problems [] Memory 5 Instruction”
D Installed SDKs

To install an SDK, simply drag and drop an SDK (zip file/folder) into the Installed SDKs' view,

Mame Version Location

Figure 3. Install an SDK

2. On the Quickstart Panel, click Import SDK example(s)....

& Quickstart Panel *Global Variables * Variables “ Breakpoints £ Qutline =il

§ MCUXpresso IDE - Quickstart Panel
- No project selected
= Create or import a project

W pe o
WAl® import SDK example(s).

Import project(s) from file system.

~ Build your project
X

@a.

~ Debug your project

~ Miscellaneous

BE-EA-H-~

g e
& Quick Settings>>

B Bulld all projects []

Figure 4. Import an SDK example

3. In the window that appears, . Then, select and click Next.

4. Expand the demo_apps folder and select hello world . Then, click Next .

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide

447

NXP Semiconductors

Run a demo using MCUXpresso IDE

Project Type
@ C Project C++ Project C Static Library C++ Static Library

Examples

— ™
@) SDK Import Wizard W [e e
(1, The source from the SDK will be copied into the workspace. \5
If you want to use linked files, please unzip the 'SDK_2.x_FRDM-KB4F' SDE.
. Import projects =
Project name prefix frdmk6af_ = Project name suffic =3
Use default location
Location: | Ch\Users\b59906N\Documents\ MCUXpressolDE_10.0.0_299_beta\workspacet\frdmkbdf_ Browse...

Project Options

Copy sources

a2 M %| @B

Name

I

p] = cmsis_driver_examples
P S demo_apps

hwip

mbedtls

wifi_gca

[=

-

o

-

wolfss|

-

adcl6_low_power

U IR ME 0 DoD OO DOD OO

ECOMmpass
ftrn_pdb_adclé
ftrn quad_decoder

power_manager

power_mode_switch
rte_func
chell

m

»

Version

m

4 1

® ST

Net> [Finish || Concel

Figure 5. Select hello_world

5. Ensure Redlib: Use floating point version of printf is selected if the example prints floating point numbers on the terminal for
demo applications such as adc_basic, adc_burst, adc_dma, and adc_interrupt. Otherwise, it is not necessary to select

this option. Then, click Finish.

3.3 Run an example application

For more information on debug probe support in the MCUXpresso IDE, see community.nxp.com.

To download and run the application, perform the following steps:

1. See the table in #unique_9 to determine the debug interface that comes loaded on your specific hardware platform. For
LPCXpresso boards, install the DFU jumper for the debug probe, then connect the debug probe USB connector.

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021

User Guide

5/47

https://community.nxp.com/message/630901

NXP Semiconductors

Run a demo using MCUXpresso IDE

For boards with CMSIS-DAP/mbed/DAPLink interfaces, visit developer.mbed.org/handbook/Windows-serial-
configuration and follow the instructions to install the Windows® operating system serial driver. If running on Linux®
OS, this step is not required.

For boards with a P&E Micro interface, see PE micro to download and install the P&E Micro Hardware Interface
Drivers package.

For the MRB-KWO01 board, see www.nxp.com/USB2SER to download the serial driver. This board does not support
the OpenSDA. Therefore, an external debug probe (such as a J-Link) is required. The steps below referencing the
OpenSDA do not apply because there is only a single USB connector for the serial output.

If using J-Link with either a standalone debug pod or OpenSDA, install the J-Link software (drivers and utilities)
from www.segger.com/jlink-software.html.

For boards with the OSJTAG interface, install the driver from www.keil.com/download/docs/408.

2. Connect the development platform to your PC via a USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see How to determine COM port). Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD DEBUG_UART BAUDRATE variable in
board.h file)

b. No parity
c. 8 data bits
d. 1 stop bit

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021

User Guide 6/47

http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
http://www.pemicro.com/support/downloads_find.cfm

NXP Semiconductors

Run a demo using MCUXpresso IDE

PuTTY Configuration X
Category:
= Session Basic options for your PuTTY session
= Terminal Specify the destination you want to connect to
- Keyboard Serial line Speed
- Bell COM4 115200
- Features ConnecTonTy
= Window onnection type:
. Appearance (ORaw (OTelnet (O Riogin () SSH | (@) Serial
‘?rz':]a;a{:t}il{]}rn Load, save or delete a stored session
.. Selection Saved Sessions
- Colours
= Connection :
..Data Default Settings Load
- Proxy
- Telnet Save
= SSH Delete
- Serial
Close window on exit:
O Always O Never @ Only on clean exit
About Open Cancel
Figure 6. Terminal (PuTTY) configurations

4. On the Quickstart Panel, click on Debug to launch the debug session.

5. The first time you debug a project, the Debug Emulator Selection dialog is displayed, showing all supported probes that are

attached to your computer. Select the probe through which you want to debug and click OK. (For any future debug sessions,
the stored probe selection is automatically used, unless the probe cannot be found.)

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide

7147

NXP Semiconductors

Run a demo using MCUXpresso IDE

i ™
. Probes discovered E@g

Connect to target: MK64FN1MOxoocl2
1 probe found. Select the probe to use:

Available attached probes

Marne Serial number/ID Type Manu... IDE Debug Mode

] USEL - OpenSDA (JATI0E49 TA790E49 USEl P&EMi All-Stop

Supported Probes (tick/untick to enable/disable)
MCU¥presso IDE LinkServer (inc, CMSIS-DAP) probes
P&E Micro probes

SEGGER J-Link probes

Probe search options

-

Remember my selection (for this Launch cenfiguration)

@

e

Figure 7. Attached Probes: debug emulator selection

6. The application is downloaded to the target and automatically runs to main ().

Project peiiey Window
2w o]

The hello world application is now running and a banner is displayed on the terminal. If this is not the case, check your terminal
settings and connections.

7. Start the application by clicking Resume.

Figure 8. Resume button

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 8/47

NXP Semiconductors

Run a demo using MCUXpresso IDE

Figure 9. Text display of the hello world demo

3.4 Build a multicore example application

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug multicore example applications.
The following steps can be applied to any multicore example application in the MCUXpresso SDK. Here, the dual-core version of
hello_world example application targeted for the LPCXpresso54114 hardware platform is used as an example.

1. Multicore examples are imported into the workspace in a similar way as single core applications, explained in Build an
example application. When the SDK zip package for LPCXpresso54114 is installed and available in the Installed SDKs
view, click Import SDK example(s)... on the Quickstart Panel. In the window that appears, expand the LPCxx folder and
select LPC54114J256. Then, select Ipcxpresso54114 and click Next.

2. Expand the multicore examples/hello world folder and select cm4. The cmoplus counterpart project is
automatically imported with the cm4 project, because the multicore examples are linked together and there is no need to
select it explicitly. Click Finish.

{8 soK Import Wizard o X

Figure 10. Select the hello_world multicore example

3. Now, two projects should be imported into the workspace. To start building the multicore application, highlight the
lpcxpresso54114 multicore examples hello world cm4 project (multicore master project) in the Project Explorer.

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 9/47

NXP Semiconductors

Run a demo using MCUXpresso IDE

Then choose the appropriate build target, Debug or Release, by clicking the downward facing arrow next to the hammer
icon, as shown in Figure 11. For this example, select Debug.

. waorkspace - Develop - Welcome page - MCUXpresso ID_

File Edit Mavigate Search Project Run FreeRTOS Window Help

JaRdENEIR R, ©2 TER WL NN NS SNCN

v 1 Debug (Debug build)

bol Viewer
2 Release (Release build) »
e

PD Project Explorer 23

= lpcxpresso54114_multicore_examples_hello_world_cmOplus
(= lpcxpresso54114_multicore_examples_helle_world_cmé

Figure 11. Selection of the build target in MCUXpresso IDE

The project starts building after the build target is selected. Because of the project reference settings in multicore projects,
triggering the build of the primary core application (cm4) also causes the referenced auxiliary core application (cmOplus) to build.

NOTE
When the Release build is requested, it is necessary to change the build configuration of both the primary and
auxiliary core application projects first. To do this, select both projects in the Project Explorer view and then
right click which displays the context-sensitive menu. Select Build Configurations -> Set Active -> Release. This
alternate navigation using the menu item is Project -> Build Configuration -> Set Active -> Release. After switching
to the Release build configuration, the build of the multicore example can be started by triggering the primary core
application (cm4)build.

) worcpace - Dl “WeESr P e ez

File Edit Mavigate Search Project Run FreeRTOS Window Help

Ik [B~-R-Bin|jrrENeegSR|bhE22R S, I H-0-9
[Project Explorer 5 | 5. Peripherals= {}j Registers £, Symbol Viewer = 0 @ Welcome 53
afE - W Files//Cfnxp/MCUXpressol

=] Ipcxpresso54114_multicore_examples_hello_world_cmOplus,
= Ipcxpressodd114_multicore_examples_hello_world_cmd

New 3

GoInto

Copy Ctrl+C
Paste Ctrl+V
Delete Delete

X

Source 3
Move...

Rename... F2

Import...

EF

Export..
Build Project
Clean Project
Refresh F3
Close Project

Close Unrelated Projects

Build Configurations 3 Set Active 3 1 Debug (Debug build

Build Targets » Manage... v | 2Release (Release build)

Index ' Build Al

Run As 3 Clean All
Debug As 3 Build Selected...
Profile As b [

Figure 12. Switching multicore projects into the Release build configuration

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 10/47

NXP Semiconductors

Run a demo using MCUXpresso IDE

3.5 Run a multicore example application

The primary core debugger handles flashing of both the primary and the auxiliary core applications into the SoC flash memory.
To download and run the multicore application, switch to the primary core application project and perform all steps as described
in Run an example application. These steps are common for both single-core applications and the primary side of dual-core
applications, ensuring both sides of the multicore application are properly loaded and started. However, there is one additional
dialogue that is specific to multicore examples which requires selecting the target core. See the following figures as reference.

