/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_cmplx_dot_prod_f32.c * Description: Floating-point complex dot product * * $Date: 18. March 2019 * $Revision: V1.6.0 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** @ingroup groupCmplxMath */ /** @defgroup cmplx_dot_prod Complex Dot Product Computes the dot product of two complex vectors. The vectors are multiplied element-by-element and then summed. The pSrcA points to the first complex input vector and pSrcB points to the second complex input vector. numSamples specifies the number of complex samples and the data in each array is stored in an interleaved fashion (real, imag, real, imag, ...). Each array has a total of 2*numSamples values. The underlying algorithm is used:
  realResult = 0;
  imagResult = 0;
  for (n = 0; n < numSamples; n++) {
      realResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1];
      imagResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0];
  }
  
There are separate functions for floating-point, Q15, and Q31 data types. */ /** @addtogroup cmplx_dot_prod @{ */ /** @brief Floating-point complex dot product. @param[in] pSrcA points to the first input vector @param[in] pSrcB points to the second input vector @param[in] numSamples number of samples in each vector @param[out] realResult real part of the result returned here @param[out] imagResult imaginary part of the result returned here @return none */ void arm_cmplx_dot_prod_f32( const float32_t * pSrcA, const float32_t * pSrcB, uint32_t numSamples, float32_t * realResult, float32_t * imagResult) { uint32_t blkCnt; /* Loop counter */ float32_t real_sum = 0.0f, imag_sum = 0.0f; /* Temporary result variables */ float32_t a0,b0,c0,d0; #if defined(ARM_MATH_NEON) float32x4x2_t vec1,vec2,vec3,vec4; float32x4_t accR,accI; float32x2_t accum = vdup_n_f32(0); accR = vdupq_n_f32(0.0); accI = vdupq_n_f32(0.0); /* Loop unrolling: Compute 8 outputs at a time */ blkCnt = numSamples >> 3U; while (blkCnt > 0U) { /* C = (A[0]+jA[1])*(B[0]+jB[1]) + ... */ /* Calculate dot product and then store the result in a temporary buffer. */ vec1 = vld2q_f32(pSrcA); vec2 = vld2q_f32(pSrcB); /* Increment pointers */ pSrcA += 8; pSrcB += 8; /* Re{C} = Re{A}*Re{B} - Im{A}*Im{B} */ accR = vmlaq_f32(accR,vec1.val[0],vec2.val[0]); accR = vmlsq_f32(accR,vec1.val[1],vec2.val[1]); /* Im{C} = Re{A}*Im{B} + Im{A}*Re{B} */ accI = vmlaq_f32(accI,vec1.val[1],vec2.val[0]); accI = vmlaq_f32(accI,vec1.val[0],vec2.val[1]); vec3 = vld2q_f32(pSrcA); vec4 = vld2q_f32(pSrcB); /* Increment pointers */ pSrcA += 8; pSrcB += 8; /* Re{C} = Re{A}*Re{B} - Im{A}*Im{B} */ accR = vmlaq_f32(accR,vec3.val[0],vec4.val[0]); accR = vmlsq_f32(accR,vec3.val[1],vec4.val[1]); /* Im{C} = Re{A}*Im{B} + Im{A}*Re{B} */ accI = vmlaq_f32(accI,vec3.val[1],vec4.val[0]); accI = vmlaq_f32(accI,vec3.val[0],vec4.val[1]); /* Decrement the loop counter */ blkCnt--; } accum = vpadd_f32(vget_low_f32(accR), vget_high_f32(accR)); real_sum += accum[0] + accum[1]; accum = vpadd_f32(vget_low_f32(accI), vget_high_f32(accI)); imag_sum += accum[0] + accum[1]; /* Tail */ blkCnt = numSamples & 0x7; #else #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ blkCnt = numSamples >> 2U; while (blkCnt > 0U) { a0 = *pSrcA++; b0 = *pSrcA++; c0 = *pSrcB++; d0 = *pSrcB++; real_sum += a0 * c0; imag_sum += a0 * d0; real_sum -= b0 * d0; imag_sum += b0 * c0; a0 = *pSrcA++; b0 = *pSrcA++; c0 = *pSrcB++; d0 = *pSrcB++; real_sum += a0 * c0; imag_sum += a0 * d0; real_sum -= b0 * d0; imag_sum += b0 * c0; a0 = *pSrcA++; b0 = *pSrcA++; c0 = *pSrcB++; d0 = *pSrcB++; real_sum += a0 * c0; imag_sum += a0 * d0; real_sum -= b0 * d0; imag_sum += b0 * c0; a0 = *pSrcA++; b0 = *pSrcA++; c0 = *pSrcB++; d0 = *pSrcB++; real_sum += a0 * c0; imag_sum += a0 * d0; real_sum -= b0 * d0; imag_sum += b0 * c0; /* Decrement loop counter */ blkCnt--; } /* Loop unrolling: Compute remaining outputs */ blkCnt = numSamples % 0x4U; #else /* Initialize blkCnt with number of samples */ blkCnt = numSamples; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined(ARM_MATH_NEON) */ while (blkCnt > 0U) { a0 = *pSrcA++; b0 = *pSrcA++; c0 = *pSrcB++; d0 = *pSrcB++; real_sum += a0 * c0; imag_sum += a0 * d0; real_sum -= b0 * d0; imag_sum += b0 * c0; /* Decrement loop counter */ blkCnt--; } /* Store real and imaginary result in destination buffer. */ *realResult = real_sum; *imagResult = imag_sum; } /** @} end of cmplx_dot_prod group */