UM11441

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

Rev. 14 — 9 January 2024

User manual

Document information

Information	Content
Keywords	i.MX RT crossover MCU, i.MX RT products, i.MX RT1040, i.MX RT1050, i.MX RT1060, i.MX RT1060EVKB, i.MX RT1060EVKC, i.MX RT1064, i.MX RT1160, i.MX RT1170, i.MX RT1170EVKB, i.MX RT500, i.MX RT600, i.MX RT595, i.MX RT1020, i.MX RT685, i.MX RT685S, MCUXpresso SDK, 88W8801-based wireless module, IW416-based wireless module, 88W8987-based wireless module, RTOS image
Abstract	Provides the step-by-step guidance to set up NXP-based wireless modules with i.MX RT products, build the firmware image and run Wi-Fi and Bluetooth demo applications.

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

1 About this document

1.1 Purpose and scope

This document details the integration of modules based on NXP Wi-Fi and Bluetooth solutions with i.MX RT crossover MCUs. It describes the hardware setup to connect NXP-based wireless modules with i.MX RT EVK boards, the software download, and how to run Wi-Fi and Bluetooth demo applications.

The i.MX RT crossover MCUs are powered by FreeRTOS and the FreeRTOS-based Wi-Fi drivers are used for NXP-based wireless modules.

1.2 Considerations

This document does not include the detailed description of i.MX RT evaluation kits (EVKs) nor MCUXpresso SDK implementation and configuration as these are covered in i.MX documentation (see <u>Section 1.3</u>).

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

1.3 References

Table 1. References

Reference type	Description		
Data sheet	NXP - IW416 - Dual-band 1x1 Wi-Fi 4 and Bluetooth 5.2 Combo SoC - Data sheet (public) (link)		
Data sheet	Saiko Systems Ltd ST-SD-uSD – ST Card to Micro-SD Card Converter (link)		
Data sheet	DeLOCK - Delock Adapter Micro SD male > SD female (link)		
Data sheet	AzureWave - AW-AM457 - IEEE 802.11 1X1 a/b/g/n Wireless LAN + Bluetooth 5.1 Combo LGA Module (link)		
Data sheet	AzureWave – AW-CM358 - IEEE 802.11a/b/g/n/ac WLAN with Bluetooth 5 Combo Stamp Module With M.2 2230 adapter Board (link)		
Data sheet	Murata – Type 2DS W-LAN Module Data Sheet (<u>link</u>)		
Data sheet	Murata – Type 1XK W-LAN+Bluetooth Combo Module Data Sheet (link)		
Data sheet	Murata – Type 1ZM W-LAN+Bluetooth Combo Module Data Sheet (link)		
Data sheet	Murata – LBWA0ZZ2DS-688 – Type 2DS W-LAN Module Data Sheet NXP 88W8801 Chipset for 802.11b/g/n (link)		
Data sheet	Murata – LBEE5CJ1XK-687 – Type 1XK W-LAN+Bluetooth Combo Module Data Sheet NXP IW416 Chipset for 802.11a/b/g/n + Bluetooth 5.2 (<u>link</u>)		
Data sheet	Murata – LBEE5QD1ZM-572 – Type 1ZM W-LAN+Bluetooth Combo Module Data Sheet NXP 88W8987 Chipset for 802.11a/b/g/n/ac + Bluetooth 5.1 (link)		
Data sheet	Murata – LBEE0ZZ1WE-uSD-M2 – Murata uSD-M.2 Adapter Datasheet (link)		
Data sheet	Murata - Wi-Fi + Bluetooth + 802.15.4 Tri-Radio Module Data Sheet (link)		
Data sheet	Murata - LBES5PL2EL-923 - Type 2EL Wi-Fi + Bluetooth + 802.15.4 Tri-Radio Module Data Sheet NXP IW612 Chipset for 802.11a/b/g/n/ac/ax + Bluetooth 5.3 + IEEE 802.15.4 (link)		
Data sheet	Murata – LBEE0ZZ2WE-uSD-M2 – Murata uSD-M.2 Adapter Datasheet (link)		
Data sheet	Murata – LBEE0ZZ2WF-uSD-M2 – Murata uSD-M.2 Adapter Datasheet (link)		
Data sheet	u-blox - LILY-W1 series - Host-based Wi-Fi modules - Data sheet (link)		
Data sheet	u-blox - MAYA-W1 series - Host-based Wi-Fi modules - Data sheet (link)		
Data sheet	u-blox - JODY-W2 series - Host-based multiradio modules with Wi-Fi 5 and Bluetooth 5.2 - Data sheet (link)		
Mobile application	NXP - IoT Toolbox Android (IoT Toolbox on Google Play) (IoT Toolbox on the APP Store)		
Quick start guide	Murata – Murata Wi-Fi/BT (NXP) Solution for i.MX FreeRTOS Quick Start Guide (link)		
Short data sheet	NXP - 88W8801 - 2.4 GHz Single-band 1x1 Wi-Fi 4 Solution - Short data sheet (public) ((link)		
Short data sheet	NXP - 88W8987 - 2.4/5 GHz Dual-band 1x1 Wi-Fi 5 (802.11ac) and Bluetooth 5.2 Solution - Short data sheet (public) (link)		
User guide	AzureWave - uSD-1216 Adapter Board for AW-NM191-uSD and AW-CM276-uSD (link)		
User guide	AzureWave - uSD-15x15 Adapter for AW-AM457-uSD (link)		
User guide	AzureWave - uSD-12x12 Adapter for for AW-AM281 uSD and AW-CM358-uSD (link)		
User guide	Murata – Murata Wi-Fi/BT (NXP) Solution for i.MX FreeRTOS User Guide (link)		

Table 1. References...continued

Reference type	Description	
User guide	u-blox - EVK-LILY-W1 - Evaluation kit for the LILY-W1 host-based Wi-Fi modules - User guide (link)	
User guide	u-blox - EVK-MAYA-W1 - Evaluation kit for MAYA-W1 host-based modules - User guide (link)	
User guide	u-blox - EVK-JODY-W2 - Evaluation kit for JODY-W2 host-based modules - User guide (link)	
User manual	NXP - Getting Started with MCUXpresso SDK (link)	
Web page	Murata - LBES5PL2EL-923 - Type 2EL Shielded Ultra Small Wi-Fi® 11a/b/g/n/ac/ax + Bluetooth® 5.3 + 802.15.4 Module (link)	
Web page	Embedded Artists – EAR – 2EL M.2 module (<u>link</u>)	
Web page	NXP - Getting Started with Wi-Fi on i.MX RT platforms (link)	
Web page	NXP - MCUXpresso Integrated Development Environment (IDE) (link)	
Web page	armkeil - MDK Microcontroller Development Kit (<u>link</u>)	
Web page	IAR SYSTEMS - Arm Cortex-M edition (link)	
Web page	AzureWave - Wi-Fi Evaluation Kit: AW-NM191-uSD - uSD adapter Board for AW-NM191 NF Evaluation (link)	
Web page	Murata – Wi-Fi/Bluetooth Modules for NXP i.MX (<u>link</u>)	
Web page	Murata – NXP Based Modules (link)	
Web page	Murata – LBWA0ZZ2DS-688 – Type 2DS Shielded Small Wi-Fi [®] 11b/g/n Module (<u>link</u>)	
Web page	Embedded Artists – EAR00386 – 2DS M.2 module (link)	
Web page	Murata – LBEE5CJ1XK-687 – Type 1XK Shielded Ultra Small Dual band Wi-Fi® 11a/b/g/n + Bluetooth® 5.2 Module (link)	
Web page	Embedded Artists – EAR00385 – 1XK M.2 Module (<u>link</u>)	
Web page	Murata – LBEE5QD1ZM-572 – Type 1ZM Shielded Ultra Small Dual Band Wi-Fi® 11a/b/g/n/ac + Bluetooth® 5.1 Module (link)	
Web page	Embedded Artists – EAR00364 – 1ZM M.2 Module (link)	
Web page	Murata – LBEE0ZZ1WE-uSD-M2 – uSD-M.2 Adapter (link)	
Web page	Murata – LBEE0ZZ2WE-uSD-M2 – uSD-M.2 Adapter (link)	
Web page	Murata – LBEE0ZZ2WF-uSD-M2 – uSD-M.2 Adapter (link)	

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

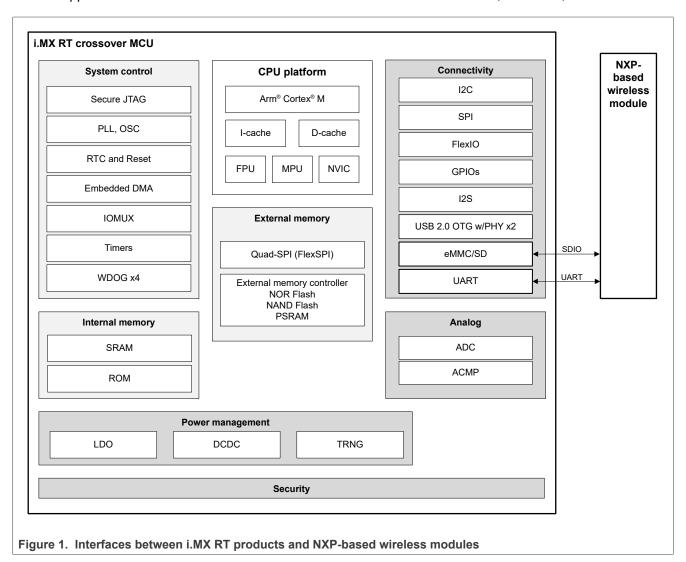
2 i.MX RT products

i.MX RT crossover MCUs feature NXP's advanced implementation of the ARM Cortex-M core and support the FreeRTOS available within the MCUXpresso SDK to help users reduce the overall time-to-market for their product. This section provides a brief description of i.MX RT EVK along with the jumpers or switch settings. Refer to i.MX RT Products for more details on i.MX RT Crossover MCUs.

The following i.MX RT products support NXP-based wireless modules:

- i.MX RT1020
- i.MX RT1040
- i.MX RT1050
- i.MX RT1060
- i.MX RT1060B
- i.MX RT1060C
- i.MX RT1064
- i.MX RT1160
- i.MX RT1170
- i.MX RT1170B
- i.MX RT500
- i.MX RT600
- i.MX RT595
- i.MX RT685
- i.MX RT685S

2.1 i.MX RT processor family


The i.MX RT processor family offers high-performance processing optimized for the lowest power consumption and best real-time response. The i.MX RT products provide various memory interfaces and types including SDRAM, Raw NAND FLASH, NOR FLASH, SD/eMMC, and Quad SPI (FlexSPI). The i.MX RT crossover MCUs also feature a wide range of other interfaces for peripherals, such as SDIO, UART, displays, camera sensors, and GPS. i.MX RT series supports rich audio and video features, including LCD display, 2D graphics, camera interface, SPDIF and I2S audio interface.

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

2.2 i.MX RT products and NXP-based wireless modules

<u>Figure 1</u> shows the interfaces between i.MX RT products and NXP-based wireless modules. The SDIO interface is used for Wi-Fi communication and UART interface is used for Bluetooth communication.

Note: Support for Bluetooth is available for the wireless modules based on IW416, 88W8987, and IW612.

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

Table 2 shows the combinations of i.MX RT products and wireless modules.

Table 2. Combinations of i.MX RT products and wireless modules

i.MX RT product	Wireless product	NXP-based wireless module
SDIO interface for Wi-I	Fi	
i.MX RT1060 EVK	88W8801	AW-NM191NF-uSD 2DS M.2 Module (EAR00386) + LBEE0ZZ1WE-uSD-M2 EVK-LILY-W131
	IW416	AW-AM457-uSD AW-AM510-uSD 1XK M.2 Module (EAR00385) + LBEE0ZZ1WE-uSD-M2 EVK-MAYA-W1
	88W8987	AW-CM358-uSD 1ZM M.2 Module (EAR00364) + LBEE0ZZ1WE-uSD-M2 EVK-JODY-W2
i.MX RT1050 EVKB i.MX RT1064 EVK	88W8801	AW-NM191NF-uSD 2DS M.2 Module (EAR00386) + LBEE0ZZ1WE-uSD-M2
i.MX RT600 EVK	IW416	AW-AM457-uSD AW-AM510-uSD 1XK M.2 Module (EAR00385) + LBEE0ZZ1WE-uSD-M2 ^[1]
	88W8987	AW-CM358-uSD 1ZM M.2 Module (EAR00364) + LBEE0ZZ1WE-uSD-M2
i.MX RT595 EVK	88W8801	AW-NM191MA M.2 2DS M.2 Module (EAR00386)
	IW416	AW-AM457 M.2 AW-AM510 M.2 1XK M.2 Module (EAR00385) ^[1]
	88W8987	AW-CM358MA M.2 1ZM M.2 Module (EAR00364)
i.MX RT1020 EVK	88W8801	AW-NM191NF-uSD 2DS M.2 Module (EAR00386) + LBEE0ZZ1WE-uSD-M2
i.MX RT685 EVK	88W8801	AW-NM191NF-uSD 2DS M.2 Module (EAR00386) + LBEE0ZZ1WE-uSD-M2
	IW416	AW-AM510-uSD 1XK M.2 Module (EAR00385) + LBEE0ZZ1WE-uSD-M2
	88W8987	AW-CM358-uSD 1ZM M.2 Module (EAR00364) + LBEE0ZZ1WE-uSD-M2
i.MXRT685-AUD-EVK	88W8801	AW-NM191MA M.2 2DS M.2 Module (EAR00386)
	IW416	AW-AM510 M.2 1XK M.2 Module (EAR00385) ^[1]
	88W8987	AW-CM358MA M.2 1ZM M.2 Module (EAR00364)

Table 2. Combinations of i.MX RT products and wireless modules...continued

	Wireless product	NXP-based wireless module	
SDIO interface for Wi-Fi continued			
i.MX RT1160 EVK	88W8801	AW-NM191NF-uSD 2DS M.2 Module (EAR00386)	
	IW416	AW- AM510MA M.2 1XK M.2 Module (EAR00385) ^[1]	
	88W8987	AW-CM358MA M.2 1ZM M.2 Module (EAR00364)	
i.MX RT1170 EVK	88W8801	AW-NM191NF-uSD 2DS M.2 Module (EAR00386)	
	IW416	AW- AM510MA M.2 1XK M.2 Module (EAR00385)	
	88W8987	AW-CM358MA M.2 1ZM M.2 Module (EAR00364)	
i.MX RT1060 EVKB	88W8801	AW-NM191NF-uSD 2DS M.2 Module (EAR00386) + LBEE0ZZ1WE-uSD-M2	
	IW416	AW-AM457-uSD AW- AM510MA M.2 1XK M.2 Module (EAR00385) + LBEE0ZZ1WE-uSD-M2	
	88W8987	AW-CM358-uSD 1ZM M.2 Module (EAR00364) + LBEE0ZZ1WE-uSD-M2	
i.MX RT1060 EVKC	88W8801	2DS M.2 Module (EAR00386) ^[1]	
	IW416	1XK M.2 Module (EAR00385) ^[1]	
	88W8987	1ZM M.2 Module (EAR00364) ^[1]	
	IW612	2EL M.2 Module (EAR00409) + LBEE0ZZ2WE-uSD-M2 ^[1]	
i.MX RT1040 EVK	88W8801	AW-NM191MA M.2 2DS M.2 Module (EAR00386) ^[1]	
	IW416	AW-AM457MA M.2 AW-AM510 M.2 1XK M.2 Module (EAR00385) ^[1]	
	88W8987	AW-CM358MA M.2 1ZM M.2 Module (EAR00364) ^[1]	
i.MX RT1170 EVKB	88W8801	AW-NM191MA M.2 2DS M.2 Module (EAR00386) ^[1]	
	IW416	AW- AM510MA M.2 1XK M.2 Module (EAR00385) ^[1]	
	88W8987	AW-CM358MA M.2 1ZM M.2 Module (EAR00364) ^[1]	
	IW612	2EL M.2 Module (EAR00409) + LBEE0ZZ2WE-uSD-M2 ^[1]	