) Quickstart Panel ~* ** Variables * Breakpoints ' sl MCUXpre:
Help -> MCUXpresso IDE User Gu
A MCUXpresso IDE - Quickstart Panel

' Project: frdmk3213a6_hello world telease] 3
roject: frdmik3213a6_hello_world_cmd [Release] ol = Hals; Contania

* Create of import & project

-..' F ':'.
" ; CDT Build Console [frdmk3213a6_hello_ world_cm
- Build your project make --no-print-directory post-buil
< Performing post-build steps
arm-none-eabi-size “frdmk3213a6_hel
- text data bss dec
Teee L 8488 15488
* Debug your project E~d~B~
® Debug ® Debug using LinkServer probes (CTRL+SHIFT+ ALT+L
ﬂ Attach to a running target using LinkServer (CTRL+ALT+L)

Program flash action using LinkServer
* Miscellaneous

Erase flash action using LinkServer

Figure 13. Debug "frdmk32I3a6_hello_world_cm4" case

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 11/47

NXP Semiconductors

Run a demo using MCUXpresso IDE

-
. Probes discovered

BT

Connect to target: LPC54114J256

(1, Thefollowing probes have been disabled in the preferences:
P&E Micro probes SEGGER J-Link probes

Available attached probes

Mame

Senal number/D Type Manufa...
i LPC-LIMKZ2 CMSIS-DAP Y5134 AD00000002

LinkServe MNXP Semi Mon-Stop

IDE Debug Mode

Supported Probes (tick/untick to enable/disable)

MCUXpresso IDE LinkServer (inc, CMSIS-DAP) probes
[T] P&E Micro probes
[7] SEGGER J-Link probes

@

b

Probe search options

Remermnber my selection (for this Launch configuration)

Figure 14. Attached Probes: debug emulator selection

r. 3 b
SWD Configuration
(1, 2 availzble SWD Devices detected.
Target 'Cortex-M4' has been selected, but it may be incompatible!
Device | Name TAP Id Details
—
0 Cortex-M4 (0:2ba01477 APID:24770011 I
—
11 Cortex-M0+ 0x2ba01477 APID:24770011
@ I ok [cancel
L

Figure 15. Target core selection dialogue

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021

User Guide

12/47

NXP Semiconductors

Run a demo using MCUXpresso IDE

. waorkspace - Develop - lpcxpressa54114_multicore_examples_hello_world_cmd/source/hello_world_corel.c - MCUXprEsoID_
File Edit 5Source Refactor MNavigate Search Project Run FreeRTOS Window Help

m | ® R~ | NSkl ERR RS LI 0|
g 7@3: Debug 3
r[\:l 4 . Ipcxpressosd114_multicore_examples_hello_world_cmé4 Debug [C/C++ (NXP Semiconductors) MCU Application]
E‘_ﬁ 4 [Ipoxpresso54114_multicore_examples_hello_world_crmd.axf [LPC54114)256 (cortex-m0plus)]

4 Thread £11 (Stopped) (Suspended : Breakpoint)
= main() at hello_world_cored.c:85 (:98a

o
==
==

& s arm-nene-eabi-gdb (7.12.0.20161204)
=
) @ hello_world_corel.c &2
)= 68 f
)= 69 uint32 t corel image size;
78 #if defined(_ CC_ARM)
Gg 71 corel_image_size = {uint32_t)R&Image$$COREL_REGION$$Length;
o= 72 #elit defined({_ ICCARM)
== 73 #pragma section = "__ sec_core”
74 corel_image size = {uint32_t) section_end(" sec_core™) - (uint32_t)&corel_image start;
75 #endif
76 return corel_image size;
77 }
78 #endif
798 f*1
88 * [@brief Main function

81 */

32- int main(void)

83 {

84 /* Define the init structure for the switches*/

85 I gpio _pin_config t sw_config = {kGPIO DigitalInmput, @};

86

a7 /* Init board hardware.®/

88 /* attach 12 MHz clock to FLEXCOMM@ (debug console) */

89 CLOCK_AttachClk(kFROIZM to FLEXCOMMB);

9@

a1 BOARD _InitPins_Core@();

92 BOARD_BootClockFROHF48M() ;

a3 BOARD InitDebugConseole();

94

a5 /* Init switches */

96 GPIO_PinInit({BOARD SW1_GPIO, BOARD SW1 GPIO _PORT, BOARD SW1 GPIO PIN, &Zsw_config);
97 GPIO_PinInit{BOARD SW2 GPIO, BOARD SW2 GPIO _PORT, BOARD SW2 GPIO PIN, &sw_config);
ag

Figure 16. Stop the primary core application at main() when running debugging

After clicking the "Resume All Debug sessions" button, the hello_world multicore application runs and a banner is displayed on
the terminal. If this is not the case, check your terminal settings and connections.

I 1 COM25:115200baud - Tera Term W LE ||

File Edit Setup Control Window KanjiCode Help

Hello World from the Primary Core!

Starting Secondary core.)
The secondary core application has been started.

Figure 17. Hello World from the primary core message

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 13/47

NXP Semiconductors

Run a demo using MCUXpresso IDE

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has been released from the

reset and running correctly. It is also possible to debug both sides of the multicore application in parallel. After creating

the debug session for the primary core, perform same steps also for the auxiliary core application. Highlight the
Ipcxpresso54114_multicore_examples_hello_world_cmOplus project (multicore slave project) in the Project Explorer. On the
Quickstart Panel, click “Debug ‘Ipcxpresso54114_multicore_examples_hello_world_cmOplus’ [Debug]” to launch the second
debug session.

() Quickstart Pa... ®=Global Varia.. ®=Variables % Breakpoints 5= Qutline = B Fur

~ Installed SDKs [Properties 2 Consol:

- MCUXpresso IDE - Quickstart Panel Property

B Project: Ipcxpresso54114_hello_world_cmOplus [Debug]
~ Create or import a project

B ew project...
b)
4 Import SDK example(s)...
2 Import project(s) from file system...
~ Build your project
A Build
¢ Clean

~ Debug your project

S Debug x Debug using LinkServer probes (CTRL+SHIFT+L)

@ Attach to a running target using LinkServer (CTRL+ALT+L)
® Program flash using LinkServer

~ Micrallananiic B® Erase flash using LinkServer

Figure 18. Debug "Ipcxpresso54114_multicore_examples_hello_world_cmOplus" case

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 14 /47

NXP Semiconductors

Run a demo using MCUXpresso IDE

. workspace - Develop - Ipcxpresso54114_multicore_examples_hello_world_cmd/source/hella_world_coreD.c - M-Cl..lk'.prm_
File Edit Scurce Refactor MNavigate Search Project Run FreeRTOS Window Help

g | B~/ ~Ein| D N3 eSS BB RIS L A O
5’ ?tis: Debug 3

rﬁ_“l 4 . Ipcxpresse54114_multicore_examples_hello_world_cmd Debug [C/C++ (NXP Semiconductors) MCU Application]

Eﬁ 4 E Ipcxpresse54114_multicore_examples_hello_world_cmd.axf [LPC54114)256 (cortex-mplus)]

a4 o Thread #1 1 (Stopped) (Suspended : Breakpoint)
= main() at hello_world_core0.c:B5 0x98a

& g arm-none-eabi-gdb (7.12.0.20161204)
= 4 . Ipcxpresses4114_multicore_exarnples_hello_world_cmQplus Debug [C/C++ (NXP Semiconductors) MCU Application]
= 4 E Ipcxpresse54114_multicore_examples_hello_world_cm0plus.axf [LPC54114)256 (cortex-mlplus)]
() 4 o Thread #1 1 (Stopped) (Suspended : Signal : SIGSTOP:Stopped (signal))
~ = Ddec
t= = «<signal handler called> [} at OufffFFf9
2 = 00
%a g arm-none-eabi-gdb (7.12.0.20161204)
o=

hello_world_corel.c 3

T

69 uint32_t corel_image size;

78 #if defined(_ CC_ARM)

71 corel_image size = (uint32_t)&Image$$COREL_REGIONEELength;
72 #elif defined(ICCARM_)

3 #pragma section = "_ sec_core”

74 corel _image size = (uint32 t) section_end(" sec_core") - (uint32_t)&corel_image start;
75 #endif

76 return corel image size;

77 }

78 #endif

798 f*]

88 * {@brief Main function

g1 */

2= int main(void)

g3 {

34 /* Define the init structure for the switches®/

as | gpio_pin_config t sw_config = {kGPIO DigitalInput, @};
a6

/* Init board hardware.*/
/* attach 12 MHz clock to FLEXCOMME@ (debug console) */
CLOCK_AttachClk(kFROIZM to FLEXCOMMA)

[Amiw R i
(A=)

A=)
W P2 =@

BOARD InitPins_CoreB();
BOARD BootClockFROHF48M();
BOARD InitDebugConscle();

TR Y. Rt}
[

/* Init switches */
GPIO PinInit(BOARD SW1 GPIO, BOARD SW1 GPIO PORT, BOARD SWI_GPIO PIN, &sw config);
GPIO PinInit(BOARD SW2 GPIO, BOARD SW2 GPIO PORT, BOARD SW2 GPIO PIN, &sw config);

1=}
- T

=]

Figure 19. Two opened debug sessions

Now, the two debug sessions should be opened, and the debug controls can be used for both debug sessions depending on

the debug session selection. Keep the primary core debug session selected by clicking the "Resume" button. The hello_world
multicore application then starts running. The primary core application starts the auxiliary core application during run time, and
the auxiliary core application stops at the beginning of the main() function. The debug session of the auxiliary core application

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 15/47

NXP Semiconductors

Run a demo using MCUXpresso IDE

is highlighted. After clicking the “Resume” button, it is applied to the auxiliary core debug session. Therefore, the auxiliary core
application continues its execution.

