MCUXpresso_MIMXRT1021xxxxx/devices/MIMXRT1021/drivers/fsl_adc.h

428 lines
17 KiB
C

/*
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright 2016-2020 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef FSL_ADC_H_
#define FSL_ADC_H_
#include "fsl_common.h"
/*!
* @addtogroup adc_12b1msps_sar
* @{
*/
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @brief ADC driver version */
#define FSL_ADC_DRIVER_VERSION (MAKE_VERSION(2, 0, 4)) /*!< Version 2.0.4. */
/*!
* @brief Converter's status flags.
*/
typedef enum _adc_status_flags
{
kADC_ConversionActiveFlag = ADC_GS_ADACT_MASK, /*!< Conversion is active,not support w1c. */
kADC_CalibrationFailedFlag = ADC_GS_CALF_MASK, /*!< Calibration is failed,support w1c. */
kADC_AsynchronousWakeupInterruptFlag =
ADC_GS_AWKST_MASK, /*!< Asynchronous wakeup interrupt occurred, support w1c. */
} adc_status_flags_t;
/*!
* @brief Reference voltage source.
*/
typedef enum _adc_reference_voltage_source
{
kADC_ReferenceVoltageSourceAlt0 = 0U, /*!< For external pins pair of VrefH and VrefL. */
} adc_reference_voltage_source_t;
/*!
* @brief Sample time duration.
*/
typedef enum _adc_sample_period_mode
{
/* This group of enumeration is for internal use which is related to register setting. */
kADC_SamplePeriod2or12Clocks = 0U, /*!< Long sample 12 clocks or short sample 2 clocks. */
kADC_SamplePeriod4or16Clocks = 1U, /*!< Long sample 16 clocks or short sample 4 clocks. */
kADC_SamplePeriod6or20Clocks = 2U, /*!< Long sample 20 clocks or short sample 6 clocks. */
kADC_SamplePeriod8or24Clocks = 3U, /*!< Long sample 24 clocks or short sample 8 clocks. */
/* This group of enumeration is for a public user. */
/* For long sample mode. */
kADC_SamplePeriodLong12Clcoks = kADC_SamplePeriod2or12Clocks, /*!< Long sample 12 clocks. */
kADC_SamplePeriodLong16Clcoks = kADC_SamplePeriod4or16Clocks, /*!< Long sample 16 clocks. */
kADC_SamplePeriodLong20Clcoks = kADC_SamplePeriod6or20Clocks, /*!< Long sample 20 clocks. */
kADC_SamplePeriodLong24Clcoks = kADC_SamplePeriod8or24Clocks, /*!< Long sample 24 clocks. */
/* For short sample mode. */
kADC_SamplePeriodShort2Clocks = kADC_SamplePeriod2or12Clocks, /*!< Short sample 2 clocks. */
kADC_SamplePeriodShort4Clocks = kADC_SamplePeriod4or16Clocks, /*!< Short sample 4 clocks. */
kADC_SamplePeriodShort6Clocks = kADC_SamplePeriod6or20Clocks, /*!< Short sample 6 clocks. */
kADC_SamplePeriodShort8Clocks = kADC_SamplePeriod8or24Clocks, /*!< Short sample 8 clocks. */
} adc_sample_period_mode_t;
/*!
* @brief Clock source.
*/
typedef enum _adc_clock_source
{
kADC_ClockSourceIPG = 0U, /*!< Select IPG clock to generate ADCK. */
kADC_ClockSourceIPGDiv2 = 1U, /*!< Select IPG clock divided by 2 to generate ADCK. */
#if !(defined(FSL_FEATURE_ADC_SUPPORT_ALTCLK_REMOVE) && FSL_FEATURE_ADC_SUPPORT_ALTCLK_REMOVE)
kADC_ClockSourceALT = 2U, /*!< Select alternate clock to generate ADCK. */
#endif
kADC_ClockSourceAD = 3U, /*!< Select Asynchronous clock to generate ADCK. */
} adc_clock_source_t;
/*!
* @brief Clock divider for the converter.
*/
typedef enum _adc_clock_drvier
{
kADC_ClockDriver1 = 0U, /*!< For divider 1 from the input clock to the module. */
kADC_ClockDriver2 = 1U, /*!< For divider 2 from the input clock to the module. */
kADC_ClockDriver4 = 2U, /*!< For divider 4 from the input clock to the module. */
kADC_ClockDriver8 = 3U, /*!< For divider 8 from the input clock to the module. */
} adc_clock_driver_t;
/*!