Table 2. Combinations of i.MX RT products and wireless modules...continued

i.MX RT product	Wireless product	NXP-based wireless module	
UART interface for Bluetooth/Bluetooth LE			
i.MX RT1060 EVK	IW416	AW-AM457-uSD AW-AM510-uSD 1XK M.2 Module (EAR00385) + LBEE0ZZ1WE-uSD-M2	
	88W8987	AW-CM358-uSD 1ZM M.2 Module (EAR00364) + LBEE0ZZ1WE-uSD-M2	
i.MX RT1040 EVK	IW416	1XK M.2 Module (EAR00385) ^[1]	
	88W8987	1ZM M.2 Module (EAR00364) ^[1]	
i.MX RT1050 EVKB	IW416	AW-AM510-uSD 1XK M.2 Module (EAR00385) + LBEE0ZZ1WE-uSD-M2	
	88W8987	AW-CM358-uSD 1ZM M.2 Module (EAR00364) + LBEE0ZZ1WE-uSD-M2	
i.MX RT1060 EVKB	IW416	AW-AM457-uSD AW-AM510-uSD 1XK M.2 Module (EAR00385) + LBEE0ZZ1WE-uSD-M2	
	88W8987	AW-CM358-uSD 1ZM M.2 Module (EAR00364) + LBEE0ZZ1WE-uSD-M2	
i.MX RT1160 EVK	IW416	AW-AM510 M.2 1XK M.2 Module (EAR00385)	
	88W8987	AW-CM358MA M.2 1ZM M.2 Module (EAR00364)	
i.MX RT1060 EVKC	IW416	1XK M.2 Module (EAR00385) ^[1]	
	88W8987	1ZM M.2 Module (EAR00364) ^[1]	
	IW612	2EL M.2 Module (EAR00409) + LBEE0ZZ2WE-uSD-M2 ^[1]	
i.MX RT1170 EVK	IW416	AW-AM510 M.2 1XK M.2 Module (EAR00385)	
	88W8987	AW-CM358MA M.2 1ZM M.2 Module (EAR00364)	
i.MX RT1170 EVKB	IW416	AW-AM510 M.2 1XK M.2 Module (EAR00385) ^[1]	
	88W8987	AW-CM358MA M.2 1ZM M.2 Module (EAR00364) ^[1]	
	IW612	2EL M.2 Module (EAR00409) + LBEE0ZZ2WE-uSD-M2 ^[1]	
i.MX RT595 EVK	IW416	AW-AM510 M.2 1XK M.2 Module (EAR00385) ^[1]	
	88W8987	AW-CM358MA M.2 1ZM M.2 Module (EAR00364)	

Table 2. Combinations of i.MX RT products and wireless modules...continued

i.MX RT product	Wireless product	NXP-based wireless module
i.MX RT685 EVK	IW416	AW-AM457-uSD AW-AM510-uSD 1XK M.2 Module (EAR00385) + LBEE0ZZ1WE-uSD-M2
	88W8987	AW-CM358-uSD 1ZM M.2 Module (EAR00364) + LBEE0ZZ1WE-uSD-M2
i.MX RT685-AUD-EVK	IW416	1XK M.2 Module (EAR00385) ^[1]
	88W8987	1ZM M.2 Module (EAR00364)

^[1] The module operation was tested during 2.15.0 release process uSD = microSD interface and M2 = M.2 interface

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

Table 3 shows NXP-based wireless modules which are configured by default for a list of i.MX RT products.

Table 3. Wireless modules configured by default on i.MX RT products

i.MX RT product	NXP-based wireless module
i.MX RT1060 EVK i.MX RT1050 EVKB i.MX RT1064 EVK i.MX RT685 EVK	1XK M.2 Module (EAR00385) + LBEE0ZZ1WE-uSD-M2
i.MX RT1020 EVK	2DS M.2 Module (EAR00386) + LBEE0ZZ1WE-uSD-M2
i.MX RT1060 EVKB	1XK M.2 Module (EAR00385) + LBEE0ZZ1WE-uSD-M2
I.MX RT1040 EVK	1XK M.2 Module (EAR00385)
i.MX RT1160 EVK i.MX RT1170 EVK i.MX RT1170 EVKB i.MX RT595 EVK i.MXRT685-AUD-EVK	1XK M.2 Module (EAR00385)
i.MX RT 1170 EVKB I.MX RT 1060 EVKC	2EL M.2 Module (EAR00409) + LBEE0ZZ2WE-uSD-M2

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

2.3 i.MX RT EVK boards

The i.MX RT EVK boards are USB powered printed circuit boards (PCB). At their heart lies the i.MX RT crossover MCU, featuring NXP's advanced implementation of the Arm Cortex-M core. This core operates at sufficient speed to provide high CPU performance and excellent real-time response.

For more details on i.MX RT EVK, visit i.MX RT Products page, click the link to the product of interest, and look for the section under **Development Boards and Designs**.

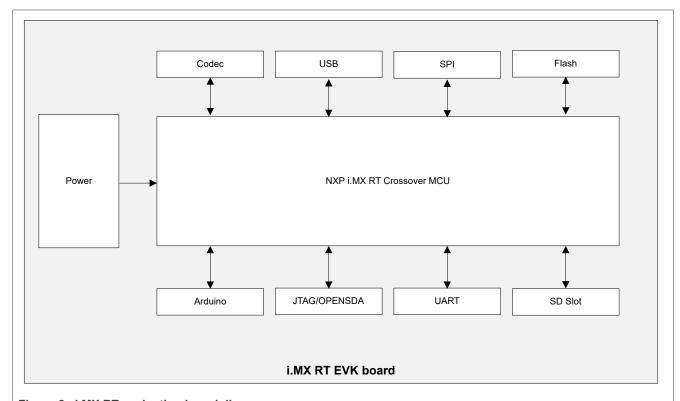


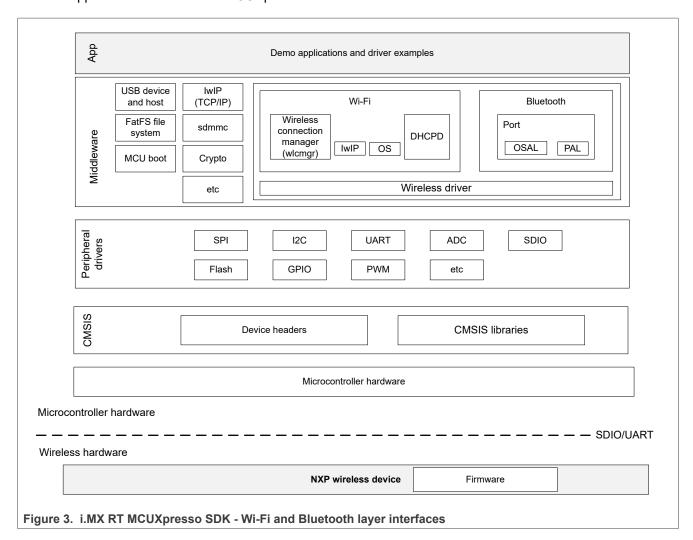
Figure 2. i.MX RT evaluation board diagram

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

The i.MX RT EVK boards support different boot modes. Specific switch and/or jumper settings are used to configure the boot modes. Select the i.MX RT product of interest on i.MX RT Products web page and look for the EVK User Manual and EVK Hardware User Guide on the documentation tab of the product web page. The documents include the details on the jumpers, boot mode, and switch settings.

Table 4 shows the switch settings for the i.MX RT EVK boards that support NXP-based wireless modules.

Table 4. Boot mode selection


i.MX RT EVK board	Component	Configuration	Boot mode
i.MX RT1020	SW8	0010	Internal (QSPI flash)
i.MX RT106X	SW7	0010	Internal (QSPI flash)
I.MX RT1040	SW4	0010	Internal (QSPI flash)
i.MX RT1050	SW7	0110	Internal (Hyperflash)
i.MX RT1170	SW1	0010	Internal (QSPI flash)
i.MX RT1170B	SW1	0010	Internal (QSPI flash)
i.MX RT1160	SW1	0010	Internal (QSPI flash)
i.MX RT1160B	SW7	0010	Internal (QSPI flash)
i.MX RT500	SW7	001	Internal (OSPI flash)
i.MX RT600	SW5	101	Internal (OSPI flash)
i.MX RT685S	SW2	011	Internal (OSPI flash)

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

2.4 i.MX RT MCUXpresso SDK

This section provides an overview of MCUXpresso Software Development Kit. The MCUXpresso SDK architecture consists of the following key components:

- The Arm Cortex Microcontroller Software Interface Standard (CMSIS) CORE compliance device specific header files, SOC Header, and CMSIS math/DSP libraries
- · Cloud connectivity APIs for Amazon AWS, and Microsoft Azure
- 88W8801/IW416/88W8987 Firmware with a support for SDIO and UART host interfaces
- Peripheral drivers such as SPI, I2C, ADC, uSDHC, UART
- Real-time Operating Systems (FreeRTOS)
- Stacks and Middleware that are part of MCUXpresso SDK and include:
 - Connectivity, Security, DMA, File System, MCU boot, and other software features
 - Specific features for Wi-Fi connectivity: lwIP stack, DHCP Daemon, Wireless connection manager and Wi-Fi module driver
 - Specific features for Bluetooth connectivity: Bluetooth stack, Bluetooth module driver
- · Demo Applications based on the MCUXpresso SDK

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3 NXP-based wireless modules

The wireless modules described in this section are based on the following NXP products:

- 88W8801
- IW416
- 88W8987
- IW612

3.1 88W8801-based wireless modules

3.1.1 AzureWave AW-NM191NF-uSD adapter board

AW-NM191NF module is a 2.4 GHz Wi-Fi radio module and a highly integrated Wi-Fi solution that enables a high performance, cost effective, low-power, compact solution with SDIO interface to the host processor. This module is based on the 88W8801 chipset that supports 1x1, 802.11 b/g/n station and access point operations. The high level of integration and full implementation of the power management functions specified in the IEEE 802.11 standard contribute to minimizing the system power requirements. For more details about module Wi-Fi features, refer to AW-NM191NF module datasheet.

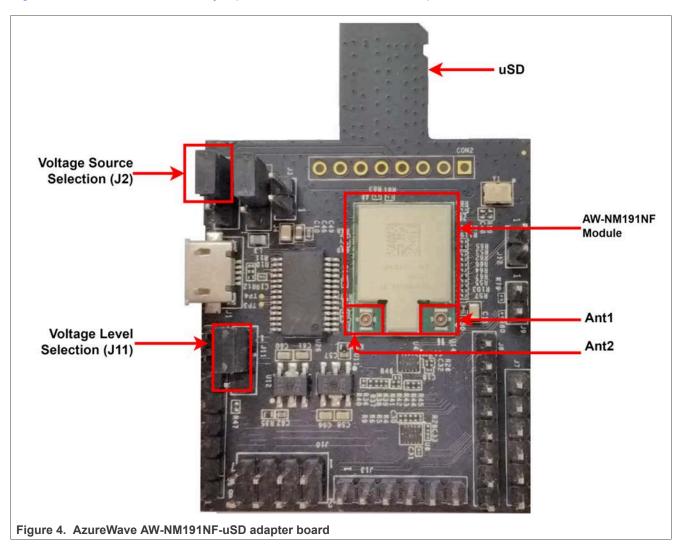

The AW-NM191NF-uSD adapter board includes AW-NM191NF (88W8801-based Wi-Fi) module and the uSD-1216 adapter which enables the Micro SD interface for the module.

Table 5. AzureWave AW-NM191NF module features

Feature	Description
Wi-Fi chipset	88W8801
Module name	AW-NM191NF
Module adapter board	AW-NM191NF-uSD
Interface	Micro SD
Antenna	EVB kit includes Mag Layers MSA-4008-25GC1-A2_V01 PIFA antenna
Form factor	12 x 16 x 1.95 mm stamp module

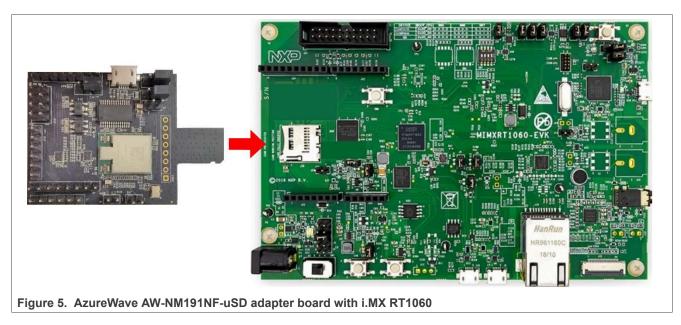
Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

Figure 4 shows the interfaces and jumpers on AW-NM191NF-uSD adapter board.

3.1.1.1 Jumper settings on AzureWave AW-NM191NF-uSD adapter board

<u>Table 6</u> shows the jumper settings for the power source and for VIO_SD voltage level options.

Table 6. Jumper settings on AW-NM191NF-uSD adapter board


Jumper	Description	
J2 (1-2)	Connect J2 on pins 1 and 2 to set the power source to VIO_uSD	
J11 (1-2)	Connect J11 on pins 1 and 2 to set VIO_SD voltage level to 1.8 V supply	

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.1.1.2 Connecting AW-NM191NF-uSD adapter board to i.MX RT1060 EVK board

To connect AW-NM191NF-uSD adapter board to i.MX RT1060 EVK board:

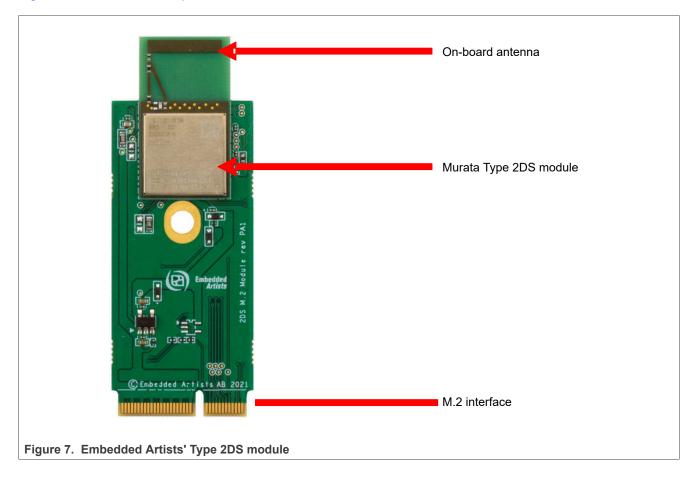
Plug AW-NM191NF-uSD adapter board into the Micro SD slot of i.MX RT1060 EVK board

- Connect the antenna to Ant1 slot of the AW-NM191NF-uSD adapter board
- Use a Micro USB to USB cable to connect i.MX RT1060 EVK board to a host computer running Windows, Linux or Mac OS

Figure 6. i.MX RT1060 EVK board connection to the host computer for power supply and console access

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

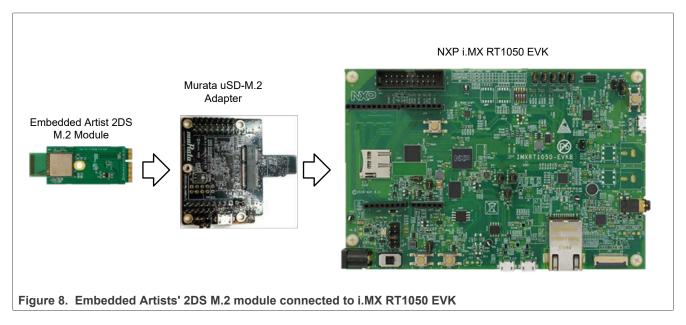
3.1.2 Embedded Artists' (Murata) 2DS M.2 module


Murata's Type 2DS is a small high-performance module (integrated PCB antenna) based on NXP 88W8801 chipset which supports Wi-Fi 802.11b/g/n up to 72.2 Mbps PHY data rate. Type 2DS Wi-Fi module provides device manufacturers with an easy-to-design solution for data acquisition, device management, and industrial control applications. RF matching, Antenna design and Regulatory certification are already taken care of and tested. The versatile Type 2DS module is packaged in a small form factor that facilitates integration into size-and power-sensitive applications.

