/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_conv_q7.c * Description: Convolution of Q7 sequences * * $Date: 18. March 2019 * $Revision: V1.6.0 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** @ingroup groupFilters */ /** @addtogroup Conv @{ */ /** @brief Convolution of Q7 sequences. @param[in] pSrcA points to the first input sequence @param[in] srcALen length of the first input sequence @param[in] pSrcB points to the second input sequence @param[in] srcBLen length of the second input sequence @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. @return none @par Scaling and Overflow Behavior The function is implemented using a 32-bit internal accumulator. Both the inputs are represented in 1.7 format and multiplications yield a 2.14 result. The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format. This approach provides 17 guard bits and there is no risk of overflow as long as max(srcALen, srcBLen)<131072. The 18.14 result is then truncated to 18.7 format by discarding the low 7 bits and then saturated to 1.7 format. @remark Refer to \ref arm_conv_opt_q7() for a faster implementation of this function. */ void arm_conv_q7( const q7_t * pSrcA, uint32_t srcALen, const q7_t * pSrcB, uint32_t srcBLen, q7_t * pDst) { #if (1) //#if !defined(ARM_MATH_CM0_FAMILY) const q7_t *pIn1; /* InputA pointer */ const q7_t *pIn2; /* InputB pointer */ q7_t *pOut = pDst; /* Output pointer */ const q7_t *px; /* Intermediate inputA pointer */ const q7_t *py; /* Intermediate inputB pointer */ const q7_t *pSrc1, *pSrc2; /* Intermediate pointers */ q31_t sum; /* Accumulators */ uint32_t blockSize1, blockSize2, blockSize3; /* Loop counters */ uint32_t j, k, count, blkCnt; /* Loop counters */ #if defined (ARM_MATH_LOOPUNROLL) q31_t acc0, acc1, acc2, acc3; /* Accumulators */ q31_t input1, input2; /* Temporary input variables */ q15_t in1, in2; /* Temporary input variables */ q7_t x0, x1, x2, x3, c0, c1; /* Temporary variables to hold state and coefficient values */ #endif /* The algorithm implementation is based on the lengths of the inputs. */ /* srcB is always made to slide across srcA. */ /* So srcBLen is always considered as shorter or equal to srcALen */ if (srcALen >= srcBLen) { /* Initialization of inputA pointer */ pIn1 = pSrcA; /* Initialization of inputB pointer */ pIn2 = pSrcB; } else { /* Initialization of inputA pointer */ pIn1 = pSrcB; /* Initialization of inputB pointer */ pIn2 = pSrcA; /* srcBLen is always considered as shorter or equal to srcALen */ j = srcBLen; srcBLen = srcALen; srcALen = j; } /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ /* The function is internally * divided into three stages according to the number of multiplications that has to be * taken place between inputA samples and inputB samples. In the first stage of the * algorithm, the multiplications increase by one for every iteration. * In the second stage of the algorithm, srcBLen number of multiplications are done. * In the third stage of the algorithm, the multiplications decrease by one * for every iteration. */ /* The algorithm is implemented in three stages. The loop counters of each stage is initiated here. */ blockSize1 = srcBLen - 1U; blockSize2 = srcALen - (srcBLen - 1U); blockSize3 = blockSize1; /* -------------------------- * Initializations of stage1 * -------------------------*/ /* sum = x[0] * y[0] * sum = x[0] * y[1] + x[1] * y[0] * .... * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] */ /* In this stage the MAC operations are increased by 1 for every iteration. The count variable holds the number of MAC operations performed */ count = 1U; /* Working pointer of inputA */ px = pIn1; /* Working pointer of inputB */ py = pIn2; /* ------------------------ * Stage1 process * ----------------------*/ /* The first stage starts here */ while (blockSize1 > 0U) { /* Accumulator is made zero for every iteration */ sum = 0; #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ k = count >> 2U; while (k > 0U) { /* x[0] , x[1] */ in1 = (q15_t) *px++; in2 = (q15_t) *px++; input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* y[srcBLen - 1] , y[srcBLen - 2] */ in1 = (q15_t) *py--; in2 = (q15_t) *py--; input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* x[0] * y[srcBLen - 1] */ /* x[1] * y[srcBLen - 2] */ sum = __SMLAD(input1, input2, sum); /* x[2] , x[3] */ in1 = (q15_t) *px++; in2 = (q15_t) *px++; input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* y[srcBLen - 3] , y[srcBLen - 4] */ in1 = (q15_t) *py--; in2 = (q15_t) *py--; input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* x[2] * y[srcBLen - 3] */ /* x[3] * y[srcBLen - 4] */ sum = __SMLAD(input1, input2, sum); /* Decrement loop counter */ k--; } /* Loop unrolling: Compute remaining outputs */ k = count % 0x4U; #else /* Initialize k with number of samples */ k = count; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (k > 0U) { /* Perform the multiply-accumulate */ sum += ((q15_t) *px++ * *py--); /* Decrement loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q7_t) (__SSAT(sum >> 7U, 8)); /* Update the inputA and inputB pointers for next MAC calculation */ py = pIn2 + count; px = pIn1; /* Increment MAC count */ count++; /* Decrement loop counter */ blockSize1--; } /* -------------------------- * Initializations of stage2 * ------------------------*/ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] * .... * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] */ /* Working pointer of inputA */ px = pIn1; /* Working pointer of inputB */ pSrc2 = pIn2 + (srcBLen - 1U); py = pSrc2; /* count is index by which the pointer pIn1 to be incremented */ count = 0U; /* ------------------- * Stage2 process * ------------------*/ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. * So, to loop unroll over blockSize2, * srcBLen should be greater than or equal to 4 */ if (srcBLen >= 4U) { #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ blkCnt = blockSize2 >> 2U; while (blkCnt > 0U) { /* Set all accumulators to zero */ acc0 = 0; acc1 = 0; acc2 = 0; acc3 = 0; /* read x[0], x[1], x[2] samples */ x0 = *px++; x1 = *px++; x2 = *px++; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = srcBLen >> 2U; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ do { /* Read y[srcBLen - 1] sample */ c0 = *py--; /* Read y[srcBLen - 2] sample */ c1 = *py--; /* Read x[3] sample */ x3 = *px++; /* x[0] and x[1] are packed */ in1 = (q15_t) x0; in2 = (q15_t) x1; input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* y[srcBLen - 1] and y[srcBLen - 2] are packed */ in1 = (q15_t) c0; in2 = (q15_t) c1; input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */ acc0 = __SMLAD(input1, input2, acc0); /* x[1] and x[2] are packed */ in1 = (q15_t) x1; in2 = (q15_t) x2; input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */ acc1 = __SMLAD(input1, input2, acc1); /* x[2] and x[3] are packed */ in1 = (q15_t) x2; in2 = (q15_t) x3; input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */ acc2 = __SMLAD(input1, input2, acc2); /* Read x[4] sample */ x0 = *px++; /* x[3] and x[4] are packed */ in1 = (q15_t) x3; in2 = (q15_t) x0; input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */ acc3 = __SMLAD(input1, input2, acc3); /* Read y[srcBLen - 3] sample */ c0 = *py--; /* Read y[srcBLen - 4] sample */ c1 = *py--; /* Read x[5] sample */ x1 = *px++; /* x[2] and x[3] are packed */ in1 = (q15_t) x2; in2 = (q15_t) x3; input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* y[srcBLen - 3] and y[srcBLen - 4] are packed */ in1 = (q15_t) c0; in2 = (q15_t) c1; input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */ acc0 = __SMLAD(input1, input2, acc0); /* x[3] and x[4] are packed */ in1 = (q15_t) x3; in2 = (q15_t) x0; input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */ acc1 = __SMLAD(input1, input2, acc1); /* x[4] and x[5] are packed */ in1 = (q15_t) x0; in2 = (q15_t) x1; input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */ acc2 = __SMLAD(input1, input2, acc2); /* Read x[6] sample */ x2 = *px++; /* x[5] and x[6] are packed */ in1 = (q15_t) x1; in2 = (q15_t) x2; input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */ acc3 = __SMLAD(input1, input2, acc3); } while (--k); /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ k = srcBLen % 0x4U; while (k > 0U) { /* Read y[srcBLen - 5] sample */ c0 = *py--; /* Read x[7] sample */ x3 = *px++; /* Perform the multiply-accumulates */ /* acc0 += x[4] * y[srcBLen - 5] */ acc0 += ((q15_t) x0 * c0); /* acc1 += x[5] * y[srcBLen - 5] */ acc1 += ((q15_t) x1 * c0); /* acc2 += x[6] * y[srcBLen - 5] */ acc2 += ((q15_t) x2 * c0); /* acc3 += x[7] * y[srcBLen - 5] */ acc3 += ((q15_t) x3 * c0); /* Reuse the present samples for the next MAC */ x0 = x1; x1 = x2; x2 = x3; /* Decrement loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q7_t) (__SSAT(acc0 >> 7U, 8)); *pOut++ = (q7_t) (__SSAT(acc1 >> 7U, 8)); *pOut++ = (q7_t) (__SSAT(acc2 >> 7U, 8)); *pOut++ = (q7_t) (__SSAT(acc3 >> 7U, 8)); /* Increment the pointer pIn1 index, count by 4 */ count += 4U; /* Update the inputA and inputB pointers for next MAC calculation */ px = pIn1 + count; py = pSrc2; /* Decrement loop counter */ blkCnt--; } /* Loop unrolling: Compute remaining outputs */ blkCnt = blockSize2 % 0x4U; #else /* Initialize blkCnt with number of samples */ blkCnt = blockSize2; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (blkCnt > 0U) { /* Accumulator is made zero for every iteration */ sum = 0; #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ k = srcBLen >> 2U; while (k > 0U) { /* Reading two inputs of SrcA buffer and packing */ in1 = (q15_t) *px++; in2 = (q15_t) *px++; input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* Reading two inputs of SrcB buffer and packing */ in1 = (q15_t) *py--; in2 = (q15_t) *py--; input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* Perform the multiply-accumulate */ sum = __SMLAD(input1, input2, sum); /* Reading two inputs of SrcA buffer and packing */ in1 = (q15_t) *px++; in2 = (q15_t) *px++; input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* Reading two inputs of SrcB buffer and packing */ in1 = (q15_t) *py--; in2 = (q15_t) *py--; input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* Perform the multiply-accumulate */ sum = __SMLAD(input1, input2, sum); /* Decrement loop counter */ k--; } /* Loop unrolling: Compute remaining outputs */ k = srcBLen % 0x4U; #else /* Initialize blkCnt with number of samples */ k = srcBLen; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (k > 0U) { /* Perform the multiply-accumulate */ sum += ((q15_t) *px++ * *py--); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q7_t) (__SSAT(sum >> 7U, 8)); /* Increment the pointer pIn1 index, count by 1 */ count++; /* Update the inputA and inputB pointers for next MAC calculation */ px = pIn1 + count; py = pSrc2; /* Decrement the loop counter */ blkCnt--; } } else { /* If the srcBLen is not a multiple of 4, * the blockSize2 loop cannot be unrolled by 4 */ blkCnt = blockSize2; while (blkCnt > 0U) { /* Accumulator is made zero for every iteration */ sum = 0; /* srcBLen number of MACS should be performed */ k = srcBLen; while (k > 0U) { /* Perform the multiply-accumulate */ sum += ((q15_t) *px++ * *py--); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q7_t) (__SSAT(sum >> 7U, 8)); /* Increment the MAC count */ count++; /* Update the inputA and inputB pointers for next MAC calculation */ px = pIn1 + count; py = pSrc2; /* Decrement loop counter */ blkCnt--; } } /* -------------------------- * Initializations of stage3 * -------------------------*/ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] * .... * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] * sum += x[srcALen-1] * y[srcBLen-1] */ /* In this stage the MAC operations are decreased by 1 for every iteration. The blockSize3 variable holds the number of MAC operations performed */ /* Working pointer of inputA */ pSrc1 = pIn1 + (srcALen - (srcBLen - 1U)); px = pSrc1; /* Working pointer of inputB */ pSrc2 = pIn2 + (srcBLen - 1U); py = pSrc2; /* ------------------- * Stage3 process * ------------------*/ while (blockSize3 > 0U) { /* Accumulator is made zero for every iteration */ sum = 0; #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ k = blockSize3 >> 2U; while (k > 0U) { /* Reading two inputs, x[srcALen - srcBLen + 1] and x[srcALen - srcBLen + 2] of SrcA buffer and packing */ in1 = (q15_t) *px++; in2 = (q15_t) *px++; input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* Reading two inputs, y[srcBLen - 1] and y[srcBLen - 2] of SrcB buffer and packing */ in1 = (q15_t) *py--; in2 = (q15_t) *py--; input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */ /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */ sum = __SMLAD(input1, input2, sum); /* Reading two inputs, x[srcALen - srcBLen + 3] and x[srcALen - srcBLen + 4] of SrcA buffer and packing */ in1 = (q15_t) *px++; in2 = (q15_t) *px++; input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* Reading two inputs, y[srcBLen - 3] and y[srcBLen - 4] of SrcB buffer and packing */ in1 = (q15_t) *py--; in2 = (q15_t) *py--; input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16U); /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */ /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */ sum = __SMLAD(input1, input2, sum); /* Decrement loop counter */ k--; } /* Loop unrolling: Compute remaining outputs */ k = blockSize3 % 0x4U; #else /* Initialize blkCnt with number of samples */ k = blockSize3; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (k > 0U) { /* Perform the multiply-accumulate */ /* sum += x[srcALen-1] * y[srcBLen-1] */ sum += ((q15_t) *px++ * *py--); /* Decrement loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q7_t) (__SSAT(sum >> 7U, 8)); /* Update the inputA and inputB pointers for next MAC calculation */ px = ++pSrc1; py = pSrc2; /* Decrement loop counter */ blockSize3--; } #else /* alternate version for CM0_FAMILY */ const q7_t *pIn1 = pSrcA; /* InputA pointer */ const q7_t *pIn2 = pSrcB; /* InputB pointer */ q31_t sum; /* Accumulator */ uint32_t i, j; /* Loop counters */ /* Loop to calculate convolution for output length number of times */ for (i = 0U; i < (srcALen + srcBLen - 1U); i++) { /* Initialize sum with zero to carry out MAC operations */ sum = 0; /* Loop to perform MAC operations according to convolution equation */ for (j = 0U; j <= i; j++) { /* Check the array limitations */ if (((i - j) < srcBLen) && (j < srcALen)) { /* z[i] += x[i-j] * y[j] */ sum += ((q15_t) pIn1[j] * pIn2[i - j]); } } /* Store the output in the destination buffer */ pDst[i] = (q7_t) __SSAT((sum >> 7U), 8U); } #endif /* #if !defined(ARM_MATH_CM0_FAMILY) */ } /** @} end of Conv group */