MCUXpresso_LPC845/devices/LPC845/drivers/fsl_i2c.c

1995 lines
68 KiB
C

/*
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright 2016-2019 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_i2c.h"
#include <stdlib.h>
#include <string.h>
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.lpc_i2c"
#endif
/*! @brief Common sets of flags used by the driver. */
enum _i2c_flag_constants
{
kI2C_MasterIrqFlags = I2C_INTSTAT_MSTPENDING_MASK | I2C_INTSTAT_MSTARBLOSS_MASK | I2C_INTSTAT_MSTSTSTPERR_MASK,
kI2C_SlaveIrqFlags = I2C_INTSTAT_SLVPENDING_MASK | I2C_INTSTAT_SLVDESEL_MASK,
};
/*******************************************************************************
* Prototypes
******************************************************************************/
#if defined(FSL_SDK_ENABLE_I2C_DRIVER_TRANSACTIONAL_APIS) && (FSL_SDK_ENABLE_I2C_DRIVER_TRANSACTIONAL_APIS)
static status_t I2C_InitTransferStateMachine(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_t *xfer);
static void I2C_SlaveInvokeEvent(I2C_Type *base, i2c_slave_handle_t *handle, i2c_slave_transfer_event_t event);
static bool I2C_SlaveAddressIRQ(I2C_Type *base, i2c_slave_handle_t *handle);
static status_t I2C_SlaveTransferNonBlockingInternal(I2C_Type *base,
i2c_slave_handle_t *handle,
const void *txData,
size_t txSize,
void *rxData,
size_t rxSize,
uint32_t eventMask);
#endif /* FSL_SDK_ENABLE_I2C_DRIVER_TRANSACTIONAL_APIS */
static void I2C_SlaveInternalStateMachineReset(I2C_Type *base);
static status_t I2C_SlaveDivVal(uint32_t srcClock_Hz, i2c_slave_bus_speed_t busSpeed, uint32_t *divVal);
static uint32_t I2C_SlavePollPending(I2C_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Array to map i2c instance number to base address. */
static I2C_Type *const s_i2cBases[] = I2C_BASE_PTRS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to i2c clocks for each instance. */
static const clock_ip_name_t s_i2cClocks[] = I2C_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
#if !(defined(FSL_FEATURE_I2C_HAS_NO_RESET) && FSL_FEATURE_I2C_HAS_NO_RESET)
static const reset_ip_name_t s_i2cResets[] = I2C_RSTS_N;
#endif
#if defined(FSL_SDK_ENABLE_I2C_DRIVER_TRANSACTIONAL_APIS) && (FSL_SDK_ENABLE_I2C_DRIVER_TRANSACTIONAL_APIS)
/*! @brief Pointers to i2c handles for each instance. */
static void *s_i2cHandle[FSL_FEATURE_SOC_I2C_COUNT];
/*! @brief IRQ name array */
static IRQn_Type const s_i2cIRQ[] = I2C_IRQS;
/*! @brief Pointer to master IRQ handler for each instance. */
static i2c_isr_t s_i2cMasterIsr;
/*! @brief Pointer to slave IRQ handler for each instance. */
static i2c_isr_t s_i2cSlaveIsr;
#endif /* FSL_SDK_ENABLE_I2C_DRIVER_TRANSACTIONAL_APIS */
/*******************************************************************************
* Code
******************************************************************************/
/*!
* @brief Returns an instance number given a base address.
*
* If an invalid base address is passed, debug builds will assert. Release builds will just return
* instance number 0.
*
* @param base The I2C peripheral base address.
* @return I2C instance number starting from 0.
*/
/*!
* brief Returns an instance number given a base address.
*
* If an invalid base address is passed, debug builds will assert. Release builds will just return
* instance number 0.
*
* param base The I2C peripheral base address.
* return I2C instance number starting from 0.
*/
uint32_t I2C_GetInstance(I2C_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0U; instance < ARRAY_SIZE(s_i2cBases); instance++)
{
if (s_i2cBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_i2cBases));
return instance;
}
/*!
* brief Provides a default configuration for the I2C master peripheral.
*
* This function provides the following default configuration for the I2C master peripheral:
* code
* masterConfig->enableMaster = true;
* masterConfig->baudRate_Bps = 100000U;
* masterConfig->enableTimeout = false;
* endcode
*
* After calling this function, you can override any settings in order to customize the configuration,
* prior to initializing the master driver with I2C_MasterInit().
*
* param[out] masterConfig User provided configuration structure for default values. Refer to #i2c_master_config_t.
*/
void I2C_MasterGetDefaultConfig(i2c_master_config_t *masterConfig)
{
/* Initializes the configure structure to zero. */
(void)memset(masterConfig, 0, sizeof(*masterConfig));
masterConfig->enableMaster = true;
masterConfig->baudRate_Bps = 100000U;
masterConfig->enableTimeout = false;
}
/*!
* brief Initializes the I2C master peripheral.
*
* This function enables the peripheral clock and initializes the I2C master peripheral as described by the user
* provided configuration. A software reset is performed prior to configuration.
*
* param base The I2C peripheral base address.
* param masterConfig User provided peripheral configuration. Use I2C_MasterGetDefaultConfig() to get a set of
* defaults
* that you can override.
* param srcClock_Hz Frequency in Hertz of the I2C functional clock. Used to calculate the baud rate divisors,
* filter widths, and timeout periods.
*/
void I2C_MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t srcClock_Hz)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Enable the clock. */
CLOCK_EnableClock(s_i2cClocks[I2C_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
#if !(defined(FSL_FEATURE_I2C_HAS_NO_RESET) && FSL_FEATURE_I2C_HAS_NO_RESET)
RESET_PeripheralReset(s_i2cResets[I2C_GetInstance(base)]);
#endif
I2C_MasterEnable(base, masterConfig->enableMaster);
I2C_MasterSetBaudRate(base, masterConfig->baudRate_Bps, srcClock_Hz);
}
/*!
* brief Deinitializes the I2C master peripheral.
*
* This function disables the I2C master peripheral and gates the clock. It also performs a software
* reset to restore the peripheral to reset conditions.
*
* param base The I2C peripheral base address.
*/
void I2C_MasterDeinit(I2C_Type *base)
{
I2C_MasterEnable(base, false);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Disable the clock. */
CLOCK_DisableClock(s_i2cClocks[I2C_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
/*!
* brief Sets the I2C bus frequency for master transactions.
*
* The I2C master is automatically disabled and re-enabled as necessary to configure the baud
* rate. Do not call this function during a transfer, or the transfer is aborted.
*
* param base The I2C peripheral base address.
* param srcClock_Hz I2C functional clock frequency in Hertz.
* param baudRate_Bps Requested bus frequency in bits per second.
*/
void I2C_MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
{
uint32_t scl, divider;
uint32_t best_scl = 0;
uint32_t best_div = 0;
uint32_t err, best_err;
best_err = 0U;
for (scl = 9U; scl >= 2U; scl--)
{
/* calculated ideal divider value for given scl, round up the result */
divider = ((srcClock_Hz * 10U) / (baudRate_Bps * scl * 2U) + 5U) / 10U;
/* adjust it if it is out of range */
divider = ((divider > 0x10000U) ? 0x10000U : divider);
/* calculate error */
err = srcClock_Hz - (baudRate_Bps * scl * 2U * divider);
if ((err < best_err) || (best_err == 0U))
{
best_div = divider;
best_scl = scl;
best_err = err;
}
if ((err == 0U) || (divider >= 0x10000U))
{
/* either exact value was found
or divider is at its max (it would even greater in the next iteration for sure) */
break;
}
}
base->CLKDIV = I2C_CLKDIV_DIVVAL(best_div - 1U);
base->MSTTIME = I2C_MSTTIME_MSTSCLLOW(best_scl - 2U) | I2C_MSTTIME_MSTSCLHIGH(best_scl - 2U);
}
static uint32_t I2C_PendingStatusWait(I2C_Type *base)
{
uint32_t status;
#if I2C_RETRY_TIMES
uint32_t waitTimes = I2C_RETRY_TIMES;
#endif
do
{
status = I2C_GetStatusFlags(base);
#if I2C_RETRY_TIMES
} while (((status & I2C_STAT_MSTPENDING_MASK) == 0) && (0U != --waitTimes));
if (0U == waitTimes)
{
return (uint32_t)kStatus_I2C_Timeout;
}
#else
} while ((status & I2C_STAT_MSTPENDING_MASK) == 0U);
#endif
/* Clear controller state. */
I2C_MasterClearStatusFlags(base, I2C_STAT_MSTARBLOSS_MASK | I2C_STAT_MSTSTSTPERR_MASK);
return status;
}
/*!