Embedded Artists collaborated closely with Murata on designing/validating their Type 2DS M.2 Module. For more details about the module, refer to Murata's Type 2DS web page. For details on the M.2 Module, refer to the Embedded Artists' 2DS M.2 product page.

Table 7. Embedded Artists' Type 2DS module features

Feature	Description
Wi-Fi chipset	88W8801
Module name	Murata Type 2DS M.2
Module interface	M.2 (Type 2230-S3-E) / microSD (via the Murata uSD-M.2 adapter)
Antenna	On-board
Wi-Fi standard	Wi-Fi 4, 802.11 b/g/n
Frequency	2.4 GHz
Network	STA and AP dual mode
Measurement	22x54 mm with antenna
Supply voltage	3.3 V (3.0 V-3.6 V)
Operating temperature range	-40°C to +85°C


Figure 7 shows the various parts of the M.2 module.

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.1.2.1 Connecting Embedded Artists' (Murata) 2DS M.2 module to i.MX RT1050 EVK using Murata's uSD-M.2 adapter

Embedded Artists' 2DS M.2 module can be connected to i.MX RT1050 EVK (or any other EVKs with a microSD or full-size SD slot) using Murata's uSD-M.2 adapter. Figure 8 shows the connection scheme.

Note: For EVKs with M.2 slots (for example NXP i.MX RT1160 and RT1170), Embedded Artists' M.2 module can be directly connected.

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.1.2.2 Murata's uSD-M.2 adapter

Murata uSD-M.2 adapter provides the following interfaces to host MCU/MPU:

- microSD (uSD) interface for Wi-Fi-SDIO (SD is an option with microSD-SD adapter)
- Arduino headers for Bluetooth UART, Bluetooth PCM and Wi-Fi/Bluetooth control signals
- Optional power, debug, and clocking signals connect through Arduino Header or Micro-AB USB Connector.

Figure 9 and Table 8 describe the various components of the uSD-M.2 interface.

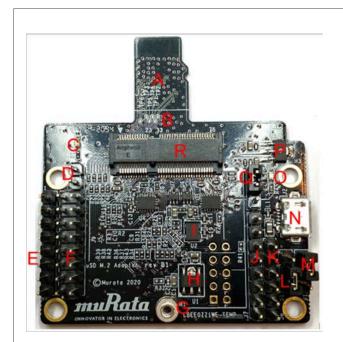


Figure 9. Murata uSD M.2 adapter top and bottom views

Table 8. Description of Murata uSD M.2 adapter components

Letter on figure	Description
Α	microSD connector for power (VBAT, GND) and Wi-Fi SDIO interface
В	SDIO bus test points (CLK, CMD, DAT0, DAT1, DAT2, DAT3)
С	Power LED indicator (green): if not illuminated, no power is applied to M.2 EVB
D	J11 = Optional Bluetooth disable jumper for Wi-Fi-only mode (currently no effect on Embedded Artists' 2DS, 1XK, or 1ZM M.2 modules)
E	J9 = Bluetooth UART Tx/Rx and Wi-Fi/Bluetooth control signals (8-pin header)
F	J5 = Optional Bluetooth PCM and Wi-Fi/Bluetooth debug signals (2x 8-pin header)
G	Threaded mount for M.2 screw - 30 mm distance from M.2 connector
Н	Regulator to step down optional 5 V VBAT from USB or Arduino header to 3.3 V
I	External sleep clock input (32.768 kHz)
J	J7 = Optional Arduino header power supply (8-pin header; 5 V or 3.3 V VBAT)
K	J8 = Bluetooth UART RTS/CTS signals (6-pin header)

UM11441

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

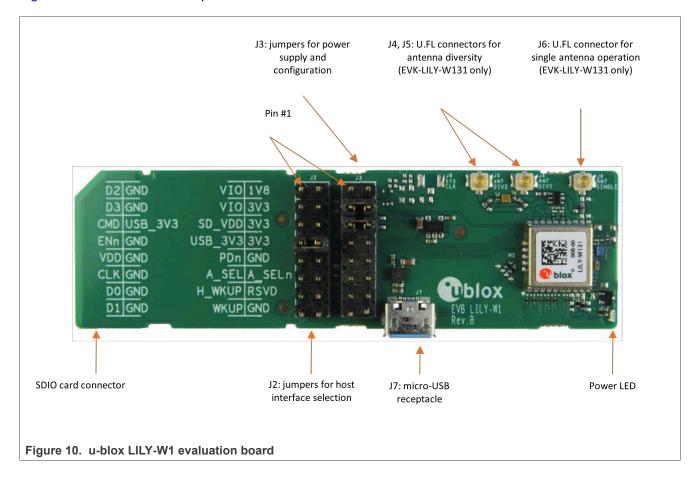
Table 8. Description of Murata uSD M.2 adapter components...continued

Letter on figure	Description
L	J13 = Host IO voltage: J13 in 1-2 position for 3.3 V VDDIO (default); J13 in 2-3 position for 1.8 V
	J12 = M.2 IO voltage: J12 in 1-2 position for 1.8 V VDDIO (default); J12 in 2-3 position for 3.3 V
N	J2 = Optional 5 V USB power supply via micro-AB USB connector
0	LED2 = 3.3 V M.2 IO voltage indicator (blue) – not illuminated in default configuration
Р	Regulator to provide optional 1.8 V VIO to M.2 interface (M.2 EVBs have their own 1.8 V on-board)
Q	J1 = Power supply selector. The jumper must be installed to power adapter (unless J5 Arduino header pins #15/16 are connected to external GND/3.3 V VBAT). Position 1-2: 5 V/3.3 V VBAT supply from micro-USB (J2) or from Arduino (J7)
	Position 2-3: VBAT supply (typical 3.1~3.3 V) from microSD connector
R	M.2 connector type 2230-xx-E
S	microSD connector pins for power supply (VBAT, GND) and Wi-Fi SDIO interface
Т	Wi-Fi JTAG header (header pins not populated)
U	20 pin FFC connector (Bluetooth UART, Bluetooth PCM, Wi-Fi/Bluetooth control signals)
V	Additional test points from 20-pin flat/flex connector

For further details on Murata's uSD-M.2 adapter, refer to Murata's uSD-M.2 web page.

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.1.3 u-blox LILY-W1 evaluation board


The LILY-W1 series ultra-compact Wi-Fi front end modules include an integrated MAC/baseband processor and RF front end components. The modules based on 88W8801 chipset support 1x1, 802.11 b/g/n station and access point operations. 88W8801 is developed for reliable, high-demand industrial devices, and LTE radio applications. The modules connect to a host via SDIO or USB interface. They provide simultaneous operation as a station and a micro access point for up to 8 clients. The LILY-W132 variant further includes an internal antenna and LTE filter to enable in-device co-existence without compromising Wi-Fi performance. The LILY-W1 is approved for use in the United States, Europe, Canada, Taiwan, and Japan. For more details about the module Wi-Fi features, refer to LILY-W1 series module data sheet.

The EVK-LILY-W1 evaluation board includes the LILY-W1 (NXP 88W8801-based Wi-Fi) module. The evaluation board offers a standard full-size SD card connector and a micro-USB receptacle for host communication.

Table 9. u-blox LILY-W1 module features

Feature	Description
Wi-Fi chipset	NXP 88W8801
Wi-Fi standard	Wi-Fi 4, 802.11 b/g/n
Antenna	Antenna pin (LILY-W131) Internal with LTE filter (LILY-W132) Internal (LILY-W133)
Host interfaces	Wi-Fi: SDIO, USB 2.0
Output RF power	LILY-W131: 19 dBm including 3 dBi antenna gain LILY-W132 and LILY-W133: 15 dBm including antenna gain
Operating temperature range	-40°C to +85°C

Figure 10 shows the main components on LILY-W1 evaluation board.

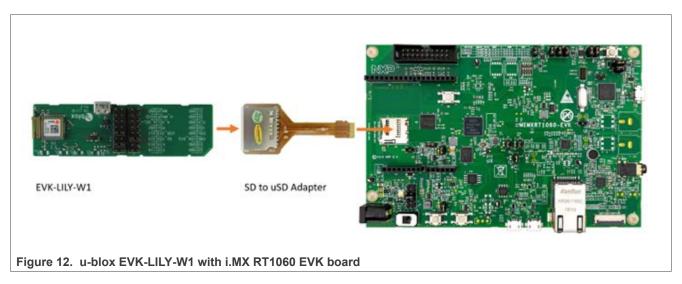
Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.1.3.1 Jumper settings for SDIO on LILY-W1 evaluation board

Figure 11 shows the jumper settings for SDIO on LILY-W1 evaluation board.

Figure 11. Jumper settings for SDIO on LILY-W1 evaluation board

Table 10. Jumper settings on LILY-W1 evaluation board


Jumper	Description
J2: 7-8 bridged	SDIO interface selection
J3: 5-6 bridged	Selects 3.3 V SD card as main power supply
J3: 3-4 bridged	Selects 3.3 V I/O voltage

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.1.3.2 Connecting u-blox EVK-LILY-W1 to i.MX RT1060 EVK board

To connect u-blox EVK-LILY-W1 to I.MX RT1060 board:

 Use an SD-to-Micro-SD adapter to connect u-blox EVK-LILY-W1 evaluation board to i.MX RT1060 EVK board. Refer to Delock.

 Use a Micro USB-to-USB cable to connect i.MX RT1060 EVK board to a host computer running Windows, Linux or Mac OS

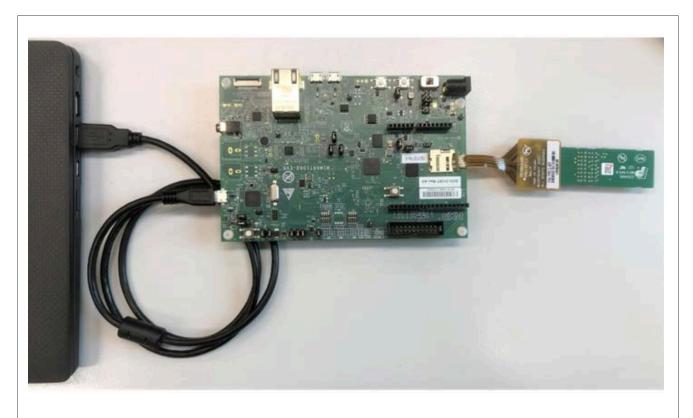


Figure 13. i.MX RT1060 EVK board connection to the host computer for power supply and console access

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.2 IW416-based wireless modules

3.2.1 AzureWave AW-AM457 module

The AW-AM457 is a 2.4 GHz and 5 GHz dual band Wi-Fi and Bluetooth radio module, specifically designed for highly integrated and cost-effective applications. This module is based on the IW416 chipset supporting 802.11a/b/g/n simultaneous station and access point. The integrated power management, the fast dual-core CPU, 802.11i security standard support, and high-speed data interfaces deliver the performance for the speed, reliability, and quality requirements of products. For more details about module Wi-Fi and Bluetooth features, refer to AW-AM457 module datasheet.

3.2.1.1 AzureWave AW-AM457-uSD evaluation board

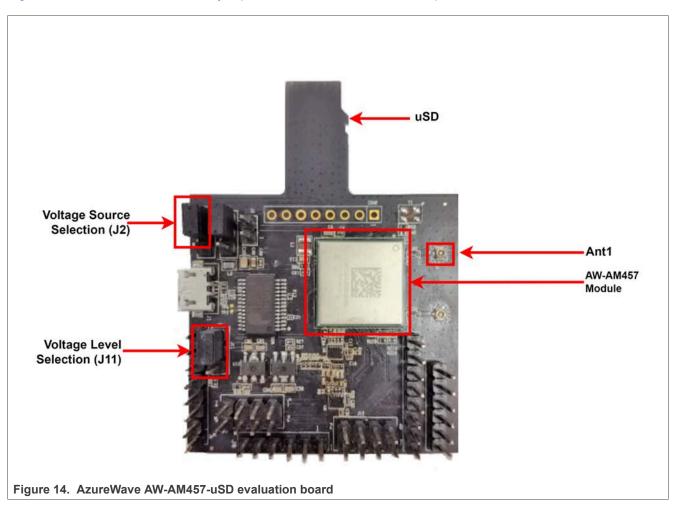

The AW-AM457-uSD evaluation board comprises AW-AM457 wireless module and the uSD-15x15 adapter board. The adapter board enables the Micro SD interface for the module.

Table 11. AzureWave AW-AM457 module features

Feature	Description
Wi-Fi chipset	IW416
Module name	AW-AM457
Module evaluation board	AW-AM457-uSD EVB
Host interface	Wi-Fi: SDIO 3.0 Bluetooth: UART
Antenna	AW-AM457-uSD EVB kit includes Mag Layers MSA-4008-25GC1-A2_V01 PIFA antenna
Form factor	15 x 15 x 2.5 mm stamp module

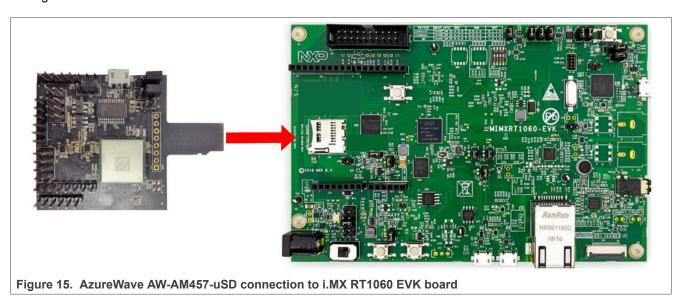
Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

Figure 14 shows the interfaces and jumpers on the AW-AM457-uSD adapter board.

3.2.1.2 Jumper settings on AzureWave AW-AM457-uSD evaluation board

<u>Table 12</u> shows the jumper settings for the power source and for VIO_SD voltage level selection.

Table 12. Jumper settings on AzureWave AW-AM457-uSD evaluation board


Jumper	Description
J2 (1-2)	Connect J2 on pins 1 and 2 to set the power source to VIO_uSD
J11 (1-2)	Connect J11 on pins 1 and 2 to set VIO_SD voltage level to 1.8 V supply

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.2.1.3 Connecting AzureWave AW-AM457-uSD to i.MX RT1060 EVK board

To connect AzureWave AW-AM457-uSD to i.MX RT1060 EVK board

• Plug AzureWave AW-AM457-uSD evaluation board into the Micro SD slot of i.MX RT1060 EVK board

- Connect the antenna to AzureWave AW-AM457-uSD evaluation board
- Use a Micro USB to USB cable to connect i.MX RT1060 EVK board to a host computer running Windows, Linux or Mac OS

Figure 16. i.MX RT1060 EVK connection to the host computer for power supply and console access

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

Note: In case the initialization of the Wi-Fi driver fails with the setup described in <u>Figure 16</u>, it is recommended to use an external power supply for RT1060 instead of a USB connector to power up RT1060 EVK board. Connect the 5V 3A adapter over the J2 connector of RT1060 as shown in <u>Figure 17</u>. Set the J1 jumper to position 1-2 instead of 5-6 to power up RT1060 EVK board.