. workspace - Develop - lpcxpresso34114 multicore_examples_hello_world_cm0Oplus/source/hello_world_corel.c - MCUXpresso ID
File Edit 5Source Refactor MNavigate Search Project Run FreeRTOS Window Help

T | B~-Q-@Gin|pPUuENIL2 Sl E2RRELT 0G|
5 # Debug 52 [Step Return All Debug sessions]
4 CHprEsso _multicore_examples_hello_world_cmd Debu -+ emiconductors, ication
E;__‘ Ipcxp 54114 i ples_hell Id_cm4 Debug [C/C++ (MNXP Semicond 1 MCU Application]
E{. 4 lpcxpresso54114_multicore_examples_hello_world_crmd.axf [LPC54114)256 (cortex-mlplus)]

| . & Thread #1 1 (Stopped) (Running)

il g arm-none-eabi-gdb (7.12.0.20161204)

&, 4 . Ipcxpresso54114_multicere_examples_hello_world_cmOplus Debug [C/C++ (NXP Semiconducters) MCU Application]
4 GE Ipcxpresso54114_multicore_examples_hello_world_cm0plus.axf [LPC54114)256 (cortex-m0plus)]

= 4 Thread £11 (Stopped) (Suspended : Breakpoint)

0) = main() at hello_world_corel.c:71 0x20010846

s arm-none-eabi-gdb (7.12.0.20161204)

o1n
1o

@
Oz
[=
hello_world_corel.c .n| fsl_mailbox.h @ hello_world_corel.c &2
68 1
61 }
62
B3 f*!]
64 * [@brief Main function
65 */
56 int main(void)
67 {
68 uint32_t startupData, i;
69
78 /* Define the init structure for the output LED pin*/
71 gpio pin config t led config = {
72 kGPIO DigitalOutput, @,
73 bE
74
75 /* Initialize MCMGR before calling its API */
76 MCMGR_Init();
77
78 /* Get the startup data */
79 MCMGR_GetStartupData(kMCMGR_Corel, &startupData);
e
81 /* Make a ngticable delay after the reset */
82 /* Use startup parameter from the master core... */
33 for (i = 8; i < startupData; i++)
34 delay();
a8

Figure 20. Auxiliary core application stops at the main function

At this point, it is possible to suspend and resume individual cores independently. It is also possible to make synchronous
suspension and resumption of both the cores. This is done either by selecting both opened debug sessions (multiple selection)
and clicking the “Suspend” / "Resume” control button, or just using the “Suspend All Debug sessions” and the “Resume All Debug
sessions” buttons.

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 16/47

NXP Semiconductors

Run a demo using MCUXpresso IDE

) workspace - Develop - Iporpress54114 multicore_examples.hello world_cmOplus/source/hello world corel.c - MCUXpresso IDE (N

Eile Edit Source Refactor [Navigate Search Project Bun FreeRTOS Window Help
MR ®-R-B:xlrnm oo S P bilEBALDRS LA HF-0~
E’ %5 Debug 22
I-_[\:l 4 . Ipcxpressesd4114_multicore_examples_hello_werld_cmd Debug [C/C++ (NXP Semiconductors) MCU Application]
4 Ipcxpresse54114_multicore_examples_hello_world_cmd.axf [LPC54114)256 (cortex-miplus)]
El_ﬁ'] . |h.'E1I Thread #1 1 (Stopped) (Hunning”
L gl arm-none-eabi-gdb (7.12.0.20161204)
& 4 . Ipcxpresse54114_multicore_examples_hello_werld_cm0plus Debug [C/C++ (MXP Semiconductors) MCU Application]
= 4 Ipcxpressesd114_multicore_examples_hello_werld_cm0plus.axf [LPC54114)256 (cortex-mplus)]
= |h-E} Thread #1 1 (Stopped) (Running) |
0 ba arm-none-eabi-gdb (7.12.0.20161204)
()=
[x)=
Og
=
o=

.c| hello_world_corel.c | fsl_mailbox.h E| hello_world_corel.c &7 [c|0x190
o L
59 __asm{"NOP"}; /¥ delay */
6@ 1
61 }
62
632 /¥
64 ¥ @brief Main function
65 =4

56= int main(wvoid)
63 uint32_t startupData, i;

78 /* Define the jnit structure for the output LED pin*/
71 gpio_pin_config t led config = {

72 RGPIO DigitalOutput, @,

73 1s

75 /* Initialize MCMGR before calling its API */
76 MCMGR_Init();

78 /* Get the startup data */
79 MCMER_GetStartupData (RMCHMGR_Corel, &startupData);

g1 /* Make a neticahle delay after the reset */

g2 /* Use startup parameter from the master core... */
83 for (i = 8; i < startupData; i++)

84 delay();

Figure 21. Synchronous suspension/resumption of both cores using the multiple selection of debug sessions and

“Suspend”/"Resume” controls

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021

User Guide

17147

NXP Semiconductors

Run a demo application using IAR

.wnd-:space-Develup
File Edit 5Source Refactor Mavigate Search Project Run FreeRTOS Window Help

Tml | S~ R~-@miw|m MHyerR|TrlplEr2aRiS LA -0
5’ %5 Debug 22
r[\:l 4 . Ipcxpressesd114_multicore_examples_hello_world_cmd Debug [C/C++ (MNXP Semiconductors) MCU Application]
Fl EE} Ipcxpresse54114_multicore_examples_hello_world_cmd.axf [LPC541141256 (cortex-mplus)]
Eﬂ' 4 [Thread #1 1 (Stopped]) (Suspended : Signal : SIGINT:Interrupt)
oot = GPIO_ReadPinlnput(at fsl_gpio.h:146 0x95¢
3; = main() at hello_world_cored.c:134 0xall

o s | arm-none-eabi-gdb (7.12.0.20161204)

= Fl . Ipcxpresso54114_multicore_examples_hello_world_cmplus Debug [C/C++ (MXP Semiconductors) MCU Application]
0 4 E Ipcxpressesd114_multicore_examples_hello_world_cmOplus.axf [LPC541140256 (cortex-mlplus)]

4 o Thread #1 1 (Stopped) (Suspended : Signal : SIGINT:Interrupt)

® |= delay() at hello_world_corel.c:59 0x20010824 |
()= = main() at hello_world_corel .c:99 (520010820
% g arm-none-eabi-gdb (7.12.0.20161204)
O
[
¢ hello_world_corel.c h| f=l_mailbox.h @ hello_world_corel.c 33 |[c|0x190
e L
59 __asm{"NOP")}; /* delay */
&@ 1
61 }
62
630 /*!
64 * [@brief Main function
65 */
6= int main(void)
67 {
63 uint32_t startupData, 1i;
69
78 /* Define the jnit structure for the output LED pin*/
71 gpio pin_config t led config = {
72 RGPIO DigitalOutput, @,
73 }i
74
75 /* Initialize MCMGR before calling its API */
76 MCMGR_Tnit();
77
78 /* Get the startup data */
79 MCMGER_GetStartupData(kMOMGR_Corel, &startupData);
a8
81 /¥ Make a noticable delay after the reset */
82 /* Use startup parameter from the master core... */
83 for (1 = @; 1 « startupData; i++)
84 delay();
g

Figure 22. Synchronous suspension/resumption of both cores using the “Suspend All Debug sessions” and the “Resume
All Debug sessions” controls

4 Run a demo application using IAR

This section describes the steps required to build, run, and debug example applications provided in the MCUXpresso SDK.

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 18/47

NXP Semiconductors

Run a demo application using IAR

NOTE
IAR Embedded Workbench for Arm version 8.32.3 is used in the following example, and the IAR toolchain should
correspond to the latest supported version, as described in the MCUXpresso SDK Release Notes.

4.1 Build an example application

Do the following steps to build the he1lo world example application.

1. Open the desired demo application workspace. Most example application workspace files can be located using the
following path:

<install dir>/boards/<board name>/<example type>/<application name>/iar

Other example applications may have additional folders in their path.
2. Select the desired build target from the drop-down menu.

For this example, select hello_world — debug.

Release

‘B (J hello_world - Deb... v
(I board

[Jdoc

[Jdrivers

[Jsource

[startup

[utilities

3 Output

Figure 23. Demo build target selection

3. To build the demo application, click Make, highlighted in red in Figure 24.

Debug

Files < I
=@ hello_world - Debug v

M hoard

M doc

W drivers

 source

B startup

 utilities

B Output

Figure 24. Build the demo application

4. The build completes without errors.
4.2 Run an example application

To download and run the application, perform these steps:

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 19/47

NXP Semiconductors

Run a demo application using IAR

1. See the table in #unique_9 to determine the debug interface that comes loaded on your specific hardware platform.

» The user should install LPCScrypt or MCUXpresso IDE to ensure LPC board drivers are installed.

» For boards with P&E Micro interfaces, visit www.pemicro.com/support/downloads_find.cfm and download the P&E
Micro Hardware Interface Drivers package.