* brief Sends a START on the I2C bus.
*
* This function is used to initiate a new master mode transfer by sending the START signal.
* The slave address is sent following the I2C START signal.
*
* param base I2C peripheral base pointer
* param address 7-bit slave device address.
* param direction Master transfer directions(transmit/receive).
* retval kStatus_Success Successfully send the start signal.
* retval kStatus_I2C_Busy Current bus is busy.
*/
status_t I2C_MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
{
if (I2C_PendingStatusWait(base) == (uint32_t)kStatus_I2C_Timeout)
{
return kStatus_I2C_Timeout;
}
/* Write Address and RW bit to data register */
base->MSTDAT = ((uint32_t)address << 1) | ((uint32_t)direction & 1u);
/* Start the transfer */
base->MSTCTL = I2C_MSTCTL_MSTSTART_MASK;
return kStatus_Success;
}
/*!
* brief Sends a STOP signal on the I2C bus.
*
* retval kStatus_Success Successfully send the stop signal.
* retval kStatus_I2C_Timeout Send stop signal failed, timeout.
*/
status_t I2C_MasterStop(I2C_Type *base)
{
if (I2C_PendingStatusWait(base) == (uint32_t)kStatus_I2C_Timeout)
{
return kStatus_I2C_Timeout;
}
base->MSTCTL = I2C_MSTCTL_MSTSTOP_MASK;
return kStatus_Success;
}
/*!
* brief Performs a polling send transfer on the I2C bus.
*
* Sends up to a txSize number of bytes to the previously addressed slave device. The slave may
* reply with a NAK to any byte in order to terminate the transfer early. If this happens, this
* function returns #kStatus_I2C_Nak.
*
* param base The I2C peripheral base address.
* param txBuff The pointer to the data to be transferred.
* param txSize The length in bytes of the data to be transferred.
* param flags Transfer control flag to control special behavior like suppressing start or stop, for normal transfers
* use kI2C_TransferDefaultFlag
* retval kStatus_Success Data was sent successfully.
* retval #kStatus_I2C_Busy Another master is currently utilizing the bus.
* retval #kStatus_I2C_Nak The slave device sent a NAK in response to a byte.
* retval #kStatus_I2C_ArbitrationLost Arbitration lost error.
*/
status_t I2C_MasterWriteBlocking(I2C_Type *base, const void *txBuff, size_t txSize, uint32_t flags)
{
assert(txBuff != NULL);
uint32_t status;
uint32_t master_state;
status_t err;
const uint8_t *buf = (const uint8_t *)txBuff;
err = kStatus_Success;
while (txSize != 0U)
{
status = I2C_PendingStatusWait(base);
#if I2C_RETRY_TIMES
if (status == kStatus_I2C_Timeout)
{
return kStatus_I2C_Timeout;
}
#endif
if ((status & I2C_STAT_MSTARBLOSS_MASK) != 0U)
{
return kStatus_I2C_ArbitrationLost;
}
if ((status & I2C_STAT_MSTSTSTPERR_MASK) != 0U)
{
return kStatus_I2C_StartStopError;
}
master_state = (status & I2C_STAT_MSTSTATE_MASK) >> I2C_STAT_MSTSTATE_SHIFT;
switch (master_state)
{
case I2C_STAT_MSTCODE_TXREADY:
/* ready to send next byte */
base->MSTDAT = *buf++;
txSize--;
base->MSTCTL = I2C_MSTCTL_MSTCONTINUE_MASK;
break;
case I2C_STAT_MSTCODE_NACKADR:
/* slave nacked the address */
err = kStatus_I2C_Addr_Nak;
break;
case I2C_STAT_MSTCODE_NACKDAT:
/* slave nacked the last byte */
err = kStatus_I2C_Nak;
break;
default:
/* unexpected state */
err = kStatus_I2C_UnexpectedState;
break;
}
if (err != kStatus_Success)
{
return err;
}
}
status = I2C_PendingStatusWait(base);
#if I2C_RETRY_TIMES
if (status == kStatus_I2C_Timeout)
{
return kStatus_I2C_Timeout;
}
#endif
if ((status & (I2C_STAT_MSTARBLOSS_MASK | I2C_STAT_MSTSTSTPERR_MASK)) == 0U)
{
if ((flags & (uint32_t)kI2C_TransferNoStopFlag) == 0U)
{
/* Initiate stop */
base->MSTCTL = I2C_MSTCTL_MSTSTOP_MASK;
status = I2C_PendingStatusWait(base);
#if I2C_RETRY_TIMES
if (status == kStatus_I2C_Timeout)
{
return kStatus_I2C_Timeout;
}
#endif
}
}
if ((status & I2C_STAT_MSTARBLOSS_MASK) != 0U)
{
return kStatus_I2C_ArbitrationLost;
}
if ((status & I2C_STAT_MSTSTSTPERR_MASK) != 0U)
{
return kStatus_I2C_StartStopError;
}
return kStatus_Success;
}
/*!
* brief Performs a polling receive transfer on the I2C bus.
*
* param base The I2C peripheral base address.
* param rxBuff The pointer to the data to be transferred.
* param rxSize The length in bytes of the data to be transferred.
* param flags Transfer control flag to control special behavior like suppressing start or stop, for normal transfers
* use kI2C_TransferDefaultFlag
* retval kStatus_Success Data was received successfully.
* retval #kStatus_I2C_Busy Another master is currently utilizing the bus.
* retval #kStatus_I2C_Nak The slave device sent a NAK in response to a byte.
* retval #kStatus_I2C_ArbitrationLost Arbitration lost error.
*/
status_t I2C_MasterReadBlocking(I2C_Type *base, void *rxBuff, size_t rxSize, uint32_t flags)
{
assert(rxBuff != NULL);
uint32_t status = 0;
uint32_t master_state;
status_t err;
uint8_t *buf = (uint8_t *)(rxBuff);
err = kStatus_Success;
while (rxSize != 0U)
{
status = I2C_PendingStatusWait(base);
#if I2C_RETRY_TIMES
if (status == kStatus_I2C_Timeout)
{
return kStatus_I2C_Timeout;
}
#endif
if ((status & (I2C_STAT_MSTARBLOSS_MASK | I2C_STAT_MSTSTSTPERR_MASK)) != 0U)
{
break;
}
master_state = (status & I2C_STAT_MSTSTATE_MASK) >> I2C_STAT_MSTSTATE_SHIFT;
switch (master_state)
{
case I2C_STAT_MSTCODE_RXREADY:
/* ready to receive next byte */
*(buf++) = (uint8_t)base->MSTDAT;
if (--rxSize != 0U)
{
base->MSTCTL = I2C_MSTCTL_MSTCONTINUE_MASK;
}
else
{
if ((flags & (uint32_t)kI2C_TransferNoStopFlag) == 0U)
{
/* initiate NAK and stop */
base->MSTCTL = I2C_MSTCTL_MSTSTOP_MASK;
status = I2C_PendingStatusWait(base);
#if I2C_RETRY_TIMES
if (status == kStatus_I2C_Timeout)
{
return kStatus_I2C_Timeout;
}
#endif
}
}
break;
case I2C_STAT_MSTCODE_NACKADR:
case I2C_STAT_MSTCODE_NACKDAT:
/* slave nacked the last byte */
err = kStatus_I2C_Nak;
break;
default:
/* unexpected state */
err = kStatus_I2C_UnexpectedState;
break;
}
if (err != kStatus_Success)
{
return err;
}
}
if ((status & I2C_STAT_MSTARBLOSS_MASK) != 0U)
{
return kStatus_I2C_ArbitrationLost;
}
if ((status & I2C_STAT_MSTSTSTPERR_MASK) != 0U)
{
return kStatus_I2C_StartStopError;
}
return kStatus_Success;
}
/*!
* brief Performs a master polling transfer on the I2C bus.
*
* note The API does not return until the transfer succeeds or fails due
* to arbitration lost or receiving a NAK.
*
* param base I2C peripheral base address.
* param xfer Pointer to the transfer structure.
* retval kStatus_Success Successfully complete the data transmission.