Figure 17. External power supply for i.MX RT1060 EVK board and connection to the host computer for console access

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

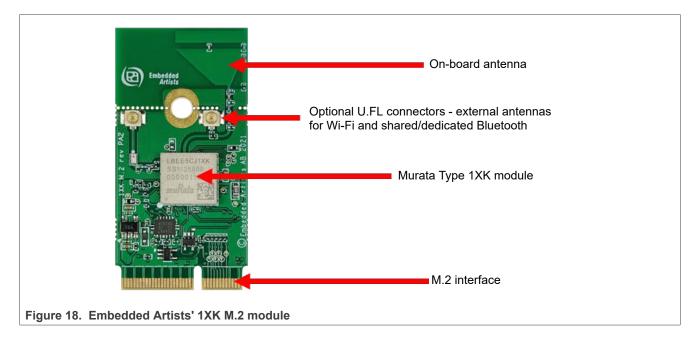
3.2.1.4 About Bluetooth host and audio interfaces

For Bluetooth, the communication between the Host stack and the Link Layer (LL) is implemented via the standard HCI UART host interface and PCM interface for voice.

To enable the Bluetooth UART and PCM interfaces, some rework is required. Refer to the SDK document Hardware Rework Guide for EdgeFast BT PAL available atSDK_<version>_EVK-<RT-Platform>\docs\wireless \Bluetooth\Edgefast_bluetooth.

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

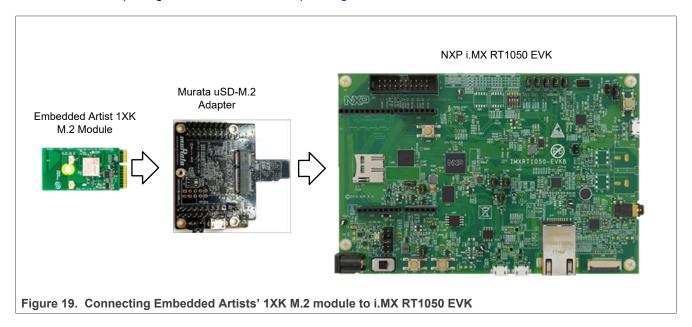
3.2.2 Embedded Artists' (Murata) 1XK M.2 module


Type 1XK is a small module with high-performance based on NXP IW416 combo chipset which supports Wi-Fi 802.11a/b/g/n and Bluetooth 5.2 BR/EDR/LE up to 150 Mbps PHY data rate on Wi-Fi and 3 Mbps PHY data rate on Bluetooth. The Wi-Fi section supports SDIO 3.0 interface. The Bluetooth section supports high-speed 4-wire UART interface (optional support for SDIO) and PCM for audio data. The IW416 implements sophisticated enhanced collaborative coexistence hardware mechanisms and algorithms, which ensure that Wi-Fi and Bluetooth collaboration is optimized for maximum performance. In IEEE 802.11n mode, the Wi-Fi operation supports rates of MCS0 – MCS7 in 20 MHz and 40 MHz channels for data rate up to 150 Mbps. Type 1XK module is packaged in an impressively small form factor that facilitates integration into size- and power-sensitive applications such as IoT applications, hand-held wireless system, gateway and more.

Embedded Artists collaborated with Murata on designing/validating their type 1XK M.2 module. For more details about the module, refer to Murata's Type 1XK web page. And for details on the M.2 module, refer to Embedded Artists' 1XK M.2 product page.

Table 13. Embedded Artists' 1XK M.2 module features

Feature	Description
Wi-Fi and Bluetooth chipset	NXP IW416
Module name	Murata Type 1XK M.2
Module interface	M.2 (Type 2230-S3-E) / microSD (via the Murata uSD-M.2 adapter)
Antenna	PCB trace antenna or U.FL connected patch antenna
Wi-Fi standard	Wi-Fi 4, 802.11 b/g/n
Frequency	2.4 GHz and 5 GHz
Network	uAP and STA dual mode
Measurement	22x30 mm without trace antenna, 22x44 mm with trace antenna
Supply voltage	3.3 V (3.0 V-3.6 V)
Operating temperature range	-40°C to +85°C


Figure 18 shows the main components on Embedded Artists' 1XK M.2 module.

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.2.2.1 Connecting Embedded Artists' (Murata) 1XK M.2 module to i.MX RT1050 EVK using Murata's uSD-M.2 adapter

Embedded Artists' 1XK M.2 module can be connected to i.MX RT1050 EVK (or any other EVK with a microSD or full-size SD slot) using Murata's uSD-M.2 adapter. <u>Figure 19</u> shows the connection scheme.

The Murata uSD-M.2 adapter provides the following interfaces to host MCU/MPU:

- microSD (uSD) interface for Wi-Fi-SDIO (SD is an option with microSD-SD adapter)
- Arduino Headers for Bluetooth UART, Bluetooth PCM and Wi-Fi/Bluetooth control signals
- Optional power, debug, and clocking signals connect through Arduino header or Micro-AB USB connector

For details of the uSD-M.2 adapter, see Section 3.1.2.2 or refer to Murata's uSD-M.2 web page.

Note: For EVKs with M.2 slots (e.g., NXP i.MX RT1160, RT1170), Embedded Artists' M.2 module can be directly connected.

3.2.2.2 Bluetooth host and audio interfaces

For Bluetooth, the communication between the Host stack and the Link Layer (LL) is implemented via the standard HCI UART host interface and PCM interface for voice.

To enable the Bluetooth UART and PCM interfaces, some rework is required. Refer to the SDK document Hardware Rework Guide for EdgeFast BT PAL available at SDK_<version>_EVK-<RT-Platform>\docs\wireless \Bluetooth\Edgefast_bluetooth.

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.2.3 AzureWave AW-AM510 module

The AW-AM510 is a 2.4 GHz and 5 GHz dual-band single-antenna Wi-Fi and Bluetooth radio module. The module includes IW416 wireless device that supports 802.11a/b/g/n simultaneous station and access point. For more details about the module Wi-Fi and Bluetooth features, refer to <u>AW-AM510 module data sheet.</u>

3.2.3.1 AzureWave AW-510-uSD evaluation board

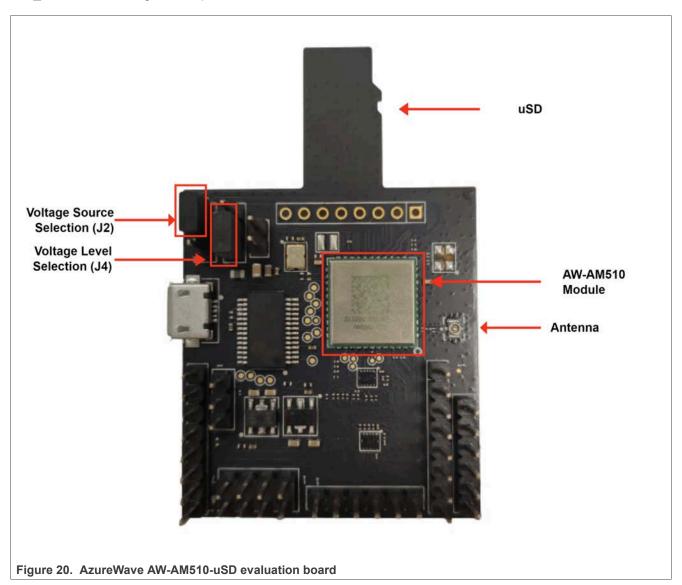

The AW-AM510-uSD evaluation board comprises AW-AM510 wireless module and the uSD-12x12 adapter board. The adapter board enables the Micro SD interface for the module.

Table 14. AzureWave AW-AM510 module features

Feature	Description
Wi-Fi chipset	IW416
Module name	AW-AM510
Module evaluation board	AW-AM510-uSD EVB
Host interface	Wi-Fi: SDIO 3.0 Bluetooth: UART
Antenna	AW-AM510-uSD EVB kit includes Mag Layers MSA-4008-25GC1-A2_V01 PIFA antenna
Form factor	12 x 12 x 2 mm stamp module

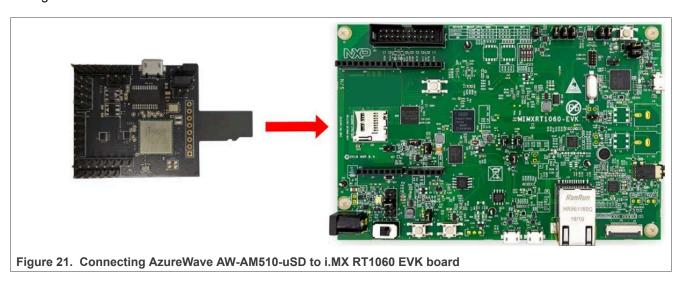
Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

<u>Figure 20</u> shows the interfaces of AzureWave AW-AM510-uSD evaluation board and the jumpers used for VIO_SD and VIO voltage level options.

3.2.3.2 Jumper settings on AzureWave AW-AM510-uSD evaluation board

<u>Table 15</u> shows the jumper settings for the power source and for VIO_SD voltage level selection.

Table 15. Jumper settings on AzureWave AW-AM510-uSD evaluation board


Jumper	Description
J2 (1-2)	Connect J2 on pins 1 and 2 to set the power source to VIO_uSD
J4 (1-2)	Connect J4 on pins 1 and 2 to set VIO_SD voltage level to 1.8 V supply

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.2.3.3 Connecting AzureWave AW-AM510-uSD to i.MX RT1060 EVK board

To connect AzureWave AW-AM510-uSD to i.MX RT1060 EVK board:

• Plug AzureWave AW-AM510-uSD evaluation board into the Micro SD slot of i.MX RT1060 EVK board

- Connect the antenna to AzureWave AW-AM510-uSD evaluation board
- Use a Micro USB to USB cable to connect i.MX RT1060 EVK board to a host computer running Windows, Linux or Mac OS

rigure 22. Innex Ki 1999 2 vik board connection to nost compater for power supply and console access

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.2.3.4 Bluetooth host and audio interfaces

For Bluetooth, the communication between the Host stack and the Link Layer (LL) is implemented via the standard HCI UART host interface and PCM interface for voice.

To enable the Bluetooth UART and PCM interfaces, some rework is required. Refer to the SDK document Hardware Rework Guide for EdgeFast BT PAL available at the following location:

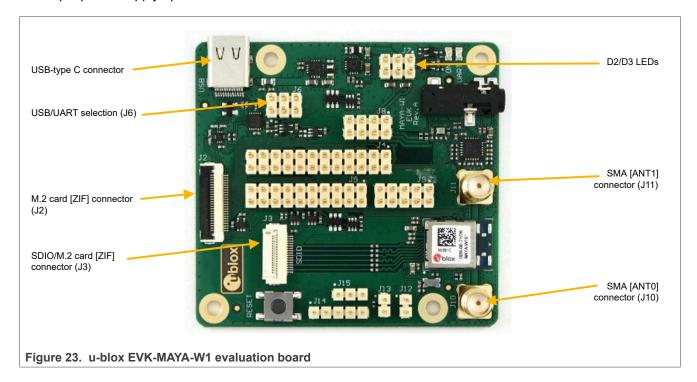
SDK <version> EVK-<RTPlatform>\docs\wireless\Bluetooth\Edgefast bluetooth.

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.2.4 u-blox MAYA-W1 module

The MAYA-W1 series are host-based Wi-Fi 4 and Bluetooth 5 multi-radio modules based on IW416 device. MAYA-W1 modules support the Wi-Fi 4 (802.11a/b/g/n) standard, Bluetooth classic and the full-feature set of Bluetooth Low Energy 5.

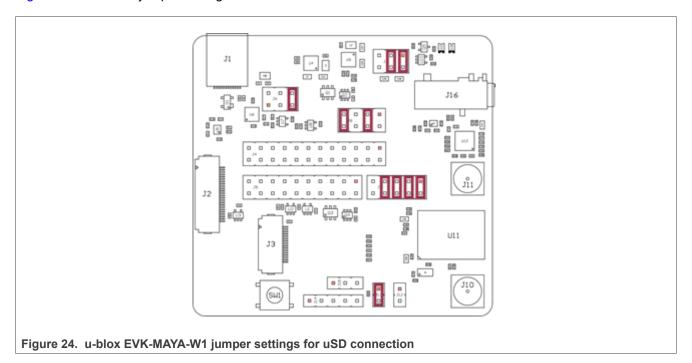
Table 16. u-blox MAYA-W1 module features


Feature	Description
Wi-Fi chipset	NXP IW416
Wi-Fi standard	Wi-Fi 4, IEEE 802.11 a/b/g/n (2.4 GHz and 5 GHz) Bluetooth 5.2
Antenna	MAYA-W160: 2 U.FL connectors MAYA-W161: 2 antenna pins MAYA-W166: 1 embedded PCB antenna
Host interfaces	Wi-Fi: SDIO Bluetooth: UART
Output RF power	LILY-W131: 19 dBm including 3 dBi antenna gain LILY-W132 and LILY-W133: 15 dBm including antenna gain
Operating temperature range	-40°C to +85°C

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.2.4.1 u-blox EVK-MAYA-W1 evaluation board

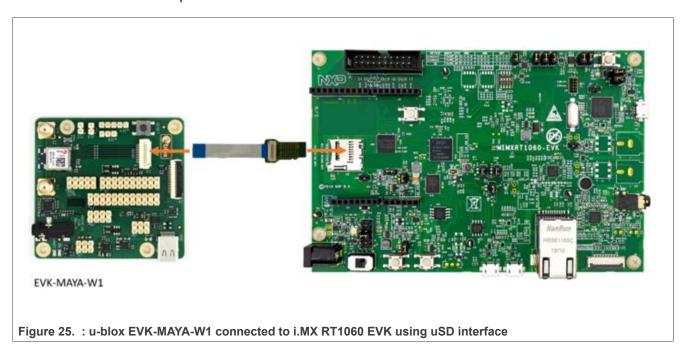
EVK-MAYA-W1 features:


- External connectors to all host interfaces through SD card and M.2 key E adapters
- USB interface to easily access the Bluetooth UART interface via a USB-to-UART bridge
- · Digital and analog audio interfaces for Bluetooth
- SMA connectors for external antennas (EVK-MAYA-W161)
- · Multiple power supply options

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.2.4.2 Jumper settings on u-blox EVK-MAYA-W1 evaluation board for uSD

Figure 24 shows the jumper settings on u-blox EVK-MAYA-W1 evaluation board.



Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.2.4.3 Connecting u-blox EVK-MAYA-W1 to i.MX RT1060 EVK board using uSD

To connect u-blox EVK-MAYA-W1 to i.MX RT1060 EVK board:

• Use a Micro SD/SDIO adaptor to connect EVK-MAYA-W1 evaluation board to i.MXRT1060 EVK board

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

• Use a Micro USB to USB cable to connect i.MX RT1060 EVK board to a host computer running Windows, Linux or Mac OS

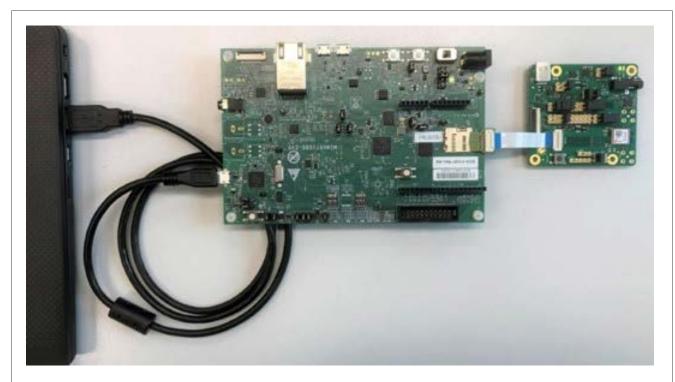


Figure 26. i.MX RT1060 EVK board connection to the host computer for power supply and console access

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.3 88W8987-based wireless modules

3.3.1 AzureWave AW-CM358-uSD adapter board

The AW-CM358 is a 2.4 GHz and 5 GHz dual band Wi-Fi and Bluetooth radio module, specifically designed for highly integrated and cost-effective applications. This module is based on the 88W8987 chipset supporting 802.11a/b/g/n/ac simultaneous station and access point. The integrated power management, the fast dual-core CPU, 802.11i security standard support, and high-speed data interfaces deliver the performance for the speed, reliability, and quality requirements of products. For more details about module Wi-Fi and Bluetooth features, refer to AW-CM358 module datasheet.