2. Connect the development platform to your PC via USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug COM port (to determine

the COM port number, see How to determine COM port). Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD DEBUG_UART BAUDRATE variable in the

board.h file)
b. No parity
c. 8 data bits
d. 1 stop bit
PuTTY Configuration X
Category:
= Session Basic options for your PUTTY session
_Logging Specify the destinat t to connect
- Terminal pecify the destination you want to connect to
- Keyboard Serial line Speed
~ Bell coma [115200 |
- Features ConecionTy
& Window Onnection type: . :
. Appeatance (O)Raw () Telnet ()RIogin () SSH | (@) Serial
- Behaviour Load, save or delete a stored session
- Translation
.- Selection Saved Sessions
- Colours | ‘
= Connection -
- Data Default Settings e
- Proxy
- Telnet Save
[+ SSH Delete
- Serial
Close window on exit:
()Aways ()Never (®) Onlyon clean exit
About Open Cancel
Figure 25. Terminal (PuTTY) configuration
4. In IAR, click the Download and Debug button to download the application to the target.
cQ>%»x=R Ad=|0] Timat
Figure 26. Download and Debug button

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021

User Guide

20/47

http://www.pemicro.com/support/downloads_find.cfm

NXP Semiconductors

Run a demo application using IAR

5. The application is then downloaded to the target and automatically runs to the main () function.

N ED =5 AE0 9cC »<Q>K2< B3>0 BB-= GCO_IN I S [
Workspace w 0 X | helloworld.e X
|Debug ~ main()
41
Files & . QD[] fressrsbshshshshshbhhbbhbbb bbbt b hbhhhbhbhhhh kbbb hhhhhhehshhhshshs bt hihhhhbhhtis
B @ hello_world - Debug v 43 T * Prototypes
Hboard P P P PP PP y
M doc 45
M drivers Bk = el bbb
M source 4: * Code
i startup 1 > Kokttt /
 utilies T
-_Output oy /_, riel Main function
B 52 lmt main (void)
53] |
54 char ch;
55
56 /% Init board hardvare. */
57 Fad ch 12 MHz clock to FLEXCOMMO (dsbug console} */
58 CLOCK_AttachClk(BOARD_DEBUG_UART_CLE_ATTACH) :
59
60 BOARRD InitPina():
61 BOARD BootClockFROHF4EM()
62 BOARD InitDebugConacle();
Figure 27. Stop at main () when running debugging
6. Run the code by clicking the Go button.
= = 1 L}
Q>$E<PO>N0 MOG-=6GcOnIr i]o -0 a8
Figure 28. Go button

7. The hello world application is now running and a banner is displayed on the terminal. If it does not appear, check your

terminal settings and connections.

Figure 29. Text display of the hello_wor1ld demo

4.3 Build a multicore example application

This section describes the steps to build and run a dual-core application. The demo applications workspace files are located in

this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/iar

Begin with a simple dual-core version of the Hello World application. The multicore Hello World IAR workspaces are located in

this folder:

<install_dir>/boards/|pcxpresso54114/multicore_examples/hello_world/cmOplus/iar/hello_world_cmOplus.eww

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021

User Guide

21/47

NXP Semiconductors

Run a demo using Keil® MDK/pVision

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_worla/cm4/iar/hello_world cm4.eww

Build both applications separately by clicking the Make button. Build the application for the auxiliary core (cmOplus) first, because
the primary core application project (cm4) needs to know the auxiliary core application binary when running the linker. It is not
possible to finish the primary core linker when the auxiliary core application binary is not ready.

4.4 Run a multicore example application

The primary core debugger handles flashing both primary and the auxiliary core applications into the SoC flash memory. To
download and run the multicore application, switch to the primary core application project and perform steps 1 — 4 as described
in Run an example application. These steps are common for both single core and dual-core applications in IAR.

Atfter clicking the “Download and Debug" button, the auxiliary core project is opened in the separate EWARM instance. Both the
primary and auxiliary image are loaded into the device flash memory and the primary core application is executed. It stops at the
default C language entry point in the main() function.

Run both cores by clicking the "Start all cores" button to start the multicore application.

.o~ LN ~|3

Figure 30. Start all cores button

During the primary core code execution, the auxiliary core is released from the reset. The hello_world multicore application is now
running and a banner is displayed on the terminal. If this does not appear, check the terminal settings and connections.

L COM25:115200baud - Tera Term

| Eile Edit Setup Control Window KanjiCode Help

Hello World from the Primary Core!

Starting Secondary core.)
The secondary core application has been started.

Figure 31. Hello World from primary core message

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has been released from the reset and is
running correctly. When both cores are running, use the "Stop all cores" and "Start all cores" control buttons to stop or run both
cores simultaneously.

0o - l:|_?|-r Vo

Figure 32. "Stop all cores" and "Start all cores" control buttons

5 Run a demo using Keil® MDK/uVision

This section describes the steps required to build, run, and debug example applications provided in the MCUXpresso SDK.

5.1 Install CMSIS device pack

After the MDK tools are installed, Cortex® Microcontroller Software Interface Standard (CMSIS) device packs must be installed
to fully support the device from a debug perspective. These packs include things such as memory map information, register
definitions, and flash programming algorithms. Follow these steps to install the appropriate CMSIS pack.

1. Open the MDK IDE, which is called pVision. In the IDE, select the Pack Installer icon.

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 22 /47

NXP Semiconductors

Run a demo using Keil® MDK/pVision

E pVision

File Edit WView Project Flash Debug Peripherals Tools SVCS Window
S A » | | | | &
! Ll | a\.\‘ B ?-:'.. P, @

Figure 33. Launch the Pack Installer

2. After the installation finishes, close the Pack Installer window and return to the pVision IDE.

5.2 Build an example application
1. Open the desired example application workspace in:
<install dir>/boards/<board name>/<example type>/<application name>/mdk

The workspace file is named as <demo_name>. uvmpw. For this specific example, the actual path is:

2. To build the demo project, select Rebuild, highlighted in red.

| Elg | % | hello_world Debug E ;:\|

Figure 34. Build the demo

3. The build completes without errors.

5.3 Run an example application

To download and run the application, perform these steps:
1. See the table in #unique_9 to determine the debug interface that comes loaded on your specific hardware platform.

» For boards with the CMSIS-DAP/mbed/DAPLink interface, visit mbed Windows serial configuration and follow the
instructions to install the Windows operating system serial driver. If running on Linux OS, this step is not required.

» The user should install LPCScrypt or MCUXpresso IDE to ensure LPC board drivers are installed.

» For boards with a P&E Micro interface, visit www.pemicro.com/support/downloads_find.cfm and download and install
the P&E Micro Hardware Interface Drivers package.

« If using J-Link either a standalone debug pod or OpenSDA, install the J-Link software (drivers and utilities) from
www.segger.com/jlink-software.html.

» For boards with the OSJTAG interface, install the driver from www.keil.com/download/docs/408.
2. Connect the development platform to your PC via USB cable using OpenSDA USB connector.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm and connect to the debug serial port number (to
determine the COM port number, see How to determine COM port). Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD DEBUG_UART BAUDRATE variable in the
board.h file)

b. No parity
c. 8 data bits

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 23747

https://developer.mbed.org/handbook/Windows-serial-configuration
http://www.pemicro.com/support/downloads_find.cfm
http://www.keil.com/download/docs/408.asp

NXP Semiconductors

d. 1 stop bit

Run a demo using Keil” MDK/pVision

PuTTY Configuration

Category:

E|—Termina|

- Keyboard
- Features

= Window

- Appearance
- Behaviour

- Translation
- Selection

- Colours

= Connection

--Data
- Telnet

] SSH

- Serial

Figure 35. Terminal (PuTTY) configurations

Basic options for your PuTTY session ‘

Specify the destination you want to connect to

Serial line

|COM4

—
—t
(%]
]
[s=]
o

Connection type:

() Raw

() Telnet () Riogin () SSH

Load, save or delete a stored session

Saved Sessions

Default Settings

Close window on exit:

() Never

() Always

(®) Only on clean exit

‘ Open ‘ | Cancel

4. In pVision, after the application is built, click the Download button to download the application to the target.

EAR AR

|f"_] # |ji | hello_waorld Debug

] & |

Project

| = HE‘E WorkSpace

% Project: hello_world

Figure 36. Download button

r B

5. After clicking the Download button, the application downloads to the target and is running. To debug the application, click
the Start/Stop Debug Session button, highlighted in red.

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021

User Guide

24 /47

NXP Semiconductors

Run a demo using Keil® MDK/pVision

Sda ol | 4 ™ | & & | @ usE_UaRTSTDIO_FOR Eflw]), #% @
lpolorveo v |[OEeEERIA-(O)3-8- 3-8 x-
Registers o Disassembly
Register | Value z | (0000 BX 1r
] 2l BOARD InicPins()
=" Core = e
|E:>OXGDGDSE'.CI{- F7FDFAC6 BL.W BC}ARD__Inlt.E':_:S (0x00000D94)
| 58: ootClockRUN() ;
Aoy 0x000038(BL.W BOARD BootClockRUN (0x00000D20)
R2 (00000000 p—y - = -
| 59: nitDebugConsole() ;
| b
| 4
RE 00000000 _] hello_world.c =] startup_MK64F12.s
R7 mita 52 int main(void)
R& G<00000000 53 ;
R9 (00000000 54 char ch:
R10 (e 55
R11 00000000 56 * Tnit board hardwar -
Ri2 00000000 [)D 57 BOARD InitPins():
58 BOARD BootClockRUN() !
59 BOARD InitDebugConsole():
60
= 1 BPRINTF ("hello world.\xr\n"):
+ - Banked &2
5 S-;nem = g3 Wk = 4313

Figure 37. Stop at main () when run debugging

Run the code by clicking the Run button to start the application.

Figure 38. Go button

| B O
n &l

=l Run (F5)
Start code execution

The hello world application is now running and a banner is displayed on the terminal. If this does not appear, check your
terminal settings and connections.

