MCUXpresso_MIMXRT1021xxxxx/devices/MIMXRT1021/drivers/fsl_flexio_i2c_master.c

1378 lines
50 KiB
C

/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2022 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_flexio_i2c_master.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.flexio_i2c_master"
#endif
/*! @brief FLEXIO I2C transfer state */
enum _flexio_i2c_master_transfer_states
{
kFLEXIO_I2C_Idle = 0x0U, /*!< I2C bus idle */
kFLEXIO_I2C_Start = 0x1U, /*!< I2C start phase */
kFLEXIO_I2C_SendCommand = 0x2U, /*!< Send command byte phase */
kFLEXIO_I2C_SendData = 0x3U, /*!< Send data transfer phase*/
kFLEXIO_I2C_ReceiveDataBegin = 0x4U, /*!< Receive data begin transfer phase*/
kFLEXIO_I2C_ReceiveData = 0x5U, /*!< Receive data transfer phase*/
};
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Set up master transfer, send slave address and decide the initial
* transfer state.
*
* @param base pointer to FLEXIO_I2C_Type structure
* @param handle pointer to flexio_i2c_master_handle_t structure which stores the transfer state
* @param transfer pointer to flexio_i2c_master_transfer_t structure
*/
static status_t FLEXIO_I2C_MasterTransferInitStateMachine(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
flexio_i2c_master_transfer_t *xfer);
/*!
* @brief Master run transfer state machine to perform a byte of transfer.
*
* @param base pointer to FLEXIO_I2C_Type structure
* @param handle pointer to flexio_i2c_master_handle_t structure which stores the transfer state
* @param statusFlags flexio i2c hardware status
* @retval kStatus_Success Successfully run state machine
* @retval kStatus_FLEXIO_I2C_Nak Receive Nak during transfer
*/
static status_t FLEXIO_I2C_MasterTransferRunStateMachine(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
uint32_t statusFlags);
/*!
* @brief Complete transfer, disable interrupt and call callback.
*
* @param base pointer to FLEXIO_I2C_Type structure
* @param handle pointer to flexio_i2c_master_handle_t structure which stores the transfer state
* @param status flexio transfer status
*/
static void FLEXIO_I2C_MasterTransferComplete(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
status_t status);
/*!
* @brief introduce function FLEXIO_I2C_MasterTransferStateMachineStart.
* This function was deal with Initial state, i2c start state.
*
* @param base pointer to FLEXIO_I2C_Type structure
* @param handle pointer to flexio_i2c_master_handle_t structure which stores the transfer state
*/
static void FLEXIO_I2C_MasterTransferStateMachineStart(FLEXIO_I2C_Type *base, flexio_i2c_master_handle_t *handle);
/*!
* @brief introduce function FLEXIO_I2C_MasterTransferStateMachineSendCommand.
* This function was deal with Check address only needed for transfer with subaddress .
*
* @param base pointer to FLEXIO_I2C_Type structure
* @param handle pointer to flexio_i2c_master_handle_t structure which stores the transfer state
* @param statusFlags flexio i2c hardware status
*
* @return default is true when No abnormality.
* @return false when time out.
*/
static bool FLEXIO_I2C_MasterTransferStateMachineSendCommand(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
uint32_t statusFlags);
/*!
* @brief introduce function FLEXIO_I2C_MasterTransferStateMachineSendData.
* This function was deal with Send command byte.
*
* @param base pointer to FLEXIO_I2C_Type structure
* @param handle pointer to flexio_i2c_master_handle_t structure which stores the transfer state
* @param statusFlags flexio i2c hardware status
*
* @return default is true when No abnormality.
* @return false when time out.
*/
static bool FLEXIO_I2C_MasterTransferStateMachineSendData(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
uint32_t statusFlags);
/*!
* @brief introduce function FLEXIO_I2C_MasterTransferStateMachineReceiveDataBegin.
* This function was deal with Receive Data Begin.
*
* @param base pointer to FLEXIO_I2C_Type structure
* @param handle pointer to flexio_i2c_master_handle_t structure which stores the transfer state
* @param statusFlags flexio i2c hardware status
*
* @return default is true when No abnormality.
* @return false when time out.
*/
static bool FLEXIO_I2C_MasterTransferStateMachineReceiveDataBegin(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
uint32_t statusFlags);
/*!
* @brief introduce function Case_kFLEXIO_I2C_ReceiveDataBegin.
* This function was deal with Receive Data.
*
* @param base pointer to FLEXIO_I2C_Type structure
* @param handle pointer to flexio_i2c_master_handle_t structure which stores the transfer state
* @param statusFlags flexio i2c hardware status
*
* @return default is kStatus_Success when No abnormality.
* @return kStatus_FLEXIO_I2C_Nak when ReceiveNakFlag is not set.
* @return kStatus_FLEXIO_I2C_Timeout when time out.
*/
static status_t FLEXIO_I2C_MasterTransferStateMachineReceiveData(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
uint32_t statusFlags);
/*******************************************************************************
* Codes
******************************************************************************/
static uint32_t FLEXIO_I2C_GetInstance(FLEXIO_I2C_Type *base)
{
return FLEXIO_GetInstance(base->flexioBase);
}
static status_t FLEXIO_I2C_MasterTransferInitStateMachine(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
flexio_i2c_master_transfer_t *xfer)
{
bool needRestart;
uint32_t byteCount;
/* Init the handle member. */
handle->transfer.slaveAddress = xfer->slaveAddress;
handle->transfer.direction = xfer->direction;
handle->transfer.subaddress = xfer->subaddress;
handle->transfer.subaddressSize = xfer->subaddressSize;
handle->transfer.data = xfer->data;
handle->transfer.dataSize = xfer->dataSize;
handle->transfer.flags = xfer->flags;
handle->transferSize = xfer->dataSize;
/* Initial state, i2c start state. */
handle->state = (uint8_t)kFLEXIO_I2C_Start;
/* Clear all status before transfer. */
FLEXIO_I2C_MasterClearStatusFlags(base, (uint32_t)kFLEXIO_I2C_ReceiveNakFlag);
/* Calculate whether need to send re-start. */
needRestart = (handle->transfer.subaddressSize != 0U) && (handle->transfer.direction == kFLEXIO_I2C_Read);
handle->needRestart = needRestart;
/* Calculate total byte count in a frame. */
byteCount = 1U;
if (!needRestart)
{
byteCount += handle->transfer.dataSize;
}
if (handle->transfer.subaddressSize != 0U)
{
byteCount += handle->transfer.subaddressSize;
}
/* Configure data count. */
if