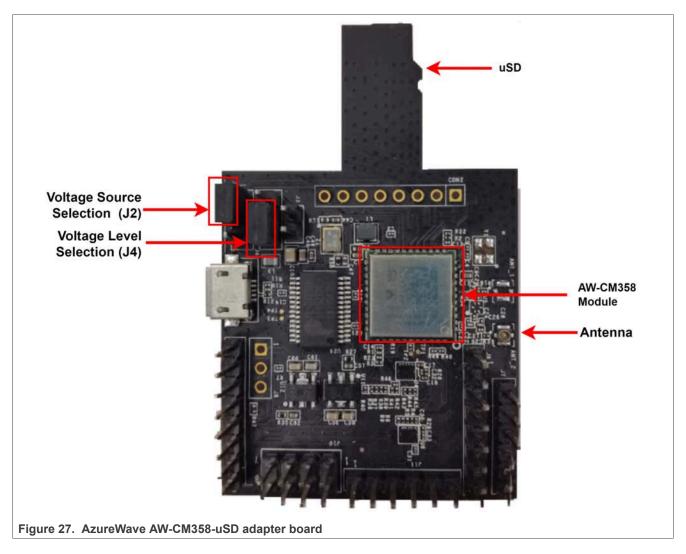

The AW-CM358-uSD adapter board includes AW-CM358 (88W8987-based Wi-Fi) module and the uSD-1212 adapter which enables the Micro SD interface for the module.

Table 17. AzureWave AW-CM358 module features

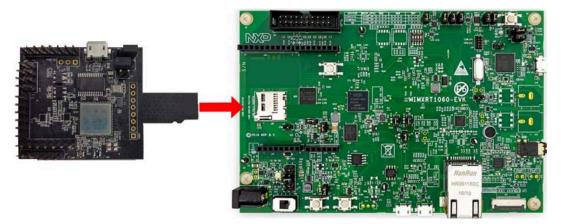
Feature	Description
Wi-Fi chipset	88W8987
Module name	AW-CM358
Module evaluation board	AW-CM358-uSD EVB
Host interface	Wi-Fi: SDIO 3.0 Bluetooth: UART
Antenna	AW-CM358-uSD EVB kit includes Mag Layers MSA-4008-25GC1-A2_V01 PIFA antenna
Form factor	12 x 12 x 1.65 mm stamp module

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

Figure 27 shows the interfaces and jumpers on AW-CM358-uSD adapter board

3.3.1.1 Jumper settings on AzureWave AW-CM358-uSD evaluation board

<u>Table 18</u> shows the jumper settings for the power source and for VIO_SD voltage level selection.


Table 18. Jumper settings on AzureWave AW-CM358-uSD evaluation board

Jumper	Description
J2 (1-2)	Connect J2 on pins 1 and 2 to set the power source to VIO_uSD
J4 (1-2)	Connect J4 on pins 1 and 2 to set VIO_SD voltage level to 1.8 V supply

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.3.1.2 Connecting AW-CM358-uSD adapter board to i.MX RT1060 EVK board

• Plug AW-CM358-uSD adapter board into the Micro SD slot of i.MX RT1060 EVK board

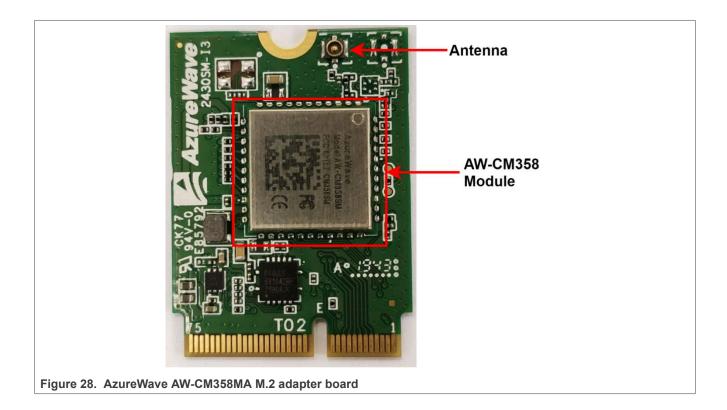
- Connect the antenna to Antenna slot of the AW-CM358-uSD adapter board
- Use a Micro USB to USB cable to connect i.MX RT1060 EVK board to a host computer running Windows, Linux or Mac OS

About Bluetooth host and audio interfaces

For Bluetooth, the communication between the Host stack and the Link Layer (LL) is implemented via the standard HCI UART host interface and PCM interface for voice.

To enable the Bluetooth UART and PCM interfaces, some rework is required. Refer to the SDK document Hardware Rework Guide for EdgeFast BT PAL available at SDK_<version>_EVK-<RT-Platform>\docs\wireless \Bluetooth\Edgefast_bluetooth.

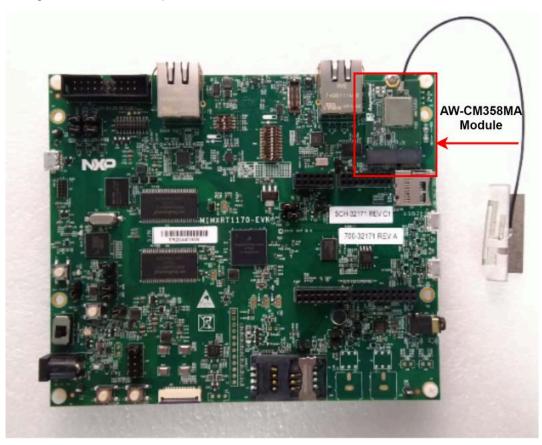
Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS


3.3.2 AzureWave AW-CM358MA M.2 adapter board

The AW-CM358MA M.2 adapter board includes AW-CM358 (88W8987-based Wi-Fi and Bluetooth) module with M.2 adapter which enables the SDIO interface for the module.

Note: Only i.MX RT1170 EVK board require AW-CM358MA M.2 adapter board as it does not has support for the Bluetooth on AW-CM358-uSD adapter board.

Table 19. AzureWave AW-CM358MA module features


Feature	Description
Wi-Fi chipset	88W8987
Module name	AW-CM358
Module evaluation board	AW-CM358MA M.2
Host interface	Wi-Fi: SDIO 3.0 Bluetooth: UART
Antenna	AW-CM358MA M.2 adapter board includes Mag Layers MSA-4008-25GC1-A2_ V01 PIFA antenna
Form factor	22 x 30 x 2.45 mm stamp module

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

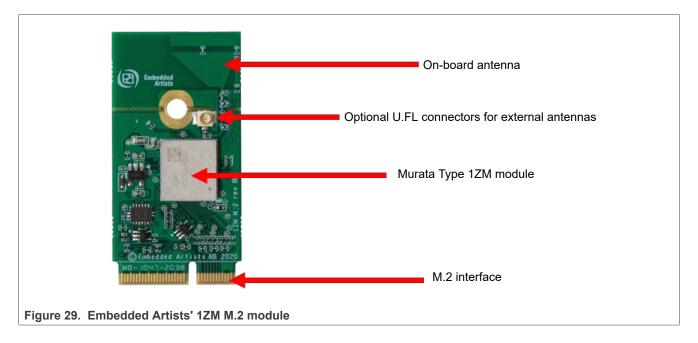
3.3.2.1 Connecting AW-CM358MA adapter board to i.MX RT1170 EVK board

• Plug AW-CM358MA adapter board into the M.2 slot of i.MX RT1170 EVK board screw

- Connect the antenna to the antenna slot of the AW-CM358MA adapter board
- Use a Micro USB to USB cable to connect i.MX RT1170 EVK board to the host computer

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

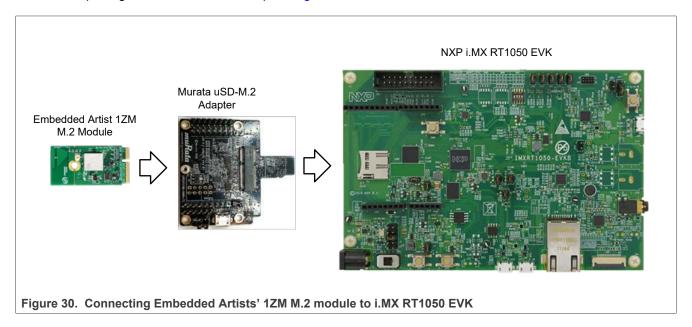
3.3.3 Embedded Artists' (Murata) 1ZM M.2 module


Type 1ZM is a small module with and very high performance based on NXP 88W8987 combo chipset which supports Wi-Fi 802.11a/b/g/n/ac + Bluetooth 5.1 BR/EDR/LE up to 433 Mbps PHY data rate on Wi-Fi and 3 Mbps PHY data rate on Bluetooth. The Wi-Fi section supports SDIO 3.0 interface, and the Bluetooth section supports high-speed 4-wire UART interface and PCM for audio data. The 88W8987 implements highly sophisticated enhanced collaborative coexistence hardware mechanisms and algorithms, which ensure that Wi-Fi and Bluetooth collaboration is optimized for maximum performance. In IEEE 802.11ac mode, the Wi-Fi operation supports rates of MCS0 - MCS9 (up to 256 QAM) in 20 MHz, 40 MHz and 80 MHz channels for data rate up to 433 Mbps. Type 1ZM module is packaged in an impressively small form factor that facilitates integration into size- and power-sensitive applications such as IoT applications, hand-held wireless system, gateway and more.

Embedded Artists collaborated with Murata on designing/validating their Type 1ZM M.2 Module. For more details about the module, refer to Murata's Type 1ZM web page. And for details on the M.2 module, refer to Embedded Artists' 1ZM M.2 product page.

Table 20. Embedded Artists' 1ZM M.2 module features

Feature	Description
Wi-Fi chipset	NXP 88W8987
Module name	Murata Type 1ZM M.2
Module interface	M.2 (Type 2230-S3-E) / microSD (via the Murata uSD-M.2 adapter)
Antenna	PCB trace antenna or U.FL connected patch antenna
Wi-Fi standard	Wi-Fi 5, 802.11a/b/g/n/ac
Frequency	2.4 GHz and 5 GHz
Network	uAP and STA dual mode
Measurement	22x30 mm without trace antenna, 22x44 mm with trace antenna
Supply voltage	3.3 V (3.2 V-3.6 V)
Operating temperature range	-30°C to +85°C


Figure 29 shows the main components on Embedded Artists' 1ZM M.2 module.

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.3.3.1 Connecting Embedded Artists' (Murata) 1ZM M.2 module to i.MX RT1050 EVK using Murata's uSD-M.2 adapter

Embedded Artists' M.2 module can be connected to i.MX RT1050 EVK (or any other EVK with a microSD or full-size SD slot) using Murata's uSD-M.2 adapter. Figure 30 shows the connection scheme.

The Murata uSD-M.2 adapter provides the following interfaces to host MCU/MPU:

- microSD (uSD) interface for Wi-Fi-SDIO (SD is an option with microSD-SD adapter)
- · Arduino headers for Bluetooth UART, Bluetooth PCM and Wi-Fi/Bluetooth control signals
- Optional power, debug, and clocking signals connect through Arduino header or Micro-AB USB connector

For details of the uSD-M.2 adapter, see Section 3.1.2.2 or refer to Murata's uSD-M.2 web page.

For EVKs with M.2 slots like NXP i.MX RT1160 or RT1170, the Murata M.2 EVB can be directly connected.

3.3.3.2 About Bluetooth host and audio interfaces

For Bluetooth, the communication between the Host stack and the Link Layer (LL) is implemented via the standard HCI UART host interface and PCM interface for voice.

To enable the Bluetooth UART and PCM interfaces, some rework is required. Refer to the SDK document Hardware Rework Guide for EdgeFast BT PAL available at SDK_<version>_EVK-<RT-Platform>\docs\wireless \Bluetooth\Edgefast_bluetooth.

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.3.4 u-blox JODY-W2 module

The JODY-W2 series are compact modules based on NXP 88W8987 wireless device for automotive. The JODY-W2 modules comply with AEC-Q100 automotive grade, and enable Wi-Fi, Bluetooth, and Bluetooth Low Energy (LE) communication. These modules are ideal for automotive and industrial applications. For more details, refer to JODY-W2 datasheet.

Table 21. u-blox JODY-W2 module features

Feature	Description
Wi-Fi chipset	NXP 88W8987
Wi-Fi standard	Wi-Fi 5, IEEE 802.11 a/b/g/n/ac (2.4 GHz and 5 GHz) Bluetooth 5.2
Antenna	Antenna pin 1: 2.4 GHz and 5 GHz Wi-Fi Antenna pin 2: 2.4 GHz Bluetooth
Host interfaces	Wi-Fi: SDIO Bluetooth: UART
Operating temperature range	-40°C to +105°C (JODY-W263-01A)

3.3.4.1 u-blox EVK-JODY-W2 evaluation board

The EVK-JODY-W2 evaluation board includes NXP 88W8987-based JODY-W2 module. An external host processor can access the module via SDIO and UART communication. The EVK provides internal antennas and SMA connectors for external antennas. All the module interfaces are externally available via connectors or pin headers.

Figure 31. u-blox EVK-JODY-W2 evaluation board

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.3.4.2 Connecting u-blox EVK-JODY-W2 to i.MX RT1060 EVK board using uSD

To connect u-blox EVK-JODY-W2 to i.MX RT1060 EVK board:

• Use the included SD card adapter to connect EVK-JODY-W2 to i.MX RT1060 EVK board

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

• Use a Micro USB to USB cable to connect i.MX RT1060 EVK board to a host computer running Windows, Linux or Mac OS

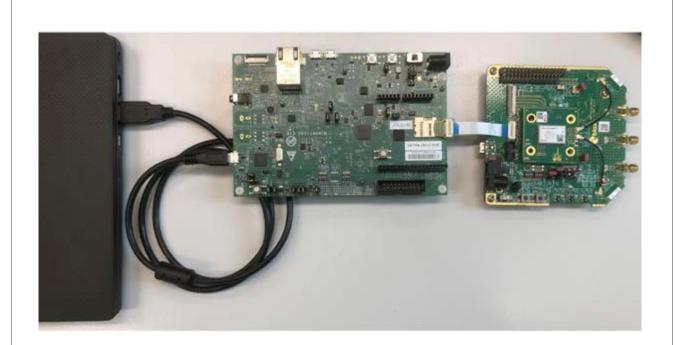


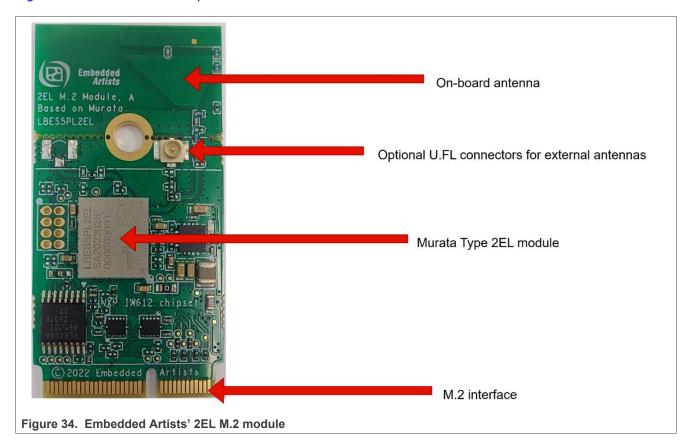
Figure 33. i.MX RT1060 EVK board connection to the host computer for power supply and console access

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.4 IW612-based wireless modules

3.5 Embedded Artists' (Murata) 2EL M.2 module

Type 2EL is a small module with high-performance based on NXP IW612 combo solution. The module supports:


- Wi-Fi 802.11a/b/g/n
- Bluetooth 5.3 BR/EDR/LE
- IEEE 802.15.4 up to 601 Mbps PHY data rate on Wi-Fi
- 3 Mbps PHY data rate on Bluetooth

The Wi-Fi section supports SDIO 3.0 interface. The Bluetooth section supports high-speed 4-wire UART interface (optional support for SDIO) and PCM for audio data.