Figure 39. Text display of the hello_world demo

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021

User Guide

25/47

NXP Semiconductors

Run a demo using Keil® MDK/uVision

5.4 Build a multicore example application

This section describes the steps to build and run a dual-core application. The demo applications workspace files are located in
this folder:

<install_dir>/boards/<board_name=>/multicore_examples/<application_name=>/<core_type>/mdk

Begin with a simple dual-core version of the Hello World application. The multicore Hello World Keil MSDK/pVision® workspaces
are located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cmOplus/madk/hello_world_cmOplus.uvmpw
<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/mdk/hello_world_cm4.uvmpw

Build both applications separately by clicking the Rebuild button. Build the application for the auxiliary core (cmOplus) first because
the primary core application project (cm4) needs to know the auxiliary core application binary when running the linker. It is not
possible to finish the primary core linker when the auxiliary core application binary is not ready.

5.5 Run a multicore example application

The primary core debugger flashes both the primary and the auxiliary core applications into the SoC flash memory. To download
and run the multicore application, switch to the primary core application project and perform steps 1 — 5 as described in Run an
example application. These steps are common for both single-core and dual-core applications in pVision.

Both the primary and the auxiliary image is loaded into the device flash memory. After clicking the “Run" button, the primary core
application is executed. During the primary core code execution, the auxiliary core is released from the reset. The hello_world
multicore application is now running and a banner is displayed on the terminal. If this does not appear, check your terminal settings
and connections.

L COM25:115200baud - Tera Term
File Edit Setup Control Window KanjiCode Help

‘Hello HYorld from the Primary Core!

Starting Secondary core.)
The secondary core application has been started.

Figure 40. Hello World from primary core message

An LED controlled by the auxiliary core starts flashing indicating that the auxiliary core has been released from the reset and is
running correctly.

Attach the running application of the auxiliary core by opening the auxiliary core project in the second pVision instance and clicking
the “Start/Stop Debug Session” button. After this, the second debug session is opened and the auxiliary core application can
be debugged.

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 26 /47

NXP Semiconductors

Run a demo using Arm® GCC

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

SH@ L@ | @ | & e [@)
B ween > |[ORBEEEZ-
Registers o @ Disassembly
Register |\,a|ue | 2: flor (i = 0; i < 1000000; ++i)
= Core =i K
T (i 000 s 0, e ponoo)
XL b b XL b
R1 (eD00F4240 s asm("NOB") ; /% delay */
R2 (k20000000 5‘3: — . o -
R3 (<0DDDDDOD N : :
R4 (400SE300 0x20010B5E BFOO NOP
R5 00000001 p |_ 51 - For (i = N+ 4 « I0000O0N ++41
R& bc200710C0C
R7 <FFFFFFFF] nello_worid_corel.c
R8 QFFFFFFFF EEE T
RS (FFFFFFFF ag | = Prototypes
R10 QFFFFFFFF a0 R R R R R R R R R R R R
R11 <FFFFFFFF .
R12 QFFFFFFFF = I I ™
R13(SF) (x200267F0 Y v code
R14 (LR) (2<20010BSF O
R15 (PC) (x20010B68 a5 /%1
- wPSR (01000000 46 * @brief Fumction to create delay for Led blink.
+ Banked a7 y
- System 48 void delay(void)
=l Intemal =
Made Thread 50 volatile uint32 t i = 0;
Privilege Frivileged Bl 51 || for (i =0:; i < 1000000; ++i)
Stack MSP 52 g
53 _asrr.l:"NSP"]; f* delay */f
54 }
55
56

Figure 41. Debugging the auxiliary core application

Arm describes multi-core debugging using the NXP LPC54114 Cortex-M4/MO0+ dual-core processor and Keil uVision IDE in
Application Note 318 at www.keil.com/appnotes/docs/apnt_318.asp. The associated video can be found here.

6 Run a demo using Arm® GCC

This section describes the steps to configure the command line Arm® GCC tools to build, run, and debug demo applications and
necessary driver libraries provided in the MCUXpresso SDK. The hello world demo application is targeted which is used as
an example.

6.1 Set up toolchain

This section contains the steps to install the necessary components required to build and run an MCUXpresso SDK demo
application with the Arm GCC toolchain, as supported by the MCUXpresso SDK. There are many ways to use Arm GCC tools,
but this example focuses on a Windows operating system environment.

6.1.1 Install GCC Arm Embedded tool chain

Download and run the installer from GNU Arm Embedded Toolchain. This is the actual toolset (in other words, compiler, linker, and
so on). The GCC toolchain should correspond to the latest supported version, as described in MCUXpresso SDK Release Notes.

6.1.2 Install MinGW (only required on Windows OS)

The Minimalist GNU for Windows (MinGW) development tools provide a set of tools that are not dependent on third-party
C-Runtime DLLs (such as Cygwin). The build environment used by the MCUXpresso SDK does not use the MinGW build tools,
but does leverage the base install of both MinGW and MSYS. MSYS provides a basic shell with a Unix-like interface and tools.

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 27147

http://www.keil.com/appnotes/docs/apnt_318.asp
https://www.youtube.com/watch?v=lMX-2lrv7Zs

NXP Semiconductors

1. Download the latest MinGW mingw-get-setup installer from MinGW.

Run a demo using Arm® GCC

2. Run the installer. The recommended installation path is c: \MinGW, however, you may install to any location.

NOTE

The installation path cannot contain any spaces.

3. Ensure that the mingw32-base and msys-base are selected under Basic Setup.

35 MinGW Installation Manager
Installation Package Settings

Basic Setup Package Class Installed Ve
All Packages |:| mingw-developer-tool... bin

mingw32-base bin

D mingw32-gcc-ada bin

|:| mingw32-gcc-fortran bin

|:| mingw32-gcc-g++ bin

|:| mingw32-gcc-objc bin

meys-base bin

Figure 42. Set up MinGW and MSYS

rsion Repository \ersion

2013072300
2013072200
4.8.1-4
4.8.1-4
4.8.1-4
4.8.1-4
2013072300

Description

An MSYS Installation for MinGW Developers (meta)
A Basic MinGW Installation

The GNU Ada Compiler

The GMNU FORTRAN Compiler

The GNU C++ Compiler

The GNU Objective-C Compiler

A Basic MSYS Installation (meta)

4. In the Installation menu, click Apply Changes and follow the remaining instructions to complete the installation.

T MinGW Installation Manager

Installation | Package Settings

Update Catalogue
Mark All Upgrades

Package

[] mingw-developer-tasl...

Apply Changes

IE! mingw32-base
||

Quit Alt+F4

Figure 43. Complete MinGW and MSYS installation

mingw32-gecc-ada

D mingw32-gcc-fortran

'] mingw32-gec-g++
E] mingw32-gcc-abjc
msys-base

5. Add the appropriate item to the Windows operating system path environment variable. It can be found under Control
Panel->System and Security->System->Advanced System Settings in the Environment Variables... section. The path is:

<mingw_install dir>\bin

Assuming the default installation path, c: \Mincw, an example is shown below. If the path is not set correctly, the toolchain

will not work.

NOTE

If you have C:\MinGW\msys\x.x\bin in your PATH variable (as required by Kinetis SDK 1.0.0), remove it to

ensure that the new GCC build system works correctly.

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021

User Guide

28 /47

http://sourceforge.net/projects/mingw/files/Installer/

NXP Semiconductors

Run a demo using Arm® GCC

Systern Properties 3

Computer Name | Hardware | Advanced | System Protection | Remote

Environment Variables E3
Edit System Variable 3
Variable name: Path
Variable value: ogram Files {(x86)\CMake\bin;C: \MinGW bin
| 0K | | Cancel |

System variables

Variable Value i
o5 Windows_NT
Path C:\Program Files (x86)\Parallels\Parallel...
PATHEXT .COM; EXE; BAT;.CMD;.VBS; . VBE;. 15;...
PROCESSOR_A... AMDG&4 i

| New... | | Edit... | | Delete |

| OK | | Cancel |

Figure 44. Add Path to systems environment

6.1.3 Add a new system environment variable for ARMGCC_DIR

Create a new sysfem environment variable and name it as aruccc DIR. The value of this variable should point to the Arm GCC
Embedded tool chain installation path. For this example, the path is:

C:\Program Files (x86)\GNU Tools Arm Embedded\8 2018-g4-major

See the installation folder of the GNU Arm GCC Embedded tools for the exact path name of your installation.

Short path should be used for path setting, you could convert the path to short path by running command for $1 in (.) do echo
$~sI in above path.

s Arm Emb ' gd—ma jor>for %I in

Arm Emb

Figure 45. Convert path to short path

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 29/47

NXP Semiconductors

Run a demo using Arm° GCC

User variables for

Variable Value

OneDrive ChUsersy \OneDrive - NXP

OneDriveCorfmercial ChUsersy \OneDrive - NXP

Path CA\Ruby24-x64\bin;C:\Users\nxa07599\AppDatalLocal\Micros...
PATHEXT LCOM.EXE: BAT..CMD; VBS: VBE J5,JSE.WSF;WS5H; M5C,RB;.RB..
TEMP ChUsersy \AppData\Local\Temp

TMP ChUsersy \AppData\Local\Temp

Mew User Variable

Figure 46. Add ARMGCC_DI

myCleanUp No

Variable name: |ﬂRMGCC_DIR
Variable value: |C:\FRDGRA-E\GNUTOO—‘I\SZZOIS--I
Browse Directory... Browse File... Cancel
il IAR_WORKBENCH C\Program Files (x86)\|IAR Systems\Embedded Workbench 8.2 | |
JLINK_DIR CA\Program Files (x86)\SEGGER\JLink_V640
KEIL C\Keil_v5\Uv4

Mew... Edit... Delete

0K Cancel

R system variable

6.1.4 Install CMake

1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.

2. Install CMake, ensuring that the option Add CMake to system PATH is selected when installing. The user chooses to select
whether it is installed into the PATH for all users or just the current user. In this example, it is installed for all users.

