MCUXpresso_MIMXRT1021xxxxx/boards/evkmimxrt1020/freertos_examples/freertos_sem
Yilin Sun 763d32be90
Updated SDK to v2.15.000
Signed-off-by: Yilin Sun <imi415@imi.moe>
2024-03-15 22:23:36 +08:00
..
armgcc Updated SDK to v2.15.000 2024-03-15 22:23:36 +08:00
FreeRTOSConfig.h Updated to SDK v2.14.0 2023-08-31 23:30:31 +08:00
board.c Updated SDK to v2.15.000 2024-03-15 22:23:36 +08:00
board.h Updated SDK to v2.15.000 2024-03-15 22:23:36 +08:00
clock_config.c Updated to SDK v2.14.0 2023-08-31 23:30:31 +08:00
clock_config.h Updated to SDK v2.14.0 2023-08-31 23:30:31 +08:00
dcd.c Updated to SDK v2.14.0 2023-08-31 23:30:31 +08:00
dcd.h Updated to SDK v2.14.0 2023-08-31 23:30:31 +08:00
evkmimxrt1020_sdram_init.jlinkscript Updated to SDK v2.14.0 2023-08-31 23:30:31 +08:00
freertos_sem.c Updated to SDK v2.14.0 2023-08-31 23:30:31 +08:00
freertos_sem_v3_14.xml Updated SDK to v2.15.000 2024-03-15 22:23:36 +08:00
pin_mux.c Updated to SDK v2.14.0 2023-08-31 23:30:31 +08:00
pin_mux.h Updated to SDK v2.14.0 2023-08-31 23:30:31 +08:00
readme.md Updated SDK to v2.15.000 2024-03-15 22:23:36 +08:00

readme.md

Overview

This document explains the freertos_sem example, what to expect when running it and a brief introduction to the API. The freertos_sem example code shows how semaphores works. Two different tasks are synchronized in bilateral rendezvous model.

The example uses four tasks. One producer_task and three consumer_tasks. The producer_task starts by creating of two semaphores (xSemaphore_producer and xSemaphore_consumer). These semaphores control access to virtual item. The synchronization is based on bilateral rendezvous pattern. Both of consumer and producer must be prepared to enable transaction.

SDK version

  • Version: 2.15.000

Toolchain supported

  • IAR embedded Workbench 9.40.1
  • GCC ARM Embedded 12.2
  • Keil MDK 5.38.1
  • MCUXpresso 11.8.0

Hardware requirements

  • Mini/micro USB cable
  • EVK-MIMXRT1020 board
  • Personal Computer

Board settings

No special settings are required.

Prepare the Demo

  1. Connect a USB cable between the host PC and the OpenSDA USB port on the target board.
  2. Open a serial terminal with the following settings:
    • 115200 baud rate
    • 8 data bits
    • No parity
    • One stop bit
    • No flow control
  3. Download the program to the target board.
  4. Either press the reset button on your board or launch the debugger in your IDE to begin running the demo.

Note: To debug in qspiflash, following steps are needed:

  1. Select the flash target and compile.
  2. Set the SW8: 1 off 2 off 3 on 4 off, then power on the board and connect USB cable to J23.
  3. Start debugging in IDE.
    • Keil: Click "Download (F8)" to program the image to qspiflash first then clicking "Start/Stop Debug Session (Ctrl+F5)" to start debugging. Running the demo ================ After the board is flashed the Tera Term will show debug console output.

Example output: Producer_task created. Consumer_task 0 created. Consumer_task 1 created. Consumer_task 2 created. Consumer number: 0 Consumer 0 accepted item. Consumer number: 1 Consumer number: 2 Producer released item. Consumer 0 accepted item. Producer released item. Consumer 1 accepted item. Producer released item. Consumer 2 accepted item.