The IW612 implements sophisticated enhanced collaborative coexistence hardware mechanisms and algorithms, which ensure that Wi-Fi and Bluetooth collaboration is optimized for maximum performance. In IEEE 802.11n mode, the Wi-Fi operation supports rates of MCS0 – MCS11 in 20 MHz and 40 MHz channels for data rate up to 150 Mbps. Type 2EL module is packaged in an impressively small form factor that facilitates integration into size- and power-sensitive applications such as IoT applications, hand-held wireless system, gateway and more.

Embedded Artists collaborated with Murata on designing/validating their type 2EL M.2 module. For more details about the module, refer to Murata's Type 2EL web page. And for details on the M.2 module, refer to Embedded Artists' 2EL M.2 product page.

Figure 34 shows the main components on Embedded Artists' 2EL M.2 module.

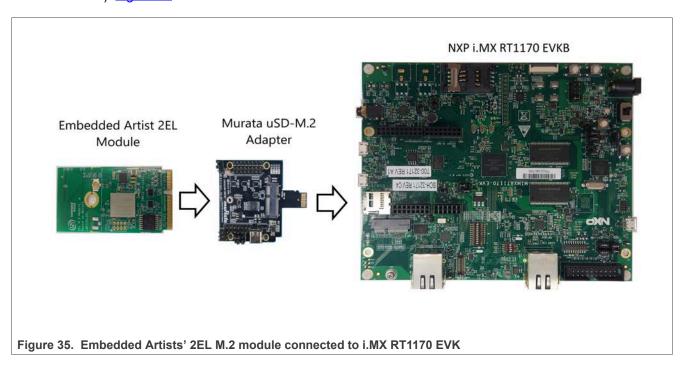

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

Table 22. Embedded Artists' 2EL M.2 module features

Feature	Description
Wi-Fi and Bluetooth chipset	NXP IW612
Module name	Murata Type 2EL M.2
Module interface	M.2 (Type 2230-D5-E) / microSD (via the Murata uSD-M.2 adapter)
Antenna	PCB trace antenna or U.FL connected patch antenna
Wi-Fi standard	Wi-Fi 6, 802.11a/b/g/n/ac/ax SISO
Frequency	2.4 GHz and 5 GHz
Network	uAP and STA dual mode
Measurement	22x30 mm without trace antenna, 22x44 mm with trace antenna
Supply voltage	3.3 V (3.0 V-3.6 V)
Operating temperature range	-40°C to +85°C

3.5.1 Connecting Embedded Artists' (Murata) 2EL M.2 module to i.MX RT1170

Embedded Artists' M.2 module can be connected to i.MX RT1170 EVKB (or any other EVK with a microSD or full-size SD slot). Figure 35 shows the connection scheme.

The Murata uSD-M.2 adapter provides the following interfaces to host MCU/MPU:

- microSD (uSD) interface for Wi-Fi-SDIO (SD is an option with microSD-SD adapter)
- Arduino headers for Bluetooth UART, Bluetooth PCM and Wi-Fi/Bluetooth control signals
- Optional power, debug, and clocking signals connect through Arduino header or Micro-AB USB connector

For details of the uSD-M.2 adapter, see Section 3.1.2.2 or refer to Murata's uSD-M.2 web page.

Note: HFP profile validation should be done by connecting the module directly to the M.2 slot of the i.MX RT board, to connect the UART and PCM lines.

UM11441

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

3.5.2 Connecting Embedded Artists' (Murata) 2EL M.2 module to i.MX RT1060 EVKC

Embedded Artists' M.2 module can be connected to i.MX RT1060 EVKC direct on the M.2 slot. <u>Figure 36</u> shows the connection scheme.

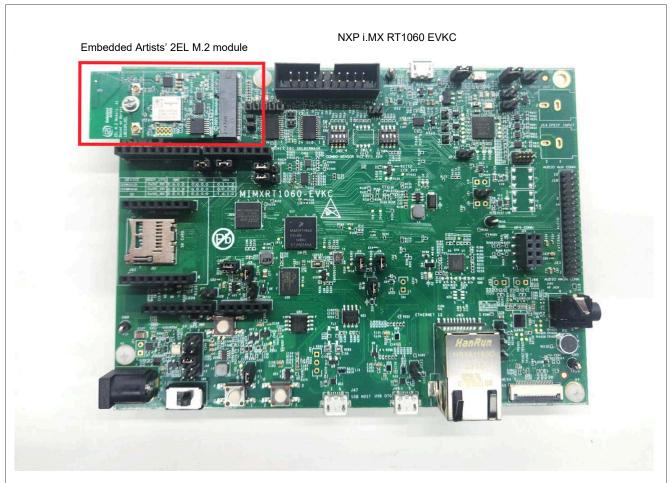


Figure 36. Embedded Artists' 2EL M.2 module connected to i.MX RT1060 EVKC

3.5.3 About Bluetooth host and audio interfaces

For Bluetooth, the communication between the Host stack and the Link Layer (LL) is implemented via the standard HCI UART host interface and PCM interface for voice.

To enable the Bluetooth UART and PCM interfaces, some rework is required. Refer to the SDK document Hardware Rework Guide for EdgeFast BT PAL available at SDK_<version>_EVK-<RT-Platform>\docs\wireless \Bluetooth\Edgefast_bluetooth.

3.5.4 Module limitations for the 802.15.4 SPI interface

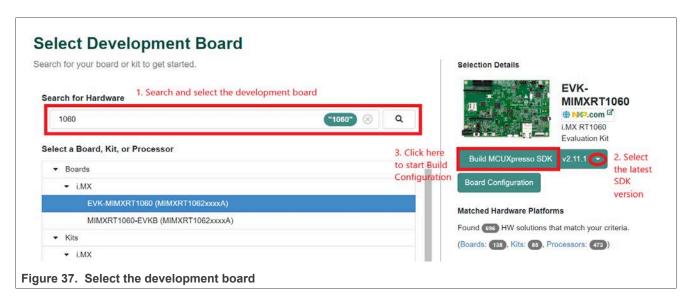
The 802.15.4 subsystem is only supported on NXP IW612-based modules with Murata uSD adapters.

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

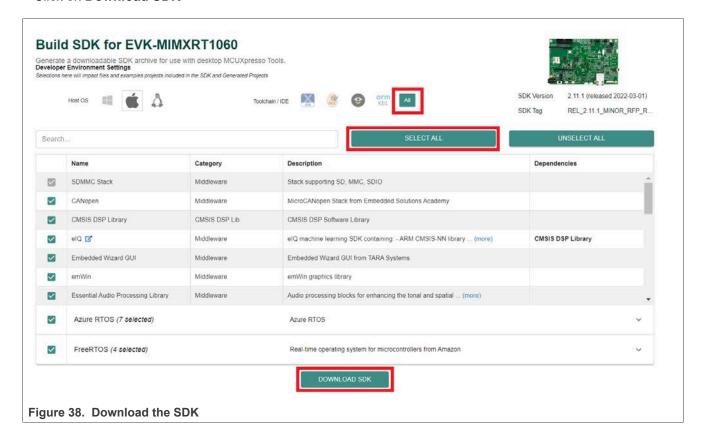
4 Software download

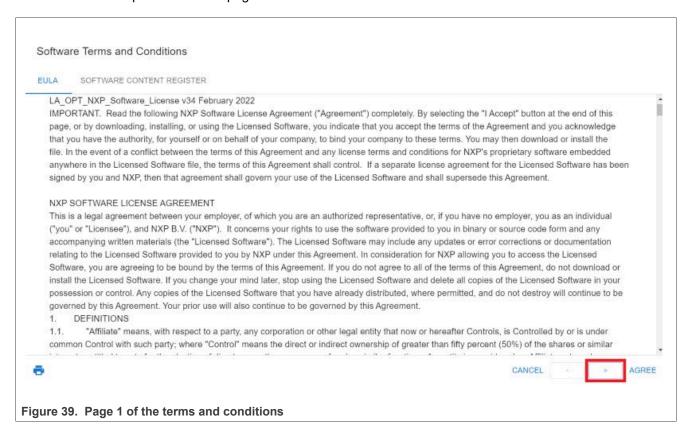
This section provides guidance for MCUXpresso SDK download and for the serial console setup.

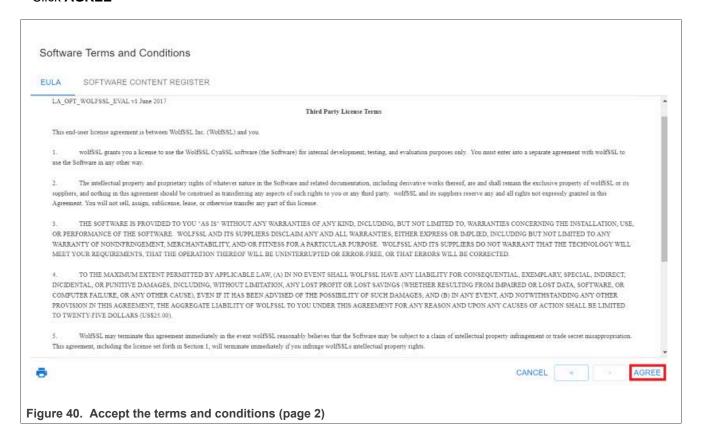
Note: This section covers the download of MCUXpresso SDK and IDE. Refer to <u>UM11442</u> for the other IDEs and toolchains such as uVision Keil, Arm GNU toolchain, and IAR. UM11442 is located at SDK_<version>_ EVK-<RT-Platform>\docs\wireless.


4.1 MCUXpresso SDK download

Go to MCUXpresso SDK Builder page on NXP website


Click on Select Development Board


· Select the board and the latest SDK version


- Click on Build MCUXpresso SDK
- Define the **Developer Environment Settings**
- · Click on Select All
- · Click on Download SDK

- · Read the terms and conditions on page 1
- · Click the icon to open the second page

- · Read the terms and conditions on page 2
- Click AGREE

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

· Select the items to download, for example SDK Archive

Downloads

MCUXpresso SDK

▲ Download SDK Archive including documentation (413 MB)

Download Standalone Example Project

Additional Tools

Download additional tools from NXP or its partners to create new projects and modify example projects using the associated software components included in this SDK.

Embedded Wizard Studio

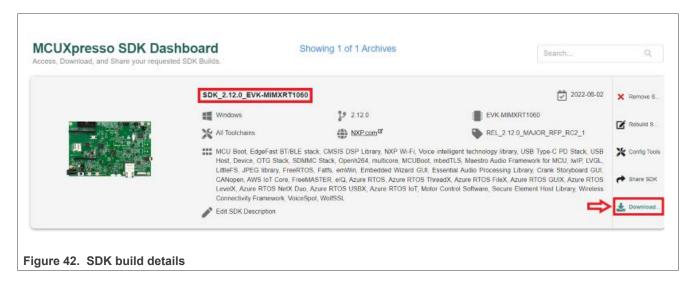
Crank Storyboard

MCUXpresso SDK for Motor Control

Online Documentation

W View SDK API Reference Manual

MCUXPresso Config Tools


Download Config Tools Data

CLOSE

Figure 41. Download page

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

· Read the SDK archive details and click Download

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

4.2 Serial console tool setup

The serial console tool is used to read out the demo application logs on the computer connected to i.MX RT EVK board.

- Download and install the terminal emulator software such as Tera Term (Windows) or Minicom (Linux or Mac OS)
- Use a micro USB to USB cable to connect i.MX RT1060 EVK board to the host computer running Windows, Linux, or Mac OS
- Open a terminal emulator program like Minicom or Tera Term, and configure the settings for serial console access

Command to access Minicom configuration menu:

```
# minicom -s
```

Settings for serial console access:

```
- /dev/ttyACMX serial port
- 115200 baud rate
- 8 data bits
- No parity
- One stop bit
- No flow control
```

Prior to running the Bluetooth demo application, update the serial console configuration so there is no extra spacing.

For Tera Term:

- Go to Setup > Terminal
- · Look for the New line section
- · Set the Receive to Auto

For Minicom:

- Press the Ctrl + A keys and then press the Z key to open the Help menu
- Press the **U** key to add a carriage return

4.3 IDE setup

- Go to MCUXpresso IDE page on NXP website
- Download MCUXpresso IDE
- · Install MCUXpresso IDE on the host computer

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

5 i.MX RT product image setup

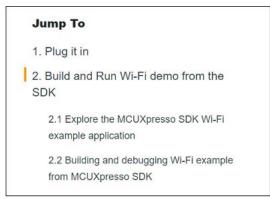
The detailed steps for the image setup are published on the <u>Getting Started with NXP Wi-Fi modules using i.MX RT platforms</u> page on NXP website.

- Open the Getting started page
- Select the section 2.Build and Run Wi-Fi demo from the SDK in the left navigation pane

Jump To

- 1. Plug it in
- Build and Run Wi-Fi demo from the SDK
 - 2.1 Explore the MCUXpresso SDK Wi-Fi example application
 - 2.2 Building and debugging Wi-Fi example from MCUXpresso SDK
- Click on the icon to play the video (the screenshot below has no active link to play the video)

Build and Run Wi-Fi demo from the SDK


 Follow the instructions to install the SDK, import a project, build an image, and run an application in debug mode

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

6 Run a Wi-Fi demo application

Use the Wi-Fi example application available in the SDK to bring up the Wi-Fi interface.

- · Open the Getting started page
 - Select the section 2.Build and Run Wi-Fi demo from the SDK in the left navigation pane

Scroll down the page and click on the **BUILD AND RUN WIFI EXAMPLE** button to access the step-by-step procedure to build and run a Wi-Fi demo application

BUILD AND RUN WI-FI EXAMPLE.

Note: The default application works on Murata 1XK module using the macro <code>WIFI_IW416_BOARD_MURATA_1XK_USD</code>. To enable support for other modules, define the respective macro and disable other macros in evk<RT-Platform>_wifi_cli\source\app_config.h file as per the list provided in Table 23.

Table 23. List of macros

Module	Wireless product	Macro
AzureWave AW-NM191NF	88W8801	WIFI_88W8801_BOARD_AW_NM191_USD WIFI_88W8801_BOARD_AW_NM191MA
AzureWave AW-AM457	IW416	WIFI_IW416_BOARD_AW_AM457_USD WIFI_IW416_BOARD_AW_AM457MA
AzureWave AW-CM358	88W8987	WIFI_88W8987_BOARD_AW_CM358_USD WIFI_88W8987_BOARD_AW_CM358MA
Murata Type 2DS	88W8801	WIFI_88W8801_BOARD_MURATA_2DS_USD ^[1] WIFI_88W8801_BOARD_MURATA_2DS_M2
Murata Type 1XK	IW416	WIFI_IW416_BOARD_MURATA_1XK_USD ^[1] WIFI_IW416_BOARD_MURATA_1XK_M2
Murata Type 1ZM	88W8987	WIFI_88W8987_BOARD_MURATA_1ZM_USD ^[1] WIFI_88W8987_BOARD_MURATA_1ZM_M2
EVK-LILY-W131	88W8801	WIFI_88W8801_BOARD_UBX_LILY_W1_USD
EVK-MAYA-W1	IW416	WIFI_IW416_BOARD_UBX_MAYA_W1_USD
EVK-JODY-W2	88W8987	WIFI_88W8987_BOARD_UBX_JODY_W2_USD
Murata Type 2EL	IW612	WIFI_IW61x_BOARD_MURATA_2EL_USD ^[1]

The module operation was tested during 2.15.0 release process USD = microSD interface
 M2 = M.2 interface

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

7 Run a Bluetooth/Bluetooth LE demo application

This section describes the steps to run *peripheral_ht* demo application. The application demonstrates the Bluetooth LE peripheral role, more specifically, it exposes the health thermometer (HT) GATT Service. Peer devices that subscribe to receive temperature indications get temperature readings every second. The temperature readings show values between 20°C and 25°C.