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021

User Guide

30/47

http://www.cmake.org/cmake/resources/software.html

NXP Semiconductors

Run a demo using Arm® GCC

A TMake 302 Setup EiEE

Install Options
Choose options for installing CMake 3.0.2

By default CMake does not add its directory to the system PATH.
Do not add CMake to the system PATH
@ Add CMake to the system PATH for all users
E system current user

[create CMake Desktop Icon

<Back || Next> Cancel

Figure 47. Install CMake

3. Follow the remaining instructions of the installer.
4. You may need to reboot your system for the PATH changes to take effect.

5. Make sure sh.exe is not in the Environment Variable PATH. This is a limitation of mingw32-make.

6.2 Build an example application

To build an example application, follow these steps.

1. Open a GCC Arm Embedded tool chain command window. To launch the window, from the Windows operating system
Start menu, go to Programs >GNU Tools Arm Embedded <version> and select GCC Command Prompt.

GNU Tools for ARM Embedded Process:

Documentation

5| GCC Command Prompt
(_5 Uninstall GNU Tools for ARM Embec

Figure 48. Launch command prompt

2. Change the directory to the example application project directory which has a path similar to the following:

<install dir>/boards/<board name>/<example type>/<application name>/armgcc

For this example, the exact path is:

NOTE
To change directories, use the cd command.

3. Type build_debug.bat on the command line or double click on build_debug.bat file in Windows Explorer to build it. The
output is as shown in Figure 49.

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 31/47

NXP Semiconductors

Run a demo using Arm® GCC

[841
[9221

[188: 1 Linking C executable debugshello_world.elf
[18@:] Built target hello _world.elf

SDE_2 .8_FRDM-E64AF-hoardssfrdrnkt4f ~demo_appszshello_worldwarmgcc >IF "™ == "
b
key to continue

Figure 49. hello_world demo build successful

6.3 Run an example application

This section describes steps to run a demo application using J-Link GDB Server application. To update the on-board LPC-Link2
debugger to Jlink firmware, see Updating debugger firmware.

NOTE
J-Link GDB Server application is not supported for TFM examples. Use CMSIS DAP instead of J-Link for flashing
and debugging TFM examples.
After the J-Link interface is configured and connected, follow these steps to download and run the demo applications:

1. Connect the development platform to your PC via USB cable between the LPC-Link2 USB connector (may be named
OSJTAG for some boards) and the PC USB connector. If using a standalone J-Link debug pod, connect it to the
SWD/JTAG connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see How to determine COM port). Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD DEBUG_UART BAUDRATE variable in
board.h file)

b. No parity
c. 8 data bits
d. 1 stop bit

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 32/47

NXP Semiconductors

Run a demo using Arm® GCC

PuTTY Configuration X
Category:
= Session Basic options for your PuTTY session
_ Loggng Specify the destinati t to connect t
= Terminal pecify the destination you want to connect to
- Keyboard Serial line Speed
Bl [coma [115200 |
- Features Connegtion
= Window onnechion type: . .
. Appearance (O)Raw () Telnet (_)RIlogin ()SSH | (@) Serial
-~ Behaviour Load, save or delete a stored session
- Translation
.. Selection Saved Sessions
- Colours ‘ ‘
= Connection
- Data Default Settings Load
Proxy
- Telnet Save
H} SSH Delete
- Serial
Close window on exit:
O Always O Never @ Only on clean exit
About Open Cancel

Figure 50. Terminal (PuTTY) configurations

NOTE
Make sure the board is set to FlexSPI flash boot mode (ISP2: ISP1: ISPO = ON, OFF, ON) before use GDB debug.

3. Open the J-Link GDB Server application. Assuming the J-Link software is installed, the application can be launched

by going to the Windows operating system Start menu and selecting Programs -> SEGGER -> J-Link <version> J-Link
GDB Server.

4. After it is connected, the screen should look like this figure:

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 33/47

NXP Semiconductors

Run a demo using Arm® GCC

0 bytes downloaded

SEGGER J-Link GDB Server V6.46g

File Help

GDB Waiting for connection | I

JLink [Connected | [swo | [4000 Kz
Device 'L3A6000_M4 .(Halt.e.d.]“ I 329\! i :\-i.tt-le enﬁian

Clear Log

Firmware: J-Link Lite-FSL V1 compiled Jun 25 2012 16:40:07
Hardware: v1.00

S/N: 361000738

Checking target voltage...

Target voltage: 3.29 V

Listening on TCP/IP port 2331

CORHECElﬂg to target...

Connected to target

Waiting for GDB connection...

Figure 51. SEGGER J-Link GDB Server screen after successful connection

|] show log window

[] stay on top

I:‘ Generate logfile
I:‘ Verify download

5. If not already running, open a GCC Arm Embedded tool chain command window. To launch the window, from the Windows
operating system Start menu, go to Programs -> GNU Tools Arm Embedded <version> and select GCC Command Prompt.

GNU Tools for ARM Embedded Process:

Documentation

GCC Command Prompt

{9 Uninstall GNU Tools for ARM Embec

Figure 52. Launch command prompt

6. Change to the directory that contains the example application output. The output can be found in using one of these paths,
depending on the build target selected:

<install dir>/boards/<board name>/<example type>/<application name>/armgcc/debug

<install dir>/boards/<board name>/<example type>/<application name>/armgcc/release

For this example, the path is:

<install dir>/boards/frdmk3213a6/demo apps/hello world/cm4/armgcc/debug

7. Runthe arm-none-eabi-gdb.exe <application name>.elf command. For this example, itis arm-none-eabi-
gdb.exe hello world.elf

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021

User Guide

34/47

NXP Semiconductors

Run a demo using Arm° GCC

line at:

Figure 53. Run arm-none-eabi-gdb

8. Run these commands:
a. target remote localhost:2331
b. monitor reset
C. monitor halt
d. load
€. monitor reset

9. The application is now downloaded and halted at the watch point. Execute the monitor go command to start the
demo application.

The hello world application is now running and a banner is displayed on the terminal. If this does not appear, check your
terminal settings and connections.

Figure 54. Text display of the hello_world demo

6.4 Build a multicore example application

This section describes the steps to build and run a dual-core application. The demo application build scripts are located in
this folder:

<install dir>/boards/<board name>/multicore examples/<application name>/<core type>/armgcc

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 35/47

NXP Semiconductors

Run a demo using Arm® GCC

Begin with a simple dual-core version of the Hello World application. The multicore Hello World GCC build scripts are located in
this folder:

<install dir>/boards/lpcxpresso54114/multicore examples/hello world/cmOplus/armgcc/build debug.bat

<install dir>/boards/lpcxpresso54114/multicore examples/hello world/cm4/armgcc/build debug.bat

Build both applications separately following steps for single core examples as described in Build an example application.

E¥ GCC Command Prempt - build_debug.bat — O x

Figure 55. hello_world_cmOplus example build successful

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 36 /47

NXP Semiconductors

Run a demo using Arm® GCC

BE¥ GCC Command Prompt - build_debug.bat

t hello_world_

.©_FRDM

Press any key to continue . . .

cmd . elf

A6_RCl\boards\frdmk3

Figure 56. hello_world_cm4 example build successful

multicore_

xamplesihello worldiycmd\ar

6.5 Run a multicore example application

When running a multicore application, the same prerequisites for J-Link/J-Link OpenSDA firmware, and the serial console as for
the single-core application, applies, as described in Run an example application.

The primary core debugger handles flashing of both the primary and the auxiliary core applications into the SoC flash memory. To
download and run the multicore application, switch to the primary core application project and perform steps 1 to 10, as described
in Run an example application. These steps are common for both single-core and dual-core applications in Arm GCC.

Both the primary and the auxiliary image is loaded into the SPI flash memory. After execution of the monitor go command, the
primary core application is executed. During the primary core code execution, the auxiliary core code is re-allocated from the flash
memory to the RAM, and the auxiliary core is released from the reset. The hello world multicore application is now running and
a banner is displayed on the terminal. If this is not true, check your terminal settings and connections.

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021

User Guide

37/47

NXP Semiconductors

Run a demo using Arm° GCC

B8 Administrator: GCC Command Prompt |ﬂ|i-]

¢ D-SDE_2 .@_LPCEpresszoS4liidsboardsslpexpressoS4ildsmulticore_examplesshello_wor
ld~cmd~armgcc>IF """ == """ (pause >
Presz any key to continue . . .

c s DSDE_2 .@_LPCEpressoS4lidsboardsslpexpressoS4ildsmulticore_examplesshello_wor
ld~cmd~armngcc>cd debug

c = DSDE_2 .@_LPCEpressoS4liidsboardsslpexpressoS4ildsmulticore_examplesshello_wor
ldscmd“armgyccsdebugrarm—none—eabi—gdb.exe hello_world_cmd.elf
GHU gdb C(GHU Tools for ARM Embedded Processors 6—2017—qg2—update> V.12.1.20178417
—git
Copyright <C>» 20817 Free Software Foundation, Inc.
License GPLu3+: GHU GPL version 3 or later <{http:/Agnu.orgslicensesAsgpl.html>
Thizs iz free software: vou are free to change and redistribute it.
There iz NO YARRAWTY, to the extent permitted by law. Type "show copying"
and “show warranty'" for details.
Thiz GDB was configured az ""——host=i68b6—wbd-mingw3dZ2 —target=arm—none—eahi'.
Type “zhow configuration' for configuration details.
For bug reporting instructions,. please see:
<http: /2wy .gnu.orgssof tware gdb-bugs./>.
Find the GDB manual and other documentation resources online at:
<http:= 2wy . gnu.orgssof twaresgdbs/documentations>.
For help. type "help'.
Type “aproposz word'" to search for commands related to "word'...
Reading symbols from hello_world _cmd.elf...done.
Cgdbh?» target remote localhost:-2331
Remote debugging uwusing localhost:2331
BxA00884298 in 7 (>
Cgdbh? monitor reset
Resetting target
Cgdbh? monitor halt
Cogdb?» load
i gsection .interrupts, sice BxeB 1lma BxB@

section .text, size Bx36l4 1lma Bxed

section .ARM. szize BxE 1lma Bx36f8

section .init_array, size Bx4 1lma Bx3700

section .fini_array, size Bxd 1lma Bx3704

section .data, size Bx68 lma Bx3788

section .mBcode, size Bxifod 1lma Bx3I0600Q8
Start address BxldB,. load size 22224
Tranzsfer rate: 1273 KBrsec. 3174 hytessurite.
Cgdh} monitor reset
Resetting target
Cgdbh) monitor go
Cogdb) g
A debugging session is active.