* @brief Converter's resolution.
*/
typedef enum _adc_resolution
{
kADC_Resolution8Bit = 0U, /*!< Single End 8-bit resolution. */
kADC_Resolution10Bit = 1U, /*!< Single End 10-bit resolution. */
kADC_Resolution12Bit = 2U, /*!< Single End 12-bit resolution. */
} adc_resolution_t;
/*!
* @brief Converter hardware compare mode.
*/
typedef enum _adc_hardware_compare_mode
{
kADC_HardwareCompareMode0 = 0U, /*!< Compare true if the result is less than the value1. */
kADC_HardwareCompareMode1 = 1U, /*!< Compare true if the result is greater than or equal to value1. */
kADC_HardwareCompareMode2 = 2U, /*!< Value1 <= Value2, compare true if the result is less than value1 Or
the result is Greater than value2.
Value1 > Value2, compare true if the result is less than value1 And the
result is greater than value2*/
kADC_HardwareCompareMode3 = 3U, /*!< Value1 <= Value2, compare true if the result is greater than or equal
to value1 And the result is less than or equal to value2.
Value1 > Value2, compare true if the result is greater than or equal to
value1 Or the result is less than or equal to value2. */
} adc_hardware_compare_mode_t;
/*!
* @brief Converter hardware average mode.
*/
typedef enum _adc_hardware_average_mode
{
kADC_HardwareAverageCount4 = 0U, /*!< For hardware average with 4 samples. */
kADC_HardwareAverageCount8 = 1U, /*!< For hardware average with 8 samples. */
kADC_HardwareAverageCount16 = 2U, /*!< For hardware average with 16 samples. */
kADC_HardwareAverageCount32 = 3U, /*!< For hardware average with 32 samples. */
kADC_HardwareAverageDiasable = 4U, /*!< Disable the hardware average function. */
} adc_hardware_average_mode_t;
/*!
* @brief Converter configuration.
*/
typedef struct _adc_config
{
bool enableOverWrite; /*!< Enable the overwriting. */
bool enableContinuousConversion; /*!< Enable the continuous conversion mode. */
bool enableHighSpeed; /*!< Enable the high-speed mode. */
bool enableLowPower; /*!< Enable the low power mode. */
bool enableLongSample; /*!< Enable the long sample mode. */
bool enableAsynchronousClockOutput; /*!< Enable the asynchronous clock output. */
adc_reference_voltage_source_t referenceVoltageSource; /*!< Select the reference voltage source. */
adc_sample_period_mode_t samplePeriodMode; /*!< Select the sample period in long sample mode or short mode. */
adc_clock_source_t clockSource; /*!< Select the input clock source to generate the internal clock ADCK. */
adc_clock_driver_t clockDriver; /*!< Select the divide ratio used by the ADC to generate the internal clock ADCK. */
adc_resolution_t resolution; /*!< Select the ADC resolution mode. */
} adc_config_t;
/*!
* @brief Converter Offset configuration.
*/
typedef struct _adc_offest_config
{
bool enableSigned; /*!< if false,The offset value is added with the raw result.
if true,The offset value is subtracted from the raw converted value. */
uint32_t offsetValue; /*!< User configurable offset value(0-4095). */
} adc_offest_config_t;
/*!
* @brief ADC hardware compare configuration.
*
* In kADC_HardwareCompareMode0, compare true if the result is less than the value1.
* In kADC_HardwareCompareMode1, compare true if the result is greater than or equal to value1.
* In kADC_HardwareCompareMode2, Value1 <= Value2, compare true if the result is less than value1 Or the result is
* Greater than value2.
* Value1 > Value2, compare true if the result is less than value1 And the result is
* Greater than value2.
* In kADC_HardwareCompareMode3, Value1 <= Value2, compare true if the result is greater than or equal to value1 And the
* result is less than or equal to value2.
* Value1 > Value2, compare true if the result is greater than or equal to value1 Or the
* result is less than or equal to value2.
*/
typedef struct _adc_hardware_compare_config
{
adc_hardware_compare_mode_t hardwareCompareMode; /*!< Select the hardware compare mode.