7.1 Demo start-up logs

- Build and run peripheral ht application.
- Flash the image on i.MX RT EVK board

 Refer to <u>Section 5 "i.MX RT product image setup"</u> for guidance on how to build and run a demo application.

 Follow the steps with *peripheral ht* application instead of *iperf* application.

Note: The default application works on Murata 1XK module using the macro <code>WIFI_IW416_BOARD_MURATA_1XK_USD</code>. To enable support for other modules, define the respective macro and disable other macros in evk<RT-Platform>_peripheral_ht\sources\app_config.h file. See Table 24 for the list of macros.

- · Apply a power reset on i.MX RT EVK board
- Check the console on the connected computer screen to see the application start-up logs

The demo application first loads the Wi-Fi and Bluetooth module firmware through the SDIO interface. Next, the application automatically sets the Bluetooth LE advertisement parameters and enables the advertisements for a sample Bluetooth LE service. The following logs can be observed once the i.MX RT EVK board and NXP-based wireless module are up and running.

Bluetooth initialized Advertising successfully started

At this point, the stack is ready to accept incoming connections from any peer device.

Table 24. List of macros

Module	Wireless product	Масто
AzureWave AW-AM457	IW416	WIFI_IW416_BOARD_AW_AM457_USD
AzureWave AW-AM510	IW416	WIFI_IW416_BOARD_AW_AM510_USD WIFI_IW416_BOARD_AW_AM510MA
AzureWave AW-CM358	88W8987	WIFI_88W8987_BOARD_AW_CM358_USD
Murata Type 1XK	IW416	WIFI_IW416_BOARD_MURATA_1XK_USD ^[1] WIFI_IW416_BOARD_MURATA_1XK_M2 ^[1]
Murata Type 1ZM	88W8987	WIFI_88W8987_BOARD_MURATA_1ZM_USD ^[1] WIFI_88W8987_BOARD_MURATA_1ZM_M2 ^[1]
Murata Type 2EL	IW612	WIFI_IW61x_BOARD_MURATA_2EL_USD ^[1]

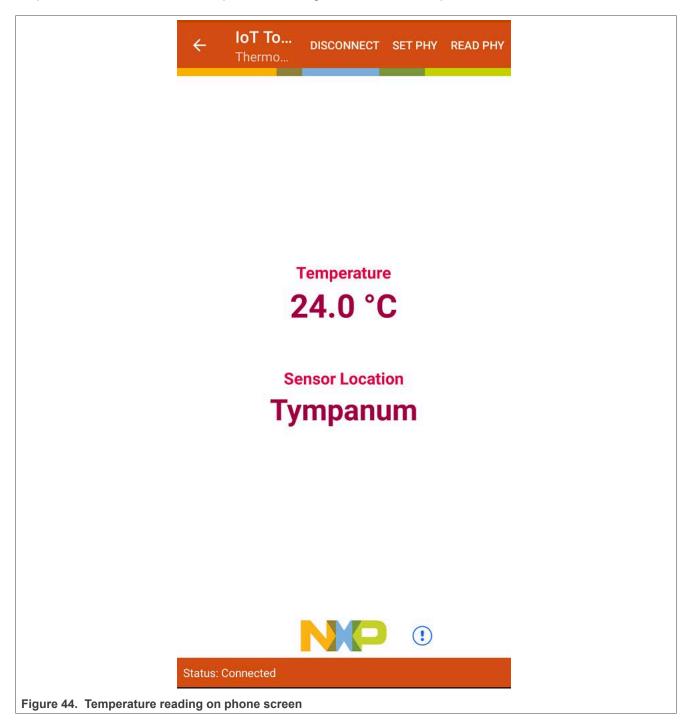
The module operation was tested during 2.15.0 release process.
 USD = microSD interface

M2 = M.2 interface

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

7.2 Establishing a Bluetooth LE connection

This section describes the steps to establish a Bluetooth LE connection between a smartphone and NXP-based wireless module.


- Install and launch the IoT Toolbox application on the smartphone
- Enable the Bluetooth and Location service of the smartphone
- Select Thermometer to scan the available devices using the Health Thermometer service

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

• Look for peripheral_ht in IoT Toolbox application. From the application it is now be possible to connect to the device.

• Upon successful connection, temperature readings show on the smartphone.

Note: The SDK package includes other Bluetooth demo applications. Refer to <u>UM11442</u> for the detailed steps to build and run those applications. UM11442 is located at SDK_<version>>_EVK-<RT-Platform>\docs\wireless.

UM11441

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

8 Run a 802.15.4 demo application

This section describes the steps to run 802.15.4 cli demo application on the RT1170 EVK.

Step 1 - Clone the OT-NXP source code

Use the github link https://github.com/NXP/ot-nxp to clone the OT-NXP source.

Step 2 - Set up the tool-chain

- SDK_2_10_1_MIMXRT1170-EVK_RFP_Linux.zip or later version of the software package includes all the required tool-chain for i.MX RT1170. Refer to <u>Getting Started with MCUXpresso SDK</u> to download the SDK.
- For OpenThread, go to ot-nxp directory

```
$ cd <path_to_ot-nxp>
```

Step 3 - Compile 802.15.4 demo

 Download and unzip SDK_2_10_1_MIMXRT1170-EVK_RFP_Linux.zip or a later version of the software package.

```
$ unzip SDK_2_10_1_MIMXRT1170-EVK_RFP_Linux.zip
```

Use cd command to go to ot-nxp directory and compile the code

```
$ cd SDK_2_10_1_MIMXRT1170-EVK_RFP_Linux/<path_to_ot-nxp>
$ export NXP_RT1170_SDK_ROOT=<patch_to_SDK_2_10_1_MIMXRT1170-
EVK_RFP_Linux.zip_decompress_folder>
$ .7script/build_rt1170
```

The binary image ot-cli-rt1170 for i.MX RT1170 is created in ot-nxp/build_rt1170/iwx12_spi directory.

Step 4 - Load the image onto i.MX RT1170 EVK board

- Set the switch SW1 on RT1170 (Table 4)
- Connect i.MX RT1170 EVK board to the host PC with the USB port.
 To check that the host PC recognizes the USB port, look for the USB port in Linux file manager GUI.
- For 802.15.4 demo, copy the binary image from <path_to_ot-nxp>/build_rt1170/iwx12_spi/ directory into the directory with i.MX RT1170 USB location.
- Check the red LED close to the mini USB port on i.MX RT1170 EVK board. This LED should be blinking while
 the image is being copied.
- When the LED stops blinking, the USB port in the host laptop is unmounted and mounted automatically. (You can monitor this in GUI directory)
- Look at the content of *RT1170 USB* directory. If the directory includes the *fail.txt* file, it means that the image flashing process has failed.

Note: For the demo to work, there must be a micro SD connection between RT1170 EVK and IW612 evaluation board.

UM11441

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

Step 5 - Check the output in the serial console

• When you have completed the steps above, you should see the following output in the serial console:

```
>
```

• Run the help command to get the list of ot-cli commands

```
> help
```

Command output example:

```
bufferinfo
ccathreshold
channel
child
childip
childmax
childsupervision
childtimeout
coap
commissioner
contextreusedelay
counters
dataset
delaytimermin
discover
dns
eidcache
eui64
extaddr
extpanid
factoryreset
```

Example using scan command:

```
> scan
```

Command output:

Note: Refer to the README for details on OpenThread commands.

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

9 Acronyms and abbreviations

Table 25. Acronyms and Abbreviations

Terms	Definition
AP	Access point
DHCP	Dynamic host configuration protocol
DHCPD	DHCP daemon
EVB	Evaluation board
EVK	Evaluation kit
FW	Firmware
HCI	Host controller interface
HTS	Health thermometer service
I/O	Input/output
IDE	Integrated development environment
IP	Internet protocol
LE	Low energy
lwIP	Light weight IP
PCM	Pulse code modulation
SD	Secure digital
SDK	Software development kit
STA	Station/client
SW	Software
UART	Universal asynchronous receiver-transmitter
uSD	Micro SD
uSDHC	ultra-secured digital host controller
WLAN	Wireless local area network

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

10 Contact information

Refer to the following links for more details on the products, and for queries or support.

• Home Page: nxp.com

• Web Support: nxp.com/support

• NXP Community: https://community.nxp.com/

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

11 Note about the source code in the document

The example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2020-2023 NXP Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials must be provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

12 Revision history

Revision history

Rev	Date	Description
UM11441 v.14	9 January 2024	 Section 1.3 "References": added entries for LBEE0ZZ2WE-uSD-M2 module. Section 2 "i.MX RT products": added i.MX RT1060C Table 2 "Combinations of i.MX RT products and wireless modules": added i.MX RT1060 EVKC and i.MX RT685-AUD-EVK. Updated the table footnotes. Table 3 "Wireless modules configured by default on i.MX RT products": added i.MX RT1060 EVKC. Section 3 "NXP-based wireless modules": removed the footnote about IW612 module support. Section 3.5.1 "Connecting Embedded Artists' (Murata) 2EL M.2 module to i.MX RT1170": replaced the figure. Section 3.5.2 "Connecting Embedded Artists' (Murata) 2EL M.2 module to i.MX RT1060 EVKC": added. Section 3.5.4 "Module limitations for the 802.15.4 SPI interface": updated. Section 4.1 "MCUXpresso SDK download": removed the note about IW612 module support. Table 23 "List of macros": updated the table footnote. Table 24 "List of macros": updated the table footnote.
UM11441 v.13	13 October 2023	 Section 2.2 "i.MX RT products and NXP-based wireless modules": updated the note about support for Bluetooth. Updated the versions of SDK that support IW612-based modules in: Section 2.2 "i.MX RT products and NXP-based wireless modules" Section 3 "NXP-based wireless modules" Section 4.1 "MCUXpresso SDK download" Section 6 "Run a Wi-Fi demo application" Section 7.1 "Demo start-up logs" Section 8 "Run a 802.15.4 demo application": added step 1, removed the note about NXP git server, and added a note for step 4.
UM11441 v.12	29 June 2023	 Section 1.3 "References": added references for IW612-based modules Table 2 "Combinations of i.MX RT products and wireless modules": added IW612-based modules and updated for SDK release 2.14.0 Section 3 "NXP-based wireless modules": added IW612 Figure 4 "AzureWave AW-NM191NF-uSD adapter board": added the jumpers Figure 14 "AzureWave AW-AM457-uSD evaluation board": added the jumpers Section 3.2.2.2 "Bluetooth host and audio interfaces": added Figure 20 "AzureWave AW-AM510-uSD evaluation board": added the jumpers Figure 27 "AzureWave AW-CM358-uSD adapter board": added the jumpers Section 3.3.2 "About Bluetooth host and audio interfaces": added Section 3.4 "IW612-based wireless modules": added Section 3.5.1 "Connecting Embedded Artists' (Murata) 2EL M.2 module to i.MX RT1170": updated the figure and added a note Section 4.1 "MCUXpresso SDK download": added the note about IW612 module support Table 23 "List of macros": added IW612 module and updated for SDK release 2.14.0 Table 24 "List of macros": added IW612 module and updated for SDK release 2.14.0 Section 8 "Run a 802.15.4 demo application": added Section 11 "Note about the source code in the document": added

UM11441

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

Rev	Date	Description
UM11441 v.11	21 March 2023	 Added i.MX RT1170EVKB to the list of keywords on the front page Section 2 "i.MX RT products": added i.MX RT1170B Table 2 "Combinations of i.MX RT products and wireless modules": . Removed the link to the footnote for some modules in the third column . Added i.MX RT1170EVKB . Updated the release version in the footnote Table 3 "Wireless modules configured by default on i.MX RT products": added i.MX RT1170 EVKB Table 4 "Boot mode selection": added i.MX RT1060B and i.MX RT1170B Table 23 "List of macros": updated the release version in the table footnote Table 24 "List of macros": updated the release version in the table footnote
UM11441 v.10	5 January 2023	 Table 2 "Combinations of i.MX RT products and wireless modules": updated Table 3 "Wireless modules configured by default on i.MX RT products": updated Section 6 "Run a Wi-Fi demo application": Updated the note Updated the release version in the table footnote Section 7.1 "Demo start-up logs": Updated the note Updated the release version in the table footnote

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

Rev	Date	Description
UM11441 v.9	15 September 2022	 List of keywords on the cover page: added i.MX RT1040 and i.MX RT1060 EVKB, and removed the reference to 88W8977-based wireless modules Section 1.3 "References": removed 88W8977 and PAN9026 items Section 2 "i.MX RT products": added i.MX RT1040 and i.MX RT1060B Table 2 "Combinations of i.MX RT products and wireless modules":
		Updated the release version in the table footnote Removed 88W8977-based modules in SDIO interface for Wi-Fi section Removed the existing reference to i.MX RT1060 EVKB entry in SDIO interface for Wi-Fi section
		. Added rows for i.MX RT1040 EVK and I.MX RT1060 EVK B in <i>SDIO interface</i> for <i>Wi-Fi</i> section
		. Updated i.MX RT1060 EVKB entries in <i>UART interface for Bluetooth</i> section . Added i.MX RT1040 EVK in <i>UART interface for Bluetooth</i> section
		Added i.MX RT1050 EVK in <i>UART interface for Bluetooth</i> section Table 3 "Wireless modules configured by default on i.MX RT products": Added rows for i.MX RT1060 EVKB and i.MX RT1040
		. Removed the existing reference to i.MX RT1060 EVKB • Table 4 "Boot mode selection": added a row for i.MX RT1040
		<u>Section 2.4 "i.MX RT MCUXpresso SDK"</u> : removed the reference to 88W8977 firmware
		Section 3 "NXP-based wireless modules": Removed the reference to 88W8977 in the introduction Removed the section 88W8977-based wireless module
		<u>Table 23 "List of macros"</u> : Removed the two rows for 88W8977 wireless product
		 . Updated the release version in the table footnote • <u>Table 24 "List of macros"</u>: updated the release version in the table footnote