Inferior 1 [Remote target] will he killed.

Quit anyway? <y or N> u

c =~ D~SDE_2 .@_LPCRpressob4iidshoardsslpexpressoSd4ilidmulticore_examplesshello_wor
ldscmd*armgcc*dehug >

e A

Figure 57. Loading and running the multicore example

¥ COM17:115200baud - Tera Term VT [=]E ==

|F\IE Edit Setup Control Window KanjiCode Help |
Starting Secondary core.

Hello World from the Primary Core!

Press the SW1 button to Stop Secondary core.
Press the $H2 button to Start Secondary core.
Secondary core is in startup code.

Secondary core is in exception number 3.

Figure 58. Hello World from primary core message

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 38/47

NXP Semiconductors

MCUXpresso Config Tools

7 MCUXpresso Config Tools

MCUXpresso Config Tools can help configure the processor and generate initialization code for the on chip peripherals. The tools
are able to modify any existing example project, or create a new configuration for the selected board or processor. The generated
code is designed to be used with MCUXpresso SDK version 2.x.

Table 1 describes the tools included in the MCUXpresso Config Tools.

Table 1. MCUXpresso Config Tools

Config Tool Description Image
Pins tool For configuration of pin routing and pin
electrical properties.
Clock tool For system clock configuration
Peripherals tools For configuration of other peripherals :
TEE tool Configures access policies for memory
area and peripherals helping to protect
and isolate sensitive parts of the
application.
Device Configuration tool Configures Device Configuration Data
(DCD) contained in the program image -9“ -
that the Boot ROM code interprets to]
setup various on-chip peripherals prior
the program launch.

MCUXpresso Config Tools can be accessed in the following products:

* Integrated in the MCUXpresso IDE. Config tools are integrated with both compiler and debugger which makes it the easiest
way to begin the development.

 Standalone version available for download from www.nxp.com/mcuxpresso. Recommended for customers using IAR
Embedded Workbench, Keil MDK pVision, or Arm GCC.

* Online version available on mcuxpresso.nxp.com. Recommended to do a quick evaluation of the processor or use the tool
without installation.

Each version of the product contains a specific Quick Start Guide document MCUXpresso IDE Config Tools installation folder that
can help start your work.

8 MCUXpresso IDE New Project Wizard

MCUXpresso IDE features a new project wizard. The wizard provides functionality for the user to create new projects from the

installed SDKs (and from pre-installed part support). It offers user the flexibility to select and change multiple builds. The wizard
also includes a library and provides source code options. The source code is organized as software components, categorized as
drivers, utilities, and middleware.

To use the wizard, start the MCUXpresso IDE. This is located in the QuickStart Panel at the bottom left of the MCUXpresso IDE
window. Select New project, as shown in Figure 59.

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 39/47

http://www.nxp.com/mcuxpresso
http://mcuxpresso.nxp.com

NXP Semiconductors

How to determine COM port

T

T
0

0

O Quickstart Panel Slobal Variables Variables
g MCUXpresso IDE (Free Edition)

= Start here

= New project...
= Import SDK example(s)...

11

® Import project(s) from file system...

& Quick Settings= =

Figure 59. MCUXpresso IDE Quickstart Panel

For more details and usage of new project wizard, see the MCUXpresso_IDE_User_Guide.pdfin the MCUXpresso IDE
installation folder.

9 How to determine COM port

This section describes the steps necessary to determine the debug COM port number of your NXP hardware development
platform. All NXP boards ship with a factory programmed, on-board debug interface, whether it's based on OpenSDA or the legacy
P&E Micro OSJTAG interface. To determine what your specific board ships with, see #unique_37.

1. Linux: The serial port can be determined by running the following command after the USB Serial is connected to the host:
$ dmesg | grep "ttyUSB"
[503175.307873] usb 3-12: cp210x converter now attached to ttyUSBO
[503175.309372] usb 3-12: cp2l0x converter now attached to ttyUSB1l
There are two ports, one is Cortex-A core debug console and the other is for Cortex M4.

2. Windows: To determine the COM port open Device Manager in the Windows operating system. Click on the Start menu
and type Device Manager in the search bar.

3. In the Device Manager, expand the Ports (COM & LPT) section to view the available ports. The COM port names will be
different for all the NXP boards.

a. OpenSDA - CMSIS-DAP/mbed/DAPLInk interface:

475 Ports (COM & LPT)
- 05 mbed Serial Port (COMA41)

Figure 60. OpenSDA — CMSIS-DAP/mbed/DAPLink interface

b. OpenSDA - P&E Micro:

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 40/ 47

NXP Semiconductors

How to define IRQ handler in CPP files

4 ' Ports (COM & LPT)
P ;T OpenSDA - CDC Senal Port (http://www.pemicro.com/opensda) (COM22)

Figure 61. OpenSDA - P&E Micro

c. OpenSDA - J-Link:

473" Ports (COM & LPT)
. LT JLink CDC UART Port (COML2)

Figure 62. OpenSDA - J-Link

d. P&E Micro OSJTAG:

475 Ports (COM & LPT)
‘? OSBDM/OSITAG - CDC Serial Port (http:/fwww.pemicro.com/osbdrm, http:/Swww.pemicro.com/opensda) (COM43)

Figure 63. P&E Micro OSJTAG

e. MRB-KWO01:

4 77 Ports (COM & LPT)
. LT Freescale CDC Device (COM4G)

Figure 64. MRB-KWO01

10 How to define IRQ handler in CPP files

With MCUXpresso SDK, users could define their own IRQ handler in application level to

override the default IRQ handler. For example, to override the default pIT TROHandler definein startup DEVICE.s, application
code like app.c can be implement like:

©
void PIT_TIRQHandler (void)
{

// Your code

}
When application file is CPP file, like app.cpp, then extern "c" should be used to ensure the function prototype alignment.

cpp
extern "C" {
void PIT IRQHandler (void);

}

void PIT_TIRQHandler (void)
{

// Your code

}

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 41/47

NXP Semiconductors

11 Default debug interfaces

Default debug interfaces

The MCUXpresso SDK supports various hardware platforms that come loaded with a variety of factory programmed debug
interface configurations. Table 2 lists the hardware platforms supported by the MCUXpresso SDK, their default debug interface,

and any version information that helps differentiate a specific interface configuration.

NOTE

Table 2. Hardware platforms supported by MCUXpresso SDK

The OpenSDA details column in Table 2 is not applicable to LPC.

Hardware platform

Default interface

OpenSDA details

EVK-MC56F83000

P&E Micro OSJTAG

N/A

EVK-MIMXRT595

CMSIS-DAP

N/A

EVK-MIMXRT685

CMSIS-DAP

N/A

FRDM-K22F CMSIS-DAP/mbed/DAPLink OpenSDA v2.1
FRDM-K28F DAPLink OpenSDA v2.1
FRDM-K32L2A4S CMSIS-DAP OpenSDA v2.1
FRDM-K32L2B CMSIS-DAP OpenSDA v2.1
FRDM-K32W042 CMSIS-DAP N/A

FRDM-K64F CMSIS-DAP/mbed/DAPLink OpenSDA v2.0
FRDM-K66F J-Link OpenSDA OpenSDA v2.1
FRDM-K82F CMSIS-DAP OpenSDA v2.1
FRDM-KE15Z DAPLink OpenSDA v2.1
FRDM-KE16Z CMSIS-DAP/mbed/DAPLink OpenSDA v2.2
FRDM-KL02Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL03Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL25Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL26Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL27Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL28Z P&E Micro OpenSDA OpenSDA v2.1
FRDM-KL43Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL46Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL81Z CMSIS-DAP OpenSDA v2.0
FRDM-KL82Z CMSIS-DAP OpenSDA v2.0
FRDM-KV10Z CMSIS-DAP OpenSDA v2.1
FRDM-KV11Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KV31F P&E Micro OpenSDA OpenSDA v1.0
FRDM-KW24 CMSIS-DAP/mbed/DAPLink OpenSDA v2.1

Table continues on the next page...
Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 42 /47

NXP Semiconductors

Table 2. Hardware platforms supported by MCUXpresso SDK (continued)

Default debug interfaces

Hardware platform

Default interface

OpenSDA details

FRDM-KW36 DAPLink OpenSDA v2.2
FRDM-KW41Z CMSIS-DAP/DAPLInk OpenSDA v2.1 or greater
Hexiwear CMSIS-DAP/mbed/DAPLIink OpenSDA v2.0
HVP-KE18F DAPLink OpenSDA v2.2
HVP-KV46F 150M P&E Micro OpenSDA OpenSDA v1

HVP-KV11Z75M CMSIS-DAP OpenSDA v2.1
HVP-KV58F CMSIS-DAP OpenSDA v2.1
HVP-KV31F120M P&E Micro OpenSDA OpenSDA v1
JN5189DK6 CMSIS-DAP N/A
LPC54018 loT Module N/A N/A
LPCXpresso54018 CMSIS-DAP N/A
LPCXpresso54102 CMSIS-DAP N/A
LPCXpresso54114 CMSIS-DAP N/A
LPCXpresso51U68 CMSIS-DAP N/A
LPCXpresso54608 CMSIS-DAP N/A
LPCXpresso54618 CMSIS-DAP N/A
LPCXpresso54628 CMSIS-DAP N/A
LPCXpresso54S018M CMSIS-DAP N/A
LPCXpresso55s16 CMSIS-DAP N/A
LPCXpresso55s28 CMSIS-DAP N/A
LPCXpresso55s69 CMSIS-DAP N/A
MAPS-KS22 J-Link OpenSDA OpenSDA v2.0
MIMXRT1170-EVK CMSIS-DAP N/A
TWR-K21D50M P&E Micro OSJTAG N/AOpenSDA v2.0
TWR-K21F120M P&E Micro OSJTAG N/A

TWR-K22F120M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-K24F120M

CMSIS-DAP/mbed

OpenSDA v2.1

TWR-K60D100M

P&E Micro OSJTAG

N/A

TWR-K64D120M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-K64F120M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-K65D180M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-K65D180M

P&E Micro OpenSDA

Table continues on the next page...