See "adc_hardware_compare_mode_t". */
uint16_t value1; /*!< Setting value1(0-4095) for hardware compare mode. */
uint16_t value2; /*!< Setting value2(0-4095) for hardware compare mode. */
} adc_hardware_compare_config_t;
/*!
* @brief ADC channel conversion configuration.
*/
typedef struct _adc_channel_config
{
uint32_t channelNumber; /*!< Setting the conversion channel number. The available range is 0-31.
See channel connection information for each chip in Reference
Manual document. */
bool enableInterruptOnConversionCompleted; /*!< Generate an interrupt request once the conversion is completed. */
} adc_channel_config_t;
/*******************************************************************************
* API
******************************************************************************/
#if defined(__cplusplus)
extern "C" {
#endif
/*!
* @name Initialization
* @{
*/
/*!
* @brief Initialize the ADC module.
*
* @param base ADC peripheral base address.
* @param config Pointer to "adc_config_t" structure.
*/
void ADC_Init(ADC_Type *base, const adc_config_t *config);
/*!
* @brief De-initializes the ADC module.
*
* @param base ADC peripheral base address.
*/
void ADC_Deinit(ADC_Type *base);
/*!
* @brief Gets an available pre-defined settings for the converter's configuration.
*
* This function initializes the converter configuration structure with available settings. The default values are:
* @code
* config->enableAsynchronousClockOutput = true;
* config->enableOverWrite = false;
* config->enableContinuousConversion = false;
* config->enableHighSpeed = false;
* config->enableLowPower = false;
* config->enableLongSample = false;
* config->referenceVoltageSource = kADC_ReferenceVoltageSourceAlt0;
* config->samplePeriodMode = kADC_SamplePeriod2or12Clocks;
* config->clockSource = kADC_ClockSourceAD;
* config->clockDriver = kADC_ClockDriver1;
* config->resolution = kADC_Resolution12Bit;
* @endcode
* @param config Pointer to the configuration structure.
*/
void ADC_GetDefaultConfig(adc_config_t *config);
/*!
* @brief Configures the conversion channel.
*
* This operation triggers the conversion when in software trigger mode. When in hardware trigger mode, this API
* configures the channel while the external trigger source helps to trigger the conversion.
*
* Note that the "Channel Group" has a detailed description.
* To allow sequential conversions of the ADC to be triggered by internal peripherals, the ADC has more than one
* group of status and control registers, one for each conversion. The channel group parameter indicates which group of
* registers are used, for example channel group 0 is for Group A registers and channel group 1 is for Group B
* registers. The
* channel groups are used in a "ping-pong" approach to control the ADC operation. At any point, only one of
* the channel groups is actively controlling ADC conversions. The channel group 0 is used for both software and
* hardware
* trigger modes. Channel groups 1 and greater indicate potentially multiple channel group registers for
* use only in hardware trigger mode. See the chip configuration information in the appropriate MCU reference manual
* about the
* number of SC1n registers (channel groups) specific to this device. None of the channel groups 1 or greater are used
* for software trigger operation. Therefore, writing to these channel groups does not initiate a new conversion.
* Updating the channel group 0 while a different channel group is actively controlling a conversion is allowed and
* vice versa. Writing any of the channel group registers while that specific channel group is actively controlling a
* conversion aborts the current conversion.
*
* @param base ADC peripheral base address.
* @param channelGroup Channel group index.
* @param config Pointer to the "adc_channel_config_t" structure for the conversion channel.
*/
void ADC_SetChannelConfig(ADC_Type *base, uint32_t channelGroup, const adc_channel_config_t *config);
/*!
* @brief Gets the conversion value.
*
* @param base ADC peripheral base address.
* @param channelGroup Channel group index.
*
* @return Conversion value.
*/
static inline uint32_t ADC_GetChannelConversionValue(ADC_Type *base, uint32_t channelGroup)
{
assert(channelGroup < (uint32_t)FSL_FEATURE_ADC_CONVERSION_CONTROL_COUNT);
return base->R[channelGroup];
}
/*!
* @brief Gets the status flags of channel.
*
* A conversion is completed when the result of the conversion is transferred into the data
* result registers. (provided the compare function & hardware averaging is disabled), this is
* indicated by the setting of COCOn. If hardware averaging is enabled, COCOn sets only,
* if the last of the selected number of conversions is complete. If the compare function is
* enabled, COCOn sets and conversion result data is transferred only if the compare
* condition is true. If both hardware averaging and compare functions are enabled, then
* COCOn sets only if the last of the selected number of conversions is complete and the
* compare condition is true.
*
* @param base ADC peripheral base address.
* @param channelGroup Channel group index.
*
* @return Status flags of channel.return 0 means COCO flag is 0,return 1 means COCOflag is 1.
*/
static inline uint32_t ADC_GetChannelStatusFlags(ADC_Type *base, uint32_t channelGroup)
{
assert(channelGroup < (uint32_t)FSL_FEATURE_ADC_CONVERSION_CONTROL_COUNT);
/* If flag is set,return 1,otherwise, return 0. */
return (((base->HS) & (1UL << channelGroup)) >> channelGroup);
}
/*!
* @brief Automates the hardware calibration.
*
* This auto calibration helps to adjust the plus/minus side gain automatically.
* Execute the calibration before using the converter. Note that the software trigger should be used
* during calibration.
*
* @param base ADC peripheral base address.
*
* @return Execution status.
* @retval kStatus_Success Calibration is done successfully.
* @retval kStatus_Fail Calibration has failed.
*/
status_t ADC_DoAutoCalibration(ADC_Type *base);
/*!
* @brief Set user defined offset.
*
* @param base ADC peripheral base address.
* @param config Pointer to "adc_offest_config_t" structure.
*/
void ADC_SetOffsetConfig(ADC_Type *base, const adc_offest_config_t *config);
/*!
* @brief Enables generating the DMA trigger when the conversion is complete.
*
* @param base ADC peripheral base address.
* @param enable Switcher of the DMA feature. "true" means enabled, "false" means not enabled.
*/
static inline void ADC_EnableDMA(ADC_Type *base, bool enable)
{
if (enable)
{
base->GC |= ADC_GC_DMAEN_MASK;
}
else
{
base->GC &= ~ADC_GC_DMAEN_MASK;
}
}
/*!
* @brief Enables the hardware trigger mode.
*
* @param base ADC peripheral base address.
* @param enable Switcher of the trigger mode. "true" means hardware tirgger mode,"false" means software mode.
*/
#if !(defined(FSL_FEATURE_ADC_SUPPORT_HARDWARE_TRIGGER_REMOVE) && FSL_FEATURE_ADC_SUPPORT_HARDWARE_TRIGGER_REMOVE)
static inline void ADC_EnableHardwareTrigger(ADC_Type *base, bool enable)
{
if (enable)
{
base->CFG |= ADC_CFG_ADTRG_MASK;
}
else
{
base->CFG &= ~ADC_CFG_ADTRG_MASK;
}
}
#endif
/*!
* @brief Configures the hardware compare mode.
*
* The hardware compare mode provides a way to process the conversion result automatically by using hardware. Only the
* result
* in the compare range is available. To compare the range, see "adc_hardware_compare_mode_t" or the appopriate
* reference
* manual for more information.
*
* @param base ADC peripheral base address.
* @param config Pointer to "adc_hardware_compare_config_t" structure.
*
*/
void ADC_SetHardwareCompareConfig(ADC_Type *base, const adc_hardware_compare_config_t *config);
/*!
* @brief Configures the hardware average mode.
*
* The hardware average mode provides a way to process the conversion result automatically by using hardware. The
* multiple
* conversion results are accumulated and averaged internally making them easier to read.
*
* @param base ADC peripheral base address.
* @param mode Setting the hardware average mode. See "adc_hardware_average_mode_t".
*/
void ADC_SetHardwareAverageConfig(ADC_Type *base, adc_hardware_average_mode_t mode);
/*!
* @brief Gets the converter's status flags.
*
* @param base ADC peripheral base address.
*
* @return Flags' mask if indicated flags are asserted. See "adc_status_flags_t".
*/
static inline uint32_t ADC_GetStatusFlags(ADC_Type *base)
{
return base->GS;
}
/*!
* @brief Clears the converter's status falgs.
*
* @param base ADC peripheral base address.
* @param mask Mask value for the cleared flags. See "adc_status_flags_t".
*/
void ADC_ClearStatusFlags(ADC_Type *base, uint32_t mask);
/*!
*@}
*/
#if defined(__cplusplus)
}
#endif
/*!
*@}
*/
#endif /* FSL_ADC_H_ */