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

Rev	Date	Description
UM11441 v.8	6 July 2022	Section 1.3 "References": added the references to u-blox modules (Maya, Lily, and Jody) Section 2.2 "i.MX RT products and NXP-based wireless modules": updated Table 2 with the references to u-blox modules Section 3.1.1.1 "Jumper settings on AzureWave AW-NM191NF-uSD adapter board": renamed VIO as VIO_SD for the voltage level selection
		Section 3.1.2.1 "Connecting Embedded Artists' (Murata) 2DS M.2 module to i.MX RT1050 EVK using Murata's uSD-M.2 adapter": highlighted the last paragraph as a note Section 3.1.3 "u-blox LILY-W1 evaluation board": added the section Section 3.2.1.1 "AzureWave AW-AM457-uSD evaluation board": replaced the
		 paragraph introducing the figure Section 3.2.1.2 "Jumper settings on AzureWave AW-AM457-uSD evaluation board": renamed VIO as VIO_SD for the voltage level selection Section 3.2.1.3 "Connecting AzureWave AW-AM457-uSD to i.MX RT1060 EVK board": added the note and figure at the end of the section
		Section 3.2.2.1 "Connecting Embedded Artists' (Murata) 1XK M.2 module to i.MX RT1050 EVK using Murata's uSD-M.2 adapter": highlighted the last paragraph as a note Section 3.2.3.2 "Jumper settings on AzureWave AW-AM510-uSD evaluation board": renamed VIO as VIO_SD for the voltage level selection
		 Section 3.2.4 "u-blox MAYA-W1 module": added the section Section 3.3.4 "u-blox JODY-W2 module": added the section Table 23 "List of macros": added the macros for u-blox EVKs Section 4.1 "MCUXpresso SDK download": updated the screen captures (Figure 39, Figure 40, Figure 41, Figure 42)
UM11441 v.7	14 March 2022	 Section 7.1 "Demo start-up logs": updated the references to macros Section 1.1 "Purpose and scope": updated Figure 3 "i.MX RT MCUXpresso SDK - Wi-Fi and Bluetooth layer interfaces":
		 replaced <i>uHDHC</i> with <i>SDIO</i> Section 2.4 "i.MX RT MCUXpresso SDK": updated the first sentence Section 3 "NXP-based wireless modules": updated the first sentence Section 3.1.1 "AzureWave AW-NM191NF-uSD adapter board": removed the section <i>About antenna diversity feature</i>
		<u>Section 3.2.1.4 "About Bluetooth host and audio interfaces"</u> : updated the path to <i>Hardware Rework Guide for EdgeFast BT PAL</i>
		 <u>Section 3.2.3.4 "Bluetooth host and audio interfaces"</u>: updated the path to Hardware Rework Guide for EdgeFast BT PAL <u>Figure 18 "Embedded Artists' 1XK M.2 module"</u>: updated the module reference
		Section 3.3.1.2 "Connecting AW-CM358-uSD adapter board to i.MX RT1060 EVK board": updated the path to Hardware Rework Guide for EdgeFast BT PAL
		 Figure 29 "Embedded Artists' 1ZM M.2 module": updated the module reference Section 4 "Software download": updated the first paragraph and the path to UM11442
		 <u>Section 4.1 "MCUXpresso SDK download"</u>: replaced some screen captures <u>Section 6 "Run a Wi-Fi demo application"</u>: updated the path to <i>app_config.h</i> file <u>Table 2, Table 23</u>, and <u>Table 24</u>: updated the release process version in the table footnote
		<u>Section 7.2 "Establishing a Bluetooth LE connection"</u> : updated the path to UM11442

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

Rev	Date	Description
UM11441 v.6	10 January 2022	 Section 1.1 "Purpose and scope": updated Section 1.2 "Considerations": updated Section 2 "i.MX RT products": extended the list of i.MX RT products that support NXP-based wireless modules Figure 1 "Interfaces between i.MX RT products and NXP-based wireless modules": updated Figure 2 "i.MX RT evaluation board diagram": updated Table 2 "Combinations of i.MX RT products and wireless modules": updated the content Table 3 "Wireless modules configured by default on i.MX RT products": added Table 4 "Boot mode selection": updated the content Figure 3 "i.MX RT MCUXpresso SDK - Wi-Fi and Bluetooth layer interfaces": updated Section 3.2.3 "AzureWave AW-AM510 module": added the section Section 6 "Run a Wi-Fi demo application": updated the module reference in the note Table 23 "List of macros": updated the table content Section 7.1 "Demo start-up logs": updated the module reference in the note
UM11441 v.5	9 September 2021	 Table 24 "List of macros": updated the table content Extended the scope to IW416-based module (Embedded Artists), 88W8801-based module (Embedded Artists) and 88W8987-based module (Embedded Artists) Section 1.3 "References": updated Table 2 "Combinations of i.MX RT products and wireless modules": updated Section 3.1.2 "Embedded Artists' (Murata) 2DS M.2 module": added Section 3.1.2.2 "Murata's uSD-M.2 adapter": added Section 3.2.1 "AzureWave AW-AM457 module" Section 3.2.2 "Embedded Artists' (Murata) 1XK M.2 module ": added Section 3.3.3 "Embedded Artists' (Murata) 1ZM M.2 module ": added Section 6 "Run a Wi-Fi demo application": updated Section 7.1 "Demo start-up logs": updated
UM11441 v.4	12 June 2021	Extended the scope to 88W8987, i.MX RT500, i.MX RT1070 and i.MX RT1160 Section 1.3 "References": updated Table 2 "Combinations of i.MX RT products and wireless modules": added Table 4 "Boot mode selection": updated Section 3.3 "88W8987-based wireless modules": added Section 4 "Software download": updated to version 2.10.0 Section 6 "Run a Wi-Fi demo application": updated Section 7.1 "Demo start-up logs": updated
UM11441 v.3	24 March 2021	Section 2 "i.MX RT products": updated the list of i.MX RT products that support NXP-based wireless modules Section 3 "NXP-based wireless modules": updated the section headings Section 4.1 "MCUXpresso SDK download": updated Section 7 "Run a Bluetooth/Bluetooth LE demo application": updated

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

Rev	Date	Description
UM11441 v.2	13 January 2021	 Extended the scope to IW416-based modules Section 2 "i.MX RT products": reorganized the content Section 3.2 "IW416-based wireless modules": added Section 5 "i.MX RT product image setup": added Section 6 "Run a Wi-Fi demo application": added Section 7 "Run a Bluetooth/Bluetooth LE demo application": added
UM11441 v.1	17 July 2020	Initial version

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by NXP Semiconductors is under license.

i.MX — is a trademark of NXP B.V.

UM11441

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

Tables

Iab. 1.	References	3	Tab. 13.	Embedded Artists' 1XK M.2 module	
Tab. 2.	Combinations of i.MX RT products and			features	32
	wireless modules	7	Tab. 14.	AzureWave AW-AM510 module features	35
Tab. 3.	Wireless modules configured by default on		Tab. 15.	Jumper settings on AzureWave AW-	
	i.MX RT products	11		AM510-uSD evaluation board	36
Tab. 4.	Boot mode selection	13	Tab. 16.	u-blox MAYA-W1 module features	
Tab. 5.	AzureWave AW-NM191NF module		Tab. 17.	AzureWave AW-CM358 module features	
	features	15	Tab. 18.	Jumper settings on AzureWave AW-	
Tab. 6.	Jumper settings on AW-NM191NF-uSD			CM358-uSD evaluation board	45
	adapter board	16	Tab. 19.	AzureWave AW-CM358MA module	
Tab. 7.	Embedded Artists' Type 2DS module	•		features	47
1 u b. 7.	features	18	Tab. 20.	Embedded Artists' 1ZM M.2 module	17
Tab. 8.	Description of Murata uSD M.2 adapter	10	100. 20.	features	50
iab. U.	components	21	Tab. 21.	u-blox JODY-W2 module features	
Tab. 9.	u-blox LILY-W1 module features		Tab. 21.	Embedded Artists' 2EL M.2 module	
Tab. 10.	Jumper settings on LILY-W1 evaluation	25	140. 22.	features	57
1ab. 10.	board	25	Tab. 23.	List of macros	
Tab 11					
Tab. 11.	AzureWave AW-AM457 module features	21	Tab. 24.	List of macros	
Tab. 12.	Jumper settings on AzureWave AW-	00	Tab. 25.	Acronyms and Abbreviations	/4
	AM457-uSD evaluation board	28			
Figur	es				
Fig. 1.	Interfaces between i.MX RT products and		Fig. 17.	External power supply for i.MX RT1060	
. 19. 1.	NXP-based wireless modules	6	1 19. 17.	EVK board and connection to the host	
Fig. 2.	i.MX RT evaluation board diagram			computer for console access	30
Fig. 3.	i.MX RT MCUXpresso SDK - Wi-Fi and	12	Fig. 18.	Embedded Artists' 1XK M.2 module	
rig. J.		11			
Cia 1	Bluetooth layer interfaces	14	Fig. 19.	Connecting Embedded Artists' 1XK M.2	2.4
Fig. 4.	AzureWave AW-NM191NF-uSD adapter	40	F: 20	module to i.MX RT1050 EVK	34
F: F	board	16	Fig. 20.	AzureWave AW-AM510-uSD evaluation	0.0
Fig. 5.	AzureWave AW-NM191NF-uSD adapter	47	F: 04	board	30
F: 0	board with i.MX RT1060	17	Fig. 21.	Connecting AzureWave AW-AM510-uSD to	^-
Fig. 6.	i.MX RT1060 EVK board connection to		F: 00	i.MX RT1060 EVK board	37
	the host computer for power supply and	4-	Fig. 22.	i.MX RT1060 EVK board connection to	
	console access			host computer for power supply and	
Fig. 7.	Embedded Artists' Type 2DS module	19		console access	
Fig. 8.	Embedded Artists' 2DS M.2 module		Fig. 23.	u-blox EVK-MAYA-W1 evaluation board	40
	connected to i.MX RT1050 EVK	20	Fig. 24.	u-blox EVK-MAYA-W1 jumper settings for	
Fig. 9.	Murata uSD M.2 adapter top and bottom			uSD connection	41
	views		Fig. 25.	: u-blox EVK-MAYA-W1 connected to i.MX	
Fig. 10.	u-blox LILY-W1 evaluation board	24		RT1060 EVK using uSD interface	42
Fig. 11.	Jumper settings for SDIO on LILY-W1		Fig. 26.	i.MX RT1060 EVK board connection to	
	evaluation board	25		the host computer for power supply and	
Fig. 12.	u-blox EVK-LILY-W1 with i.MX RT1060			console access	43
	EVK board	26	Fig. 27.	AzureWave AW-CM358-uSD adapter	
Fig. 13.	i.MX RT1060 EVK board connection to			board	45
•	the host computer for power supply and		Fig. 28.	AzureWave AW-CM358MA M.2 adapter	
	console access	26	· ·	board	47
Fig. 14.	AzureWave AW-AM457-uSD evaluation		Fig. 29.	Embedded Artists' 1ZM M.2 module	
J	board	28	Fig. 30.	Connecting Embedded Artists' 1ZM M.2	
Fig. 15.	AzureWave AW-AM457-uSD connection to	-	J	module to i.MX RT1050 EVK	52
J J.	i.MX RT1060 EVK board	29	Fig. 31.	u-blox EVK-JODY-W2 evaluation board	
Fig. 16.	i.MX RT1060 EVK connection to the host	•	Fig. 32.	u-blox EVK-JODY-W2 connected to i.MX	
	computer for power supply and console		g. 0	RT1060 EVK using uSD interface	54
	access	29			0 -1

UM11441

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

Fig. 33.	i.MX RT1060 EVK board connection to		Fig. 37.	Select the development board	59
	the host computer for power supply and		Fig. 38.	Download the SDK	60
	console access	55	Fig. 39.	Page 1 of the terms and conditions	61
Fig. 34.	Embedded Artists' 2EL M.2 module	56	Fig. 40.	Accept the terms and conditions (page 2) .	62
Fig. 35.	Embedded Artists' 2EL M.2 module		Fig. 41.	Download page	63
	connected to i.MX RT1170 EVK	57	Fig. 42.	SDK build details	64
Fig. 36.	Embedded Artists' 2EL M.2 module		Fig. 43.	IoT Toolbox application	70
-	connected to i.MX RT1060 EVKC	58	Fig. 44.	Temperature reading on phone screen	71

Getting Started with NXP-based Wireless Modules on i.MX RT Platforms Running RTOS

Contents

1	About this document	2	3.2.4.2	Jumper settings on u-blox EVK-MAYA-W1	
1.1	Purpose and scope	2		evaluation board for uSD	41
1.2	Considerations	2	3.2.4.3	Connecting u-blox EVK-MAYA-W1 to i.MX	
1.3	References	3		RT1060 EVK board using uSD	42
2	i.MX RT products	5	3.3	88W8987-based wireless modules	44
2.1	i.MX RT processor family	5	3.3.1	AzureWave AW-CM358-uSD adapter board	44
2.2	i.MX RT products and NXP-based wireless		3.3.1.1	Jumper settings on AzureWave AW-	
	modules	6		CM358-uSD evaluation board	45
2.3	i.MX RT EVK boards		3.3.1.2	Connecting AW-CM358-uSD adapter board	
2.4	i.MX RT MCUXpresso SDK			to i.MX RT1060 EVK board	46
3	NXP-based wireless modules		3.3.2	AzureWave AW-CM358MA M.2 adapter	
3.1	88W8801-based wireless modules			board	47
3.1.1	AzureWave AW-NM191NF-uSD adapter		3.3.2.1	Connecting AW-CM358MA adapter board	
	board	15		to i.MX RT1170 EVK board	48
3.1.1.1	Jumper settings on AzureWave AW-		3.3.3	Embedded Artists' (Murata) 1ZM M.2	
•	NM191NF-uSD adapter board	16	0.0.0	module	50
3.1.1.2	Connecting AW-NM191NF-uSD adapter	•	3.3.3.1	Connecting Embedded Artists' (Murata)	00
0.1.1.2	board to i.MX RT1060 EVK board	17	0.0.0.1	1ZM M.2 module to i.MX RT1050 EVK	
3.1.2	Embedded Artists' (Murata) 2DS M.2	17		using Murata's uSD-M.2 adapter	52
0.1.2	module	18	3.3.3.2	About Bluetooth host and audio interfaces	
3.1.2.1	Connecting Embedded Artists' (Murata)	10	3.3.4	u-blox JODY-W2 module	
0.1.2.1	2DS M.2 module to i.MX RT1050 EVK		3.3.4.1	u-blox EVK-JODY-W2 evaluation board	
	using Murata's uSD-M.2 adapter	20	3.3.4.2	Connecting u-blox EVK-JODY-W2 to i.MX	50
3.1.2.2	Murata's uSD-M.2 adapter		3.3.4.2	RT1060 EVK board using uSD	5.1
3.1.2.2	u-blox LILY-W1 evaluation board		3.4	IW612-based wireless modules	
3.1.3.1	Jumper settings for SDIO on LILY-W1	25	3.5	Embedded Artists' (Murata) 2EL M.2	50
3.1.3.1	evaluation board	25	3.3	module	56
2122	Connecting u-blox EVK-LILY-W1 to i.MX	23	3.5.1		50
3.1.3.2	RT1060 EVK board	26	3.3.1	Connecting Embedded Artists' (Murata) 2EL M.2 module to i.MX RT1170	57
2.2			2 5 2		57
3.2	IW416-based wireless modules		3.5.2	Connecting Embedded Artists' (Murata)	E 0
3.2.1	AzureWave AW AM457 module	21	2.5.2	2EL M.2 module to i.MX RT1060 EVKC	
3.2.1.1	AzureWave AW-AM457-uSD evaluation	07	3.5.3	About Bluetooth host and audio interfaces	58
0040	board	21	3.5.4	Module limitations for the 802.15.4 SPI	
3.2.1.2	Jumper settings on AzureWave AW-	00		interface	
0040	AM457-uSD evaluation board	28	4	Software download	
3.2.1.3	Connecting AzureWave AW-AM457-uSD to	00	4.1	MCUXpresso SDK download	
0044	i.MX RT1060 EVK board		4.2	Serial console tool setup	
3.2.1.4	About Bluetooth host and audio interfaces	31	4.3	IDE setup	
3.2.2	Embedded Artists' (Murata) 1XK M.2		5	i.MX RT product image setup	
0001	module	32	6	Run a Wi-Fi demo application	67
3.2.2.1	Connecting Embedded Artists' (Murata)		7	Run a Bluetooth/Bluetooth LE demo	
	1XK M.2 module to i.MX RT1050 EVK			application	
	using Murata's uSD-M.2 adapter		7.1	Demo start-up logs	
3.2.2.2	Bluetooth host and audio interfaces		7.2	Establishing a Bluetooth LE connection	
3.2.3	AzureWave AW-AM510 module		8	Run a 802.15.4 demo application	
3.2.3.1	AzureWave AW-510-uSD evaluation board	35	9	Acronyms and abbreviations	
3.2.3.2	Jumper settings on AzureWave AW-		10	Contact information	75
	AM510-uSD evaluation board	36	11	Note about the source code in the	
3.2.3.3	Connecting AzureWave AW-AM510-uSD to			document	
	i.MX RT1060 EVK board		12	Revision history	
3.2.3.4	Bluetooth host and audio interfaces			Legal information	83
3.2.4	u-blox MAYA-W1 module				
3241	u-blox FVK-MAYA-W1 evaluation hoard	40			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.