OpenSDA v1.0

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021

User Guide

43 /47

NXP Semiconductors

Table 2. Hardware platforms supported by MCUXpresso SDK (continued)

Updating debugger firmware

Hardware platform

Default interface

OpenSDA details

TWR-KV10Z32

P&E Micro OpenSDA

OpenSDA v1.0

TWR-K80F150M CMSIS-DAP OpenSDA v2.1
TWR-K81F150M CMSIS-DAP OpenSDA v2.1
TWR-KE18F DAPLink OpenSDA v2.1

TWR-KL28Z72M

P&E Micro OpenSDA

OpenSDA v2.1

TWR-KL43Z48M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-KL81Z72M

CMSIS-DAP

OpenSDA v2.0

TWR-KL82Z72M

CMSIS-DAP

OpenSDA v2.0

TWR-KM34Z75M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-KM35Z75M

DAPLink

OpenSDA v2.2

TWR-KV10Z32

P&E Micro OpenSDA

OpenSDA v1.0

TWR-KV11Z75M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-KV31F120M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-KV46F150M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-KV58F220M

CMSIS-DAP

OpenSDA v2.1

TWR-KW24D512

P&E Micro OpenSDA

OpenSDA v1.0

USB-KW24D512

N/A External probe

N/A

USB-KW41Z

CMSIS-DAP\DAPLink

OpenSDA v2.1 or greater

12 Updating debugger firmware

12.1 Updating OpenSDA firmware

Any NXP hardware platform that comes with an OpenSDA-compatible debug interface has the ability to update the OpenSDA
firmware. This typically means switching from the default application (either CMSIS-DAP/mbed/DAPLink or P&E Micro) to a
SEGGER J-Link. This section contains the steps to switch the OpenSDA firmware to a J-Link interface. However, the steps can

be applied to restoring the original image also. For reference, OpenSDA firmware files can be found at the links below:

» J-Link: Download appropriate image from www.segger.com/opensda.html. Choose the appropriate J-Link binary based on
the table in #unique_41. Any OpenSDA v1.0 interface should use the standard OpenSDA download (in other words, the

one with no version). For OpenSDA 2.0 or 2.1, select the corresponding binary.

* CMSIS-DAP/mbed/DAPLink: DAPLink OpenSDA firmware is available at www.nxp.com/opensda.

» P&E Micro: Downloading P&E Micro OpenSDA firmware images requires registration with P&E Micro (www.pemicro.com).

Perform the following steps to update the OpenSDA firmware on your board for Windows and Linux OS users:
1. Unplug the board's USB cable.
2. Press the Reset button on the board. While still holding the button, plug the USB cable back into the board.

3. When the board re-enumerates, it shows up as a disk drive called MAINTENANCE.

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021

User Guide

44747

http://www.segger.com/opensda.html
http://www.nxp.com/opensda
http://www.pemicro.com/opensda/index.cfm

NXP Semiconductors

Updating debugger firmware

M Computer
%_‘-'J Prirnary (C:)
e MAINTEMAMCE (E:)

Figure 65. MAINTENANCE drive

4. Drag and drop the new firmware image onto the MAINTENANCE drive.

NOTE
If for any reason the firmware update fails, the board can always re-enter maintenance mode by holding down
Reset button and power cycling.

These steps show how to update the OpenSDA firmware on your board for Mac OS users.
1. Unplug the board's USB cable.
2. Press the Reset button of the board. While still holding the button, plug the USB cable back into the board.

3. For boards with OpenSDA v2.0 or v2.1, it shows up as a disk drive called BOOTLOADER in Finder. Boards with
OpenSDA v1.0 may or may not show up depending on the bootloader version. If you see the drive in Finder, proceed to
the next step. If you do not see the drive in Finder, use a PC with Windows OS 7 or an earlier version to either update
the OpenSDA firmware, or update the OpenSDA bootloader to version 1.11 or later. The bootloader update instructions
and image can be obtained from P&E Microcomputer website.

4. For OpenSDA v2.1 and OpenSDA v1.0 (with bootloader 1.11 or later) users, drag the new firmware image onto the
BOOTLOADER drive in Finder.

5. For OpenSDA v2.0 users, type these commands in a Terminal window:

> sudo mount -u -w -o sync /Volumes/BOOTLOADER
> cp -X <path to update file> /Volumes/BOOTLOADER

NOTE
If for any reason the firmware update fails, the board can always re-enter bootloader mode by holding down the
Reset button and power cycling.

12.2 Updating LPCXpresso board firmware

The LPCXpresso hardware platform comes with a CMSIS-DAP-compatible debug interface (known as LPC-Link2). This firmware
in this debug interface may be updated using the host computer utility called LPCScrypt. This typically used when switching
between the default debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this firmware with new releases of these.
This section contains the steps to re-program the debug probe firmware.

NOTE
If MCUXpresso IDE is used and the jumper making DFUIink is installed on the board (JP5 on some boards, but
consult the board user manual or schematic for specific jumper number), LPC-Link2 debug probe boots to DFU
mode, and MCUXpresso IDE automatically downloads the CMSIS-DAP firmware to the probe before flash memory
programming (after clicking Debug). Using DFU mode ensures most up-to-date/compatible firmware is used with
MCUXpresso IDE.

NXP provides the LPCScrypt utility, which is the recommended tool for programming the latest versions of CMSIS-DAP and J-Link
firmware onto LPC-Link2 or LPCXpresso boards. The utility can be downloaded from www.nxp.com/Ipcutilities.

These steps show how to update the debugger firmware on your board for Windows operating system. For Linux OS, follow the
instructions described in LPCScrypt user guide (www.nxp.com/Ipcutilities, select LPCScrypt, and then the documentation tab).

1. Install the LPCScript utility.

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021
User Guide 45/ 47

http://www.nxp.com/lpcutilities
http://www.nxp.com/lpcutilities

NXP Semiconductors

Revision history

Unplug the board's USB cable.
Make the DFU link (install the jumper labelled DFUIink).
Connect the probe to the host via USB (use Link USB connector).

o M DN

Open a command shell and call the appropriate script located in the LPCScrypt installation directory (<.pcscrypt
install dir>).

a. To program CMSIS-DAP debug firmware: <LpCScrypt install dir>/scripts/program CMSIS
b. To program J-Link debug firmware: <LpCScrypt install dir>/scripts/program JLINK
6. Remove DFU link (remove the jumper installed in Step 3).

7. Re-power the board by removing the USB cable and plugging it in again.

13 Revision history
This table summarizes revisions to this document.

Table 3. Revision history

Revision number Date Substantive changes

2.11.0 11 November 2021 Updated for MCUXpresso SDK v2.11.0

Getting Started with MCUXpresso SDK, Rev. 2.11.0, 11 November 2021

User Guide

46 /47

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at

the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all

information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer

is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features
that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its
products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products,
regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of
NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, uVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision

Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2018-2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 11 November 2021
Document identifier: MCUXSDKGSUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Overview
	2 MCUXpresso SDK board support package folders
	2.1 Example application structure
	2.2 Locating example application source files

	3 Run a demo using MCUXpresso IDE
	3.1 Select the workspace location
	3.2 Build an example application
	3.3 Run an example application
	3.4 Build a multicore example application
	3.5 Run a multicore example application

	4 Run a demo application using IAR
	4.1 Build an example application
	4.2 Run an example application
	4.3 Build a multicore example application
	4.4 Run a multicore example application

	5 Run a demo using Keil® MDK/μVision
	5.1 Install CMSIS device pack
	5.2 Build an example application
	5.3 Run an example application
	5.4 Build a multicore example application
	5.5 Run a multicore example application

	6 Run a demo using Arm® GCC
	6.1 Set up toolchain
	6.1.1 Install GCC Arm Embedded tool chain
	6.1.2 Install MinGW (only required on Windows OS)
	6.1.3 Add a new system environment variable for ARMGCC_DIR
	6.1.4 Install CMake

	6.2 Build an example application
	6.3 Run an example application
	6.4 Build a multicore example application
	6.5 Run a multicore example application

	7 MCUXpresso Config Tools
	8 MCUXpresso IDE New Project Wizard
	9 How to determine COM port
	10 How to define IRQ handler in CPP files
	11 Default debug interfaces
	12 Updating debugger firmware
	12.1 Updating OpenSDA firmware
	12.2 Updating LPCXpresso board firmware

	13 Revision history