* retval kStatus_I2C_Busy Previous transmission still not finished.
* retval kStatus_I2C_Timeout Transfer error, wait signal timeout.
* retval kStatus_I2C_ArbitrationLost Transfer error, arbitration lost.
* retval kStataus_I2C_Nak Transfer error, receive NAK during transfer.
*/
status_t I2C_MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)
{
status_t result = kStatus_Success;
uint32_t subaddress;
uint8_t subaddrBuf[4];
int i;
assert(xfer != NULL);
/* If repeated start is requested, send repeated start. */
if ((xfer->flags & (uint32_t)kI2C_TransferNoStartFlag) == 0U)
{
if (xfer->subaddressSize != 0U)
{
result = I2C_MasterStart(base, (uint8_t)xfer->slaveAddress, kI2C_Write);
if (result == kStatus_Success)
{
/* Prepare subaddress transmit buffer, most significant byte is stored at the lowest address */
subaddress = xfer->subaddress;
for (i = (int)xfer->subaddressSize - 1; i >= 0; i--)
{
subaddrBuf[i] = (uint8_t)subaddress & 0xffU;
subaddress >>= 8;
}
/* Send subaddress. */
result =
I2C_MasterWriteBlocking(base, subaddrBuf, xfer->subaddressSize, (uint32_t)kI2C_TransferNoStopFlag);
if ((result == kStatus_Success) && (xfer->direction == kI2C_Read))
{
result = I2C_MasterRepeatedStart(base, (uint8_t)xfer->slaveAddress, xfer->direction);
}
}
}
else if ((xfer->flags & (uint32_t)kI2C_TransferRepeatedStartFlag) != 0U)
{
result = I2C_MasterRepeatedStart(base, (uint8_t)xfer->slaveAddress, xfer->direction);
}
else
{
result = I2C_MasterStart(base, (uint8_t)xfer->slaveAddress, xfer->direction);
}
}
if (result == kStatus_Success)
{
if ((xfer->direction == kI2C_Write) && (xfer->dataSize > 0U))
{
/* Transmit data. */
result = I2C_MasterWriteBlocking(base, xfer->data, xfer->dataSize, xfer->flags);
}
else
{
if ((xfer->direction == kI2C_Read) && (xfer->dataSize > 0U))
{
/* Receive Data. */
result = I2C_MasterReadBlocking(base, xfer->data, xfer->dataSize, xfer->flags);
}
}
}
if (result == kStatus_I2C_Nak)
{
(void)I2C_MasterStop(base);
}
return result;
}
#if defined(FSL_SDK_ENABLE_I2C_DRIVER_TRANSACTIONAL_APIS) && (FSL_SDK_ENABLE_I2C_DRIVER_TRANSACTIONAL_APIS)
/*!
* brief Creates a new handle for the I2C master non-blocking APIs.
*
* The creation of a handle is for use with the non-blocking APIs. Once a handle
* is created, there is not a corresponding destroy handle. If the user wants to
* terminate a transfer, the I2C_MasterTransferAbort() API shall be called.
*
* param base The I2C peripheral base address.
* param[out] handle Pointer to the I2C master driver handle.
* param callback User provided pointer to the asynchronous callback function.
* param userData User provided pointer to the application callback data.
*/
void I2C_MasterTransferCreateHandle(I2C_Type *base,
i2c_master_handle_t *handle,
i2c_master_transfer_callback_t callback,
void *userData)
{
uint32_t instance;
assert(handle != NULL);
/* Clear out the handle. */
(void)memset(handle, 0, sizeof(*handle));
/* Look up instance number */
instance = I2C_GetInstance(base);
/* Save base and instance. */
handle->completionCallback = callback;
handle->userData = userData;
/* Save the context in global variables to support the double weak mechanism. */
s_i2cHandle[instance] = handle;
/* Save master interrupt handler. */
s_i2cMasterIsr = I2C_MasterTransferHandleIRQ;
/* Clear internal IRQ enables and enable NVIC IRQ. */
I2C_DisableInterrupts(base, (uint32_t)kI2C_MasterIrqFlags);
(void)EnableIRQ(s_i2cIRQ[instance]);
}
/*!
* brief Performs a non-blocking transaction on the I2C bus.
*
* param base The I2C peripheral base address.
* param handle Pointer to the I2C master driver handle.
* param xfer The pointer to the transfer descriptor.
* retval kStatus_Success The transaction was started successfully.
* retval #kStatus_I2C_Busy Either another master is currently utilizing the bus, or a non-blocking
* transaction is already in progress.
*/
status_t I2C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_t *xfer)
{
status_t result;
assert(handle != NULL);
assert(xfer != NULL);
assert(xfer->subaddressSize <= sizeof(xfer->subaddress));
/* Return busy if another transaction is in progress. */
if (handle->state != (uint8_t)kIdleState)
{
return kStatus_I2C_Busy;
}
/* Disable I2C IRQ sources while we configure stuff. */
I2C_DisableInterrupts(base, (uint32_t)kI2C_MasterIrqFlags);
/* Prepare transfer state machine. */
result = I2C_InitTransferStateMachine(base, handle, xfer);
/* Clear error flags. */
I2C_MasterClearStatusFlags(base, I2C_STAT_MSTARBLOSS_MASK | I2C_STAT_MSTSTSTPERR_MASK);
/* Enable I2C internal IRQ sources. */
I2C_EnableInterrupts(base, (uint32_t)kI2C_MasterIrqFlags);
return result;
}
/*!
* brief Returns number of bytes transferred so far.
* param base The I2C peripheral base address.
* param handle Pointer to the I2C master driver handle.
* param[out] count Number of bytes transferred so far by the non-blocking transaction.
* retval kStatus_Success
* retval #kStatus_I2C_Busy
*/
status_t I2C_MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t *count)
{
assert(handle != NULL);
if (count == NULL)
{
return kStatus_InvalidArgument;
}
/* Catch when there is not an active transfer. */
if (handle->state == (uint8_t)kIdleState)
{
*count = 0;
return kStatus_NoTransferInProgress;
}
/* There is no necessity to disable interrupts as we read a single integer value */
*count = handle->transferCount;
return kStatus_Success;
}
/*!
* brief Terminates a non-blocking I2C master transmission early.
*
* note It is not safe to call this function from an IRQ handler that has a higher priority than the
* I2C peripheral's IRQ priority.
*
* param base The I2C peripheral base address.
* param handle Pointer to the I2C master driver handle.
* retval kStatus_Success A transaction was successfully aborted.
* retval #kStatus_I2C_Timeout Abort failure due to flags polling timeout.
*/
status_t I2C_MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)
{
uint32_t status;
uint32_t master_state;
if (handle->state != (uint8_t)kIdleState)
{
/* Disable internal IRQ enables. */
I2C_DisableInterrupts(base, (uint32_t)kI2C_MasterIrqFlags);
/* Wait until module is ready */
status = I2C_PendingStatusWait(base);
#if I2C_RETRY_TIMES
if (status == kStatus_I2C_Timeout)
{
handle->state = kIdleState;
return kStatus_I2C_Timeout;
}
#endif
/* Get the state of the I2C module */
master_state = (status & I2C_STAT_MSTSTATE_MASK) >> I2C_STAT_MSTSTATE_SHIFT;
if (master_state != (uint32_t)I2C_STAT_MSTCODE_IDLE)
{
/* Send a stop command to finalize the transfer. */
base->MSTCTL = I2C_MSTCTL_MSTSTOP_MASK;
/* Wait until the STOP is completed */
(void)I2C_PendingStatusWait(base);
#if I2C_RETRY_TIMES
if (status == kStatus_I2C_Timeout)
{
return kStatus_I2C_Timeout;
}
#endif
}
/* Reset handle. */
handle->state = (uint8_t)kIdleState;
}
return kStatus_Success;
}
/*!
* @brief Prepares the transfer state machine and fills in the command buffer.
* @param handle Master nonblocking driver handle.
*/
static status_t I2C_InitTransferStateMachine(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_t *xfer)
{
struct _i2c_master_transfer *transfer;
handle->transfer = *xfer;
transfer = &(handle->transfer);
handle->transferCount = 0;
handle->remainingBytes = transfer->dataSize;
handle->buf = (uint8_t *)transfer->data;
handle->remainingSubaddr = 0;
if ((transfer->flags & (uint32_t)kI2C_TransferNoStartFlag) != 0U)
{
/* Start condition shall be ommited, switch directly to next phase */
if (transfer->dataSize == 0U)
{
handle->state = (uint8_t)kStopState;
}
else if (handle->transfer.direction == kI2C_Write)
{
handle->state = (uint8_t)kTransmitDataState;
}
else if (handle->transfer.direction == kI2C_Read)
{
handle->state = (uint8_t)kReceiveDataBeginState;
}
else
{
return kStatus_I2C_InvalidParameter;
}
}
else
{
if (transfer->subaddressSize != 0U)
{
int i;
uint32_t subaddress;
if (transfer->subaddressSize > sizeof(handle->subaddrBuf))
{
return kStatus_I2C_InvalidParameter;
}
/* Prepare subaddress transmit buffer, most significant byte is stored at the lowest address */
subaddress = xfer->subaddress;
for (i = (int)xfer->subaddressSize - 1; i >= 0; i--)
{
handle->subaddrBuf[i] = (uint8_t)subaddress & 0xffU;
subaddress >>= 8;
}
handle->remainingSubaddr = transfer->subaddressSize;
}
handle->state = (uint8_t)kStartState;
}
return kStatus_Success;
}
/*!
* @brief Execute states until FIFOs are exhausted.
* @param handle Master nonblocking driver handle.
* @param[out] isDone Set to true if the transfer has completed.
* @retval #kStatus_Success
* @retval #kStatus_I2C_ArbitrationLost
* @retval #kStatus_I2C_Nak
*/
static status_t I2C_RunTransferStateMachine(I2C_Type *base, i2c_master_handle_t *handle, bool *isDone)
{
uint32_t status;
uint32_t master_state;
struct _i2c_master_transfer *transfer;
status_t err;
transfer = &(handle->transfer);
bool ignoreNak = ((handle->state == (uint8_t)kStopState) && (handle->remainingBytes == 0U)) ||
((handle->state == (uint8_t)kWaitForCompletionState) && (handle->remainingBytes == 0U));
*isDone = false;
status = I2C_GetStatusFlags(base);
if ((status & I2C_STAT_MSTARBLOSS_MASK) != 0U)
{
I2C_MasterClearStatusFlags(base, I2C_STAT_MSTARBLOSS_MASK);
return kStatus_I2C_ArbitrationLost;
}
if ((status & I2C_STAT_MSTSTSTPERR_MASK) != 0U)
{
I2C_MasterClearStatusFlags(base, I2C_STAT_MSTSTSTPERR_MASK);
return kStatus_I2C_StartStopError;
}
if ((status & I2C_STAT_MSTPENDING_MASK) == 0U)
{
return kStatus_I2C_Busy;
}
/* Get the state of the I2C module */
master_state = (status & I2C_STAT_MSTSTATE_MASK) >> I2C_STAT_MSTSTATE_SHIFT;
if (((master_state == (uint32_t)I2C_STAT_MSTCODE_NACKADR) ||
(master_state == (uint32_t)I2C_STAT_MSTCODE_NACKDAT)) &&
(ignoreNak != true))
{
/* Slave NACKed last byte, issue stop and return error */
base->MSTCTL = I2C_MSTCTL_MSTSTOP_MASK;
handle->state = (uint8_t)kWaitForCompletionState;
return kStatus_I2C_Nak;
}
err = kStatus_Success;
switch (handle->state)
{
case (uint8_t)kStartState:
if (handle->remainingSubaddr != 0U)
{
/* Subaddress takes precedence over the data transfer, direction is always "write" in this case */
base->MSTDAT = (uint32_t)transfer->slaveAddress << 1;
handle->state = (uint8_t)kTransmitSubaddrState;
}
else if (transfer->direction == kI2C_Write)
{
base->MSTDAT = (uint32_t)transfer->slaveAddress << 1;
handle->state = (handle->remainingBytes != 0U) ? (uint8_t)kTransmitDataState : (uint8_t)kStopState;
}
else
{
base->MSTDAT = ((uint32_t)transfer->slaveAddress << 1) | 1u;
handle->state = (handle->remainingBytes != 0U) ? (uint8_t)kReceiveDataState : (uint8_t)kStopState;
}
/* Send start condition */
base->MSTCTL = I2C_MSTCTL_MSTSTART_MASK;
break;
case (uint8_t)kTransmitSubaddrState:
if (master_state != (uint32_t)I2C_STAT_MSTCODE_TXREADY)
{
return kStatus_I2C_UnexpectedState;
}
/* Most significant subaddress byte comes first */
base->MSTDAT = handle->subaddrBuf[handle->transfer.subaddressSize - handle->remainingSubaddr];
base->MSTCTL = I2C_MSTCTL_MSTCONTINUE_MASK;
if (--(handle->remainingSubaddr) != 0U)
{
/* There are still subaddress bytes to be transmitted */
break;
}
if (handle->remainingBytes != 0U)
{
/* There is data to be transferred, if there is write to read turnaround it is necessary to perform
* repeated start */
handle->state = (transfer->direction == kI2C_Read) ? (uint8_t)kStartState : (uint8_t)kTransmitDataState;
}
else
{
/* No more data, schedule stop condition */
handle->state = (uint8_t)kStopState;
}
break;
case (uint8_t)kTransmitDataState:
if (master_state != (uint32_t)I2C_STAT_MSTCODE_TXREADY)
{
return kStatus_I2C_UnexpectedState;
}
base->MSTDAT = *(handle->buf)++;
base->MSTCTL = I2C_MSTCTL_MSTCONTINUE_MASK;
if (--handle->remainingBytes == 0U)
{
/* No more data, schedule stop condition */
handle->state = (uint8_t)kStopState;
}
handle->transferCount++;
break;
case (uint8_t)kReceiveDataBeginState:
if (master_state != (uint32_t)I2C_STAT_MSTCODE_RXREADY)
{
return kStatus_I2C_UnexpectedState;
}
(void)base->MSTDAT;
base->MSTCTL = I2C_MSTCTL_MSTCONTINUE_MASK;
handle->state = (uint8_t)kReceiveDataState;
break;
case (uint8_t)kReceiveDataState:
if (master_state != (uint32_t)I2C_STAT_MSTCODE_RXREADY)
{
return kStatus_I2C_UnexpectedState;
}
*(handle->buf)++ = (uint8_t)base->MSTDAT;
if (--handle->remainingBytes != 0U)
{
base->MSTCTL = I2C_MSTCTL_MSTCONTINUE_MASK;
}
else
{
/* No more data expected, issue NACK and STOP right away */
if ((transfer->flags & (uint32_t)kI2C_TransferNoStopFlag) == 0U)
{
base->MSTCTL = I2C_MSTCTL_MSTSTOP_MASK;
}
handle->state = (uint8_t)kWaitForCompletionState;
}
handle->transferCount++;
break;
case (uint8_t)kStopState:
if ((transfer->flags & (uint32_t)kI2C_TransferNoStopFlag) != 0U)
{
/* Stop condition is omitted, we are done */
*isDone = true;
handle->state = (uint8_t)kIdleState;
break;
}
/* Send stop condition */
base->MSTCTL = I2C_MSTCTL_MSTSTOP_MASK;
handle->state = (uint8_t)kWaitForCompletionState;
break;
case (uint8_t)kWaitForCompletionState:
*isDone = true;
handle->state = (uint8_t)kIdleState;
break;
case (uint8_t)kIdleState:
default:
/* State machine shall not be invoked again once it enters the idle state */
err = kStatus_I2C_UnexpectedState;
break;
}
return err;
}
/*!
* brief Reusable routine to handle master interrupts.
* note This function does not need to be called unless you are reimplementing the
* nonblocking API's interrupt handler routines to add special functionality.
* param base The I2C peripheral base address.
* param handle Pointer to the I2C master driver handle i2c_master_handle_t.
*/
void I2C_MasterTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
{
assert(i2cHandle != NULL);
i2c_master_handle_t *handle = (i2c_master_handle_t *)i2cHandle;
bool isDone;
status_t result;
result = I2C_RunTransferStateMachine(base, handle, &isDone);
if ((result != kStatus_Success) || isDone)
{
/* Restore handle to idle state. */
handle->state = (uint8_t)kIdleState;
/* Disable internal IRQ enables. */
I2C_DisableInterrupts(base, (uint32_t)kI2C_MasterIrqFlags);
/* Invoke callback. */
if (handle->completionCallback != NULL)
{
handle->completionCallback(base, handle, result, handle->userData);
}
}
}
#endif /* FSL_SDK_ENABLE_I2C_DRIVER_TRANSACTIONAL_APIS */
/*!
* @brief Sets the hardware slave state machine to reset
*
* Per documentation, the only the state machine is reset, the configuration settings remain.
*
* @param base The I2C peripheral base address.
*/
static void I2C_SlaveInternalStateMachineReset(I2C_Type *base)
{
I2C_SlaveEnable(base, false); /* clear SLVEN Slave enable bit */
}
/*!
* @brief Compute CLKDIV
*
* This function computes CLKDIV value according to the given bus speed and Flexcomm source clock frequency.
* This setting is used by hardware during slave clock stretching.
*
* @param base The I2C peripheral base address.
* @return status of the operation
*/
static status_t I2C_SlaveDivVal(uint32_t srcClock_Hz, i2c_slave_bus_speed_t busSpeed, uint32_t *divVal)
{
uint32_t dataSetupTime_ns;
switch (busSpeed)
{
case kI2C_SlaveStandardMode:
dataSetupTime_ns = 250u;
break;
case kI2C_SlaveFastMode:
dataSetupTime_ns = 100u;
break;
case kI2C_SlaveFastModePlus:
dataSetupTime_ns = 50u;
break;
case kI2C_SlaveHsMode:
dataSetupTime_ns = 10u;
break;
default:
dataSetupTime_ns = 0;
break;
}
if (0U == dataSetupTime_ns)
{
return kStatus_InvalidArgument;
}
/* divVal = (sourceClock_Hz / 1000000) * (dataSetupTime_ns / 1000) */
*divVal = srcClock_Hz / 1000u;
*divVal = (*divVal) * dataSetupTime_ns;
*divVal = (*divVal) / 1000000u;
if ((*divVal) > I2C_CLKDIV_DIVVAL_MASK)
{
*divVal = I2C_CLKDIV_DIVVAL_MASK;
}
return kStatus_Success;
}
/*!
* @brief Poll wait for the SLVPENDING flag.
*
* Wait for the pending status to be set (SLVPENDING = 1) by polling the STAT register.
*
* @param base The I2C peripheral base address.
* @return status register at time the SLVPENDING bit is read as set
*/
static uint32_t I2C_SlavePollPending(I2C_Type *base)
{
uint32_t stat;
#if I2C_RETRY_TIMES
uint32_t waitTimes = I2C_RETRY_TIMES;
#endif
do
{
stat = base->STAT;
#if I2C_RETRY_TIMES
} while ((0U == (stat & I2C_STAT_SLVPENDING_MASK)) && (0U != --waitTimes));
if (0U == waitTimes)
{
return kStatus_I2C_Timeout;
}
#else
} while (0U == (stat & I2C_STAT_SLVPENDING_MASK));
#endif
return stat;
}
#if defined(FSL_SDK_ENABLE_I2C_DRIVER_TRANSACTIONAL_APIS) && (FSL_SDK_ENABLE_I2C_DRIVER_TRANSACTIONAL_APIS)
/*!
* @brief Invoke event from I2C_SlaveTransferHandleIRQ().
*
* Sets the event type to transfer structure and invokes the event callback, if it has been
* enabled by eventMask.
*
* @param base The I2C peripheral base address.
* @param handle The I2C slave handle for non-blocking APIs.
* @param event The I2C slave event to invoke.
*/
static void I2C_SlaveInvokeEvent(I2C_Type *base, i2c_slave_handle_t *handle, i2c_slave_transfer_event_t event)
{
handle->transfer.event = event;
uint32_t eventMask = handle->transfer.eventMask;
if ((handle->callback != NULL) && ((eventMask & (uint32_t)event) != 0U))
{
handle->callback(base, &handle->transfer, handle->userData);
size_t txSize = handle->transfer.txSize;
size_t rxSize = handle->transfer.rxSize;
/* if after event callback we have data buffer (callback func has added new data), keep transfer busy */
if (false == handle->isBusy)
{
if (((handle->transfer.txData != NULL) && (txSize != 0U)) ||
((handle->transfer.rxData != NULL) && (rxSize != 0U)))
{
handle->isBusy = true;
}
}
/* Clear the transferred count now that we have a new buffer. */
if ((event == kI2C_SlaveReceiveEvent) || (event == kI2C_SlaveTransmitEvent))
{
handle->transfer.transferredCount = 0;
}
}
}
/*!
* @brief Handle slave address match event.
*
* Called by Slave interrupt routine to ACK or NACK the matched address.
* It also determines master direction (read or write).
*
* @param base The I2C peripheral base address.
* @return true if the matched address is ACK'ed
* @return false if the matched address is NACK'ed
*/
static bool I2C_SlaveAddressIRQ(I2C_Type *base, i2c_slave_handle_t *handle)
{
uint8_t addressByte0;
addressByte0 = (uint8_t)base->SLVDAT;
size_t txSize;
size_t rxSize;
/* store the matched address */
handle->transfer.receivedAddress = addressByte0;
/* R/nW */
if ((addressByte0 & 1U) != 0U)
{
txSize = handle->transfer.txSize;
/* if we have no data in this transfer, call callback to get new */
if ((handle->transfer.txData == NULL) || (txSize == 0U))
{
I2C_SlaveInvokeEvent(base, handle, kI2C_SlaveTransmitEvent);
}
txSize = handle->transfer.txSize;
/* NACK if we have no data in this transfer. */
if ((handle->transfer.txData == NULL) || (txSize == 0U))
{
base->SLVCTL = I2C_SLVCTL_SLVNACK_MASK;
return false;
}
/* master wants to read, so slave transmit is next state */
handle->slaveFsm = kI2C_SlaveFsmTransmit;
}
else
{
rxSize = handle->transfer.rxSize;
/* if we have no receive buffer in this transfer, call callback to get new */
if ((handle->transfer.rxData == NULL) || (rxSize == 0U))
{
I2C_SlaveInvokeEvent(base, handle, kI2C_SlaveReceiveEvent);
}
rxSize = handle->transfer.rxSize;
/* NACK if we have no data in this transfer */
if ((handle->transfer.rxData == NULL) || (rxSize == 0U))
{
base->SLVCTL = I2C_SLVCTL_SLVNACK_MASK;
return false;
}
/* master wants write, so slave receive is next state */
handle->slaveFsm = kI2C_SlaveFsmReceive;
}
/* continue transaction */
base->SLVCTL = I2C_SLVCTL_SLVCONTINUE_MASK;
return true;
}
/*!
* @brief Starts accepting slave transfers.
*
* Call this API after calling I2C_SlaveInit() and I2C_SlaveTransferCreateHandle() to start processing
* transactions driven by an I2C master. The slave monitors the I2C bus and pass events to the
* callback that was passed into the call to I2C_SlaveTransferCreateHandle(). The callback is always invoked
* from the interrupt context.
*
* @param base The I2C peripheral base address.
* @param handle Pointer to #i2c_slave_handle_t structure which stores the transfer state.
* @param txData Data to be transmitted to master in response to master read from slave requests. NULL if slave RX only.
* @param txSize Size of txData buffer in bytes.
* @param rxData Data where received data from master will be stored in response to master write to slave requests. NULL
* if slave TX only.
* @param rxSize Size of rxData buffer in bytes.
*
* @retval #kStatus_Success Slave transfers were successfully started.
* @retval #kStatus_I2C_Busy Slave transfers have already been started on this handle.
*/
static status_t I2C_SlaveTransferNonBlockingInternal(I2C_Type *base,
i2c_slave_handle_t *handle,
const void *txData,
size_t txSize,
void *rxData,
size_t rxSize,
uint32_t eventMask)
{
status_t status;
assert(handle != NULL);
status = kStatus_Success;
/* Disable I2C IRQ sources while we configure stuff. */
I2C_DisableInterrupts(base, (uint32_t)kI2C_SlaveIrqFlags);
/* Return busy if another transaction is in progress. */
if (handle->isBusy)
{
status = kStatus_I2C_Busy;
}
/* Save transfer into handle. */
handle->transfer.txData = (const uint8_t *)txData;
handle->transfer.txSize = txSize;
handle->transfer.rxData = (uint8_t *)rxData;
handle->transfer.rxSize = rxSize;
handle->transfer.transferredCount = 0;
handle->transfer.eventMask = eventMask | (uint32_t)kI2C_SlaveTransmitEvent | (uint32_t)kI2C_SlaveReceiveEvent;
handle->isBusy = true;
/* Set the SLVEN bit to 1 in the CFG register. */
I2C_SlaveEnable(base, true);
/* Clear w1c flags. */
base->STAT |= 0U;
/* Enable I2C internal IRQ sources. */
I2C_EnableInterrupts(base, (uint32_t)kI2C_SlaveIrqFlags);
return status;
}
/*!
* brief Starts accepting master read from slave requests.
*
* The function can be called in response to #kI2C_SlaveTransmitEvent callback to start a new slave Tx transfer
* from within the transfer callback.
*
* The set of events received by the callback is customizable. To do so, set the a eventMask parameter to
* the OR'd combination of #i2c_slave_transfer_event_t enumerators for the events you wish to receive.
* The #kI2C_SlaveTransmitEvent and #kI2C_SlaveReceiveEvent events are always enabled and do not need
* to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and
* receive events that are always enabled. In addition, the #kI2C_SlaveAllEvents constant is provided as
* a convenient way to enable all events.
*
* param base The I2C peripheral base address.
* param transfer Pointer to #i2c_slave_transfer_t structure.
* param txData Pointer to data to send to master.
* param txSize Size of txData in bytes.
* param eventMask Bit mask formed by OR'ing together #i2c_slave_transfer_event_t enumerators to specify
* which events to send to the callback. Other accepted values are 0 to get a default set of
* only the transmit and receive events, and #kI2C_SlaveAllEvents to enable all events.
*
* retval kStatus_Success Slave transfers were successfully started.
* retval #kStatus_I2C_Busy Slave transfers have already been started on this handle.
*/
status_t I2C_SlaveSetSendBuffer(
I2C_Type *base, volatile i2c_slave_transfer_t *transfer, const void *txData, size_t txSize, uint32_t eventMask)
{
return I2C_SlaveTransferNonBlockingInternal(base, transfer->handle, txData, txSize, NULL, 0U, eventMask);
}
/*!
* brief Starts accepting master write to slave requests.
*
* The function can be called in response to #kI2C_SlaveReceiveEvent callback to start a new slave Rx transfer
* from within the transfer callback.
*
* The set of events received by the callback is customizable. To do so, set the a eventMask parameter to
* the OR'd combination of #i2c_slave_transfer_event_t enumerators for the events you wish to receive.
* The #kI2C_SlaveTransmitEvent and #kI2C_SlaveReceiveEvent events are always enabled and do not need
* to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and
* receive events that are always enabled. In addition, the #kI2C_SlaveAllEvents constant is provided as
* a convenient way to enable all events.
*
* param base The I2C peripheral base address.
* param transfer Pointer to #i2c_slave_transfer_t structure.
* param rxData Pointer to data to store data from master.
* param rxSize Size of rxData in bytes.
* param eventMask Bit mask formed by OR'ing together #i2c_slave_transfer_event_t enumerators to specify
* which events to send to the callback. Other accepted values are 0 to get a default set of
* only the transmit and receive events, and #kI2C_SlaveAllEvents to enable all events.
*
* retval kStatus_Success Slave transfers were successfully started.
* retval #kStatus_I2C_Busy Slave transfers have already been started on this handle.
*/
status_t I2C_SlaveSetReceiveBuffer(
I2C_Type *base, volatile i2c_slave_transfer_t *transfer, void *rxData, size_t rxSize, uint32_t eventMask)
{
return I2C_SlaveTransferNonBlockingInternal(base, transfer->handle, NULL, 0U, rxData, rxSize, eventMask);
}
#endif /* FSL_SDK_ENABLE_I2C_DRIVER_TRANSACTIONAL_APIS */
/*!
* brief Configures Slave Address n register.
*
* This function writes new value to Slave Address register.
*
* param base The I2C peripheral base address.
* param addressRegister The module supports multiple address registers. The parameter determines which one shall be
* changed.
* param address The slave address to be stored to the address register for matching.
* param addressDisable Disable matching of the specified address register.
*/
void I2C_SlaveSetAddress(I2C_Type *base,
i2c_slave_address_register_t addressRegister,
uint8_t address,
bool addressDisable)
{
base->SLVADR[addressRegister] = I2C_SLVADR_SLVADR(address) | I2C_SLVADR_SADISABLE(addressDisable);
}
/*!
* brief Provides a default configuration for the I2C slave peripheral.
*
* This function provides the following default configuration for the I2C slave peripheral:
* code
* slaveConfig->enableSlave = true;
* slaveConfig->address0.disable = false;
* slaveConfig->address0.address = 0U;
* slaveConfig->address1.disable = true;
* slaveConfig->address2.disable = true;
* slaveConfig->address3.disable = true;
* slaveConfig->busSpeed = kI2C_SlaveStandardMode;
* endcode
*
* After calling this function, override any settings to customize the configuration,
* prior to initializing the master driver with I2C_SlaveInit(). Be sure to override at least the a
* address0.address member of the configuration structure with the desired slave address.
*
* param[out] slaveConfig User provided configuration structure that is set to default values. Refer to
* #i2c_slave_config_t.
*/
void I2C_SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig)
{
assert(slaveConfig != NULL);
/* Initializes the configure structure to zero. */
(void)memset(slaveConfig, 0, sizeof(*slaveConfig));
i2c_slave_config_t mySlaveConfig = {0};
/* default config enables slave address 0 match to general I2C call address zero */
mySlaveConfig.enableSlave = true;
mySlaveConfig.address1.addressDisable = true;
mySlaveConfig.address2.addressDisable = true;
mySlaveConfig.address3.addressDisable = true;
*slaveConfig = mySlaveConfig;
}
/*!
* brief Initializes the I2C slave peripheral.
*
* This function enables the peripheral clock and initializes the I2C slave peripheral as described by the user
* provided configuration.
*
* param base The I2C peripheral base address.
* param slaveConfig User provided peripheral configuration. Use I2C_SlaveGetDefaultConfig() to get a set of defaults
* that you can override.
* param srcClock_Hz Frequency in Hertz of the I2C functional clock. Used to calculate CLKDIV value to provide
* enough
* data setup time for master when slave stretches the clock.
*/
status_t I2C_SlaveInit(I2C_Type *base, const i2c_slave_config_t *slaveConfig, uint32_t srcClock_Hz)
{
status_t status;
uint32_t divVal = 0;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Enable the clock. */
CLOCK_EnableClock(s_i2cClocks[I2C_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
#if !(defined(FSL_FEATURE_I2C_HAS_NO_RESET) && FSL_FEATURE_I2C_HAS_NO_RESET)
RESET_PeripheralReset(s_i2cResets[I2C_GetInstance(base)]);
#endif
/* configure data setup time used when slave stretches clock */
status = I2C_SlaveDivVal(srcClock_Hz, slaveConfig->busSpeed, &divVal);
if (kStatus_Success != status)
{
return status;
}
/* I2C Clock Divider register */
base->CLKDIV = divVal;
/* set Slave address */
I2C_SlaveSetAddress(base, kI2C_SlaveAddressRegister0, slaveConfig->address0.address,
slaveConfig->address0.addressDisable);
I2C_SlaveSetAddress(base, kI2C_SlaveAddressRegister1, slaveConfig->address1.address,
slaveConfig->address1.addressDisable);
I2C_SlaveSetAddress(base, kI2C_SlaveAddressRegister2, slaveConfig->address2.address,
slaveConfig->address2.addressDisable);
I2C_SlaveSetAddress(base, kI2C_SlaveAddressRegister3, slaveConfig->address3.address,
slaveConfig->address3.addressDisable);
/* set Slave address 0 qual */
base->SLVQUAL0 = I2C_SLVQUAL0_QUALMODE0(slaveConfig->qualMode) | I2C_SLVQUAL0_SLVQUAL0(slaveConfig->qualAddress);
/* set Slave enable */
base->CFG = I2C_CFG_SLVEN(slaveConfig->enableSlave);
return status;
}
/*!
* brief Deinitializes the I2C slave peripheral.
*
* This function disables the I2C slave peripheral and gates the clock. It also performs a software
* reset to restore the peripheral to reset conditions.
*
* param base The I2C peripheral base address.
*/
void I2C_SlaveDeinit(I2C_Type *base)
{
I2C_SlaveEnable(base, false);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Disable the clock. */
CLOCK_DisableClock(s_i2cClocks[I2C_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
/*!
* brief Performs a polling send transfer on the I2C bus.
*
* The function executes blocking address phase and blocking data phase.
*
* param base The I2C peripheral base address.
* param txBuff The pointer to the data to be transferred.
* param txSize The length in bytes of the data to be transferred.
* return kStatus_Success Data has been sent.
* return kStatus_Fail Unexpected slave state (master data write while master read from slave is expected).
*/
status_t I2C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)
{
const uint8_t *buf = txBuff;
uint32_t stat;
bool slaveAddress;
bool slaveTransmit;
/* Set the SLVEN bit to 1 in the CFG register. */
I2C_SlaveEnable(base, true);
/* wait for SLVPENDING */
stat = I2C_SlavePollPending(base);
if (stat == (uint32_t)kStatus_I2C_Timeout)
{
return kStatus_I2C_Timeout;
}
/* Get slave machine state */
slaveAddress = (((stat & I2C_STAT_SLVSTATE_MASK) >> I2C_STAT_SLVSTATE_SHIFT) == (uint32_t)I2C_STAT_SLVST_ADDR);
slaveTransmit = (((stat & I2C_STAT_SLVSTATE_MASK) >> I2C_STAT_SLVSTATE_SHIFT) == (uint32_t)I2C_STAT_SLVST_TX);
/* in I2C_SlaveSend() it shall be either slaveAddress or slaveTransmit */
if (!(slaveAddress || slaveTransmit))
{
I2C_SlaveInternalStateMachineReset(base);
return kStatus_Fail;
}
if (slaveAddress)
{
/* Acknowledge (ack) the address by setting SLVCONTINUE = 1 in the slave control register */
base->SLVCTL = I2C_SLVCTL_SLVCONTINUE_MASK;
/* wait for SLVPENDING */
stat = I2C_SlavePollPending(base);
if (stat == (uint32_t)kStatus_I2C_Timeout)
{
return kStatus_I2C_Timeout;
}
}
/* send bytes up to txSize */
while (txSize != 0U)
{
slaveTransmit = (((stat & I2C_STAT_SLVSTATE_MASK) >> I2C_STAT_SLVSTATE_SHIFT) == (uint32_t)I2C_STAT_SLVST_TX);
if (!slaveTransmit)
{
I2C_SlaveInternalStateMachineReset(base);
return kStatus_Fail;
}
/* Write 8 bits of data to the SLVDAT register */
base->SLVDAT = I2C_SLVDAT_DATA(*buf);
/* continue transaction */
base->SLVCTL = I2C_SLVCTL_SLVCONTINUE_MASK;
/* advance counters and pointers for next data */
buf++;
txSize--;
if (txSize != 0U)
{
/* wait for SLVPENDING */
stat = I2C_SlavePollPending(base);
if (stat == (uint32_t)kStatus_I2C_Timeout)
{
return kStatus_I2C_Timeout;
}
}
}
return kStatus_Success;
}
/*!
* brief Performs a polling receive transfer on the I2C bus.
*
* The function executes blocking address phase and blocking data phase.
*
* param base The I2C peripheral base address.
* param rxBuff The pointer to the data to be transferred.
* param rxSize The length in bytes of the data to be transferred.
* return kStatus_Success Data has been received.
* return kStatus_Fail Unexpected slave state (master data read while master write to slave is expected).
*/
status_t I2C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)
{
uint8_t *buf = rxBuff;
uint32_t stat;
bool slaveAddress;
bool slaveReceive;
/* Set the SLVEN bit to 1 in the CFG register. */
I2C_SlaveEnable(base, true);
/* wait for SLVPENDING */
stat = I2C_SlavePollPending(base);
if (stat == (uint32_t)kStatus_I2C_Timeout)
{
return kStatus_I2C_Timeout;
}
/* Get slave machine state */
slaveAddress = (((stat & I2C_STAT_SLVSTATE_MASK) >> I2C_STAT_SLVSTATE_SHIFT) == (uint32_t)I2C_STAT_SLVST_ADDR);
slaveReceive = (((stat & I2C_STAT_SLVSTATE_MASK) >> I2C_STAT_SLVSTATE_SHIFT) == (uint32_t)I2C_STAT_SLVST_RX);
/* in I2C_SlaveReceive() it shall be either slaveAddress or slaveReceive */
if (!(slaveAddress || slaveReceive))
{
I2C_SlaveInternalStateMachineReset(base);
return kStatus_Fail;
}
if (slaveAddress)
{
/* Acknowledge (ack) the address by setting SLVCONTINUE = 1 in the slave control register */
base->SLVCTL = I2C_SLVCTL_SLVCONTINUE_MASK;
/* wait for SLVPENDING */
stat = I2C_SlavePollPending(base);
if (stat == (uint32_t)kStatus_I2C_Timeout)
{
return kStatus_I2C_Timeout;
}
}
/* receive bytes up to rxSize */
while (rxSize != 0U)
{
slaveReceive = (((stat & I2C_STAT_SLVSTATE_MASK) >> I2C_STAT_SLVSTATE_SHIFT) == (uint32_t)I2C_STAT_SLVST_RX);
if (!slaveReceive)
{
I2C_SlaveInternalStateMachineReset(base);
return kStatus_Fail;
}
/* Read 8 bits of data from the SLVDAT register */
*buf = (uint8_t)base->SLVDAT;
/* continue transaction */
base->SLVCTL = I2C_SLVCTL_SLVCONTINUE_MASK;
/* advance counters and pointers for next data */
buf++;
rxSize--;
if (rxSize != 0U)
{
/* wait for SLVPENDING */
stat = I2C_SlavePollPending(base);
if (stat == (uint32_t)kStatus_I2C_Timeout)
{
return kStatus_I2C_Timeout;
}
}
}
return kStatus_Success;
}
#if defined(FSL_SDK_ENABLE_I2C_DRIVER_TRANSACTIONAL_APIS) && (FSL_SDK_ENABLE_I2C_DRIVER_TRANSACTIONAL_APIS)
/*!
* brief Creates a new handle for the I2C slave non-blocking APIs.
*
* The creation of a handle is for use with the non-blocking APIs. Once a handle
* is created, there is not a corresponding destroy handle. If the user wants to
* terminate a transfer, the I2C_SlaveTransferAbort() API shall be called.
*
* param base The I2C peripheral base address.
* param[out] handle Pointer to the I2C slave driver handle.
* param callback User provided pointer to the asynchronous callback function.
* param userData User provided pointer to the application callback data.
*/
void I2C_SlaveTransferCreateHandle(I2C_Type *base,
i2c_slave_handle_t *handle,
i2c_slave_transfer_callback_t callback,
void *userData)
{
uint32_t instance;
assert(handle != NULL);
/* Clear out the handle. */
(void)memset(handle, 0, sizeof(*handle));
/* Look up instance number */
instance = I2C_GetInstance(base);
/* Save base and instance. */
handle->callback = callback;
handle->userData = userData;
/* initialize fsm */
handle->slaveFsm = kI2C_SlaveFsmAddressMatch;
/* store pointer to handle into transfer struct */
handle->transfer.handle = handle;
/* Save the context in global variables to support the double weak mechanism. */
s_i2cHandle[instance] = handle;
/* Save slave interrupt handler. */
s_i2cSlaveIsr = I2C_SlaveTransferHandleIRQ;
/* Clear internal IRQ enables and enable NVIC IRQ. */
I2C_DisableInterrupts(base, (uint32_t)kI2C_SlaveIrqFlags);
(void)EnableIRQ(s_i2cIRQ[instance]);
}
/*!
* brief Starts accepting slave transfers.
*
* Call this API after calling I2C_SlaveInit() and I2C_SlaveTransferCreateHandle() to start processing
* transactions driven by an I2C master. The slave monitors the I2C bus and pass events to the
* callback that was passed into the call to I2C_SlaveTransferCreateHandle(). The callback is always invoked
* from the interrupt context.
*
* If no slave Tx transfer is busy, a master read from slave request invokes #kI2C_SlaveTransmitEvent callback.
* If no slave Rx transfer is busy, a master write to slave request invokes #kI2C_SlaveReceiveEvent callback.
*
* The set of events received by the callback is customizable. To do so, set the a eventMask parameter to
* the OR'd combination of #i2c_slave_transfer_event_t enumerators for the events you wish to receive.
* The #kI2C_SlaveTransmitEvent and #kI2C_SlaveReceiveEvent events are always enabled and do not need
* to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and
* receive events that are always enabled. In addition, the #kI2C_SlaveAllEvents constant is provided as
* a convenient way to enable all events.
*
* param base The I2C peripheral base address.
* param handle Pointer to i2c_slave_handle_t structure which stores the transfer state.
* param eventMask Bit mask formed by OR'ing together #i2c_slave_transfer_event_t enumerators to specify
* which events to send to the callback. Other accepted values are 0 to get a default set of
* only the transmit and receive events, and #kI2C_SlaveAllEvents to enable all events.
*
* retval kStatus_Success Slave transfers were successfully started.
* retval #kStatus_I2C_Busy Slave transfers have already been started on this handle.
*/
status_t I2C_SlaveTransferNonBlocking(I2C_Type *base, i2c_slave_handle_t *handle, uint32_t eventMask)
{
return I2C_SlaveTransferNonBlockingInternal(base, handle, NULL, 0U, NULL, 0U, eventMask);
}
/*!
* brief Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.
*
* param base I2C base pointer.
* param handle pointer to i2c_slave_handle_t structure.
* param count Number of bytes transferred so far by the non-blocking transaction.
* retval kStatus_InvalidArgument count is Invalid.
* retval kStatus_Success Successfully return the count.
*/
status_t I2C_SlaveTransferGetCount(I2C_Type *base, i2c_slave_handle_t *handle, size_t *count)
{
assert(handle != NULL);
if (count == NULL)
{
return kStatus_InvalidArgument;
}
/* Catch when there is not an active transfer. */
if (!handle->isBusy)
{
*count = 0;
return kStatus_NoTransferInProgress;
}
/* For an active transfer, just return the count from the handle. */
*count = handle->transfer.transferredCount;
return kStatus_Success;
}
/*!
* brief Aborts the slave non-blocking transfers.
* note This API could be called at any time to stop slave for handling the bus events.
* param base The I2C peripheral base address.
* param handle Pointer to i2c_slave_handle_t structure which stores the transfer state.
* retval kStatus_Success
* retval #kStatus_I2C_Idle
*/
void I2C_SlaveTransferAbort(I2C_Type *base, i2c_slave_handle_t *handle)
{
/* Disable I2C IRQ sources while we configure stuff. */
I2C_DisableInterrupts(base, (uint32_t)kI2C_SlaveIrqFlags);
/* Set the SLVEN bit to 0 in the CFG register. */
I2C_SlaveEnable(base, false);
handle->isBusy = false;
handle->transfer.txSize = 0;
handle->transfer.rxSize = 0;
}
/*!
* brief Reusable routine to handle slave interrupts.
* note This function does not need to be called unless you are reimplementing the
* non blocking API's interrupt handler routines to add special functionality.
* param base The I2C peripheral base address.
* param handle Pointer to i2c_slave_handle_t structure which stores the transfer state.
*/
void I2C_SlaveTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
{
assert(i2cHandle != NULL);
i2c_slave_handle_t *handle = (i2c_slave_handle_t *)i2cHandle;
uint32_t i2cStatus = base->STAT;
uint8_t tmpdata;
size_t rxSize = handle->transfer.rxSize;
size_t txSize = handle->transfer.txSize;
if ((i2cStatus & I2C_STAT_SLVDESEL_MASK) != 0U)
{
I2C_SlaveInvokeEvent(base, handle, kI2C_SlaveDeselectedEvent);
I2C_SlaveClearStatusFlags(base, I2C_STAT_SLVDESEL_MASK);
}
/* SLVPENDING flag is cleared by writing I2C_SLVCTL_SLVCONTINUE_MASK to SLVCTL register */
if ((i2cStatus & I2C_STAT_SLVPENDING_MASK) != 0U)
{
bool slaveAddress =
(((i2cStatus & I2C_STAT_SLVSTATE_MASK) >> I2C_STAT_SLVSTATE_SHIFT) == (uint32_t)I2C_STAT_SLVST_ADDR);
if (slaveAddress)
{
(void)I2C_SlaveAddressIRQ(base, handle);
I2C_SlaveInvokeEvent(base, handle, kI2C_SlaveAddressMatchEvent);
}
else
{
switch (handle->slaveFsm)
{
case kI2C_SlaveFsmReceive:
{
bool slaveReceive = (((i2cStatus & I2C_STAT_SLVSTATE_MASK) >> I2C_STAT_SLVSTATE_SHIFT) ==
(uint32_t)I2C_STAT_SLVST_RX);
if (slaveReceive)
{
rxSize = handle->transfer.rxSize;
/* if we have no receive buffer in this transfer, call callback to get new */
if ((handle->transfer.rxData == NULL) || (rxSize == 0U))
{
I2C_SlaveInvokeEvent(base, handle, kI2C_SlaveReceiveEvent);
}
rxSize = handle->transfer.rxSize;
/* receive a byte */
if ((handle->transfer.rxData != NULL) && (rxSize != 0U))
{
tmpdata = (uint8_t)base->SLVDAT;
*(handle->transfer.rxData) = tmpdata;
(handle->transfer.rxSize)--;
(handle->transfer.rxData)++;
(handle->transfer.transferredCount)++;
/* continue transaction */
base->SLVCTL = I2C_SLVCTL_SLVCONTINUE_MASK;
}
txSize = handle->transfer.txSize;
rxSize = handle->transfer.rxSize;
/* is this last transaction for this transfer? allow next transaction */
if ((0U == rxSize) && (0U == txSize))
{
handle->isBusy = false;
I2C_SlaveInvokeEvent(base, handle, kI2C_SlaveCompletionEvent);
}
}
else
{
base->SLVCTL = I2C_SLVCTL_SLVNACK_MASK;
}
}
break;
case kI2C_SlaveFsmTransmit:
{
bool slaveTransmit = (((i2cStatus & I2C_STAT_SLVSTATE_MASK) >> I2C_STAT_SLVSTATE_SHIFT) ==
(uint32_t)I2C_STAT_SLVST_TX);
if (slaveTransmit)
{
txSize = handle->transfer.txSize;
/* if we have no data in this transfer, call callback to get new */
if ((handle->transfer.txData == NULL) || (txSize == 0U))
{
I2C_SlaveInvokeEvent(base, handle, kI2C_SlaveTransmitEvent);
}
txSize = handle->transfer.txSize;
/* transmit a byte */
if ((handle->transfer.txData != NULL) && (txSize != 0U))
{
base->SLVDAT = *(handle->transfer.txData);
(handle->transfer.txSize)--;
(handle->transfer.txData)++;
(handle->transfer.transferredCount)++;
/* continue transaction */
base->SLVCTL = I2C_SLVCTL_SLVCONTINUE_MASK;
}
txSize = handle->transfer.txSize;
rxSize = handle->transfer.rxSize;
/* is this last transaction for this transfer? allow next transaction */
if ((0U == rxSize) && (0U == txSize))
{
handle->isBusy = false;
I2C_SlaveInvokeEvent(base, handle, kI2C_SlaveCompletionEvent);
}
}
else
{
base->SLVCTL = I2C_SLVCTL_SLVNACK_MASK;
}
}
break;
default:
/* incorrect state, slv_abort()? */
break;
}
}
}
}
static void I2C_TransferCommonIRQHandler(I2C_Type *base, void *handle)
{
/* Check if master interrupt. */
if ((base->CFG & I2C_CFG_MSTEN_MASK) != 0U)
{
s_i2cMasterIsr(base, handle);
}
else
{
s_i2cSlaveIsr(base, handle);
}
SDK_ISR_EXIT_BARRIER;
}
#if defined(I2C0)
void I2C0_DriverIRQHandler(void);
void I2C0_DriverIRQHandler(void)
{
I2C_TransferCommonIRQHandler(I2C0, s_i2cHandle[0]);
}
#endif
#if defined(I2C1)
void I2C1_DriverIRQHandler(void);
void I2C1_DriverIRQHandler(void)
{
I2C_TransferCommonIRQHandler(I2C1, s_i2cHandle[1]);
}
#endif
#if defined(I2C2)
void I2C2_DriverIRQHandler(void);
void I2C2_DriverIRQHandler(void)
{
I2C_TransferCommonIRQHandler(I2C2, s_i2cHandle[2]);
}
#endif
#endif /* FSL_SDK_ENABLE_I2C_DRIVER_TRANSACTIONAL_APIS */