/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_cmplx_conj_q15.c * Description: Q15 complex conjugate * * $Date: 18. March 2019 * $Revision: V1.6.0 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** @ingroup groupCmplxMath */ /** @addtogroup cmplx_conj @{ */ /** @brief Q15 complex conjugate. @param[in] pSrc points to the input vector @param[out] pDst points to the output vector @param[in] numSamples number of samples in each vector @return none @par Scaling and Overflow Behavior The function uses saturating arithmetic. The Q15 value -1 (0x8000) is saturated to the maximum allowable positive value 0x7FFF. */ void arm_cmplx_conj_q15( const q15_t * pSrc, q15_t * pDst, uint32_t numSamples) { uint32_t blkCnt; /* Loop counter */ q31_t in1; /* Temporary input variable */ #if defined (ARM_MATH_LOOPUNROLL) && defined (ARM_MATH_DSP) q31_t in2, in3, in4; /* Temporary input variables */ #endif #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ blkCnt = numSamples >> 2U; while (blkCnt > 0U) { /* C[0] + jC[1] = A[0]+ j(-1)A[1] */ /* Calculate Complex Conjugate and store result in destination buffer. */ #if defined (ARM_MATH_DSP) in1 = read_q15x2_ia ((q15_t **) &pSrc); in2 = read_q15x2_ia ((q15_t **) &pSrc); in3 = read_q15x2_ia ((q15_t **) &pSrc); in4 = read_q15x2_ia ((q15_t **) &pSrc); #ifndef ARM_MATH_BIG_ENDIAN in1 = __QASX(0, in1); in2 = __QASX(0, in2); in3 = __QASX(0, in3); in4 = __QASX(0, in4); #else in1 = __QSAX(0, in1); in2 = __QSAX(0, in2); in3 = __QSAX(0, in3); in4 = __QSAX(0, in4); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ in1 = ((uint32_t) in1 >> 16) | ((uint32_t) in1 << 16); in2 = ((uint32_t) in2 >> 16) | ((uint32_t) in2 << 16); in3 = ((uint32_t) in3 >> 16) | ((uint32_t) in3 << 16); in4 = ((uint32_t) in4 >> 16) | ((uint32_t) in4 << 16); write_q15x2_ia (&pDst, in1); write_q15x2_ia (&pDst, in2); write_q15x2_ia (&pDst, in3); write_q15x2_ia (&pDst, in4); #else *pDst++ = *pSrc++; in1 = *pSrc++; *pDst++ = (in1 == (q15_t) 0x8000) ? (q15_t) 0x7fff : -in1; *pDst++ = *pSrc++; in1 = *pSrc++; *pDst++ = (in1 == (q15_t) 0x8000) ? (q15_t) 0x7fff : -in1; *pDst++ = *pSrc++; in1 = *pSrc++; *pDst++ = (in1 == (q15_t) 0x8000) ? (q15_t) 0x7fff : -in1; *pDst++ = *pSrc++; in1 = *pSrc++; *pDst++ = (in1 == (q15_t) 0x8000) ? (q15_t) 0x7fff : -in1; #endif /* #if defined (ARM_MATH_DSP) */ /* Decrement loop counter */ blkCnt--; } /* Loop unrolling: Compute remaining outputs */ blkCnt = numSamples % 0x4U; #else /* Initialize blkCnt with number of samples */ blkCnt = numSamples; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (blkCnt > 0U) { /* C[0] + jC[1] = A[0]+ j(-1)A[1] */ /* Calculate Complex Conjugate and store result in destination buffer. */ *pDst++ = *pSrc++; in1 = *pSrc++; #if defined (ARM_MATH_DSP) *pDst++ = __SSAT(-in1, 16); #else *pDst++ = (in1 == (q15_t) 0x8000) ? (q15_t) 0x7fff : -in1; #endif /* Decrement loop counter */ blkCnt--; } } /** @} end of cmplx_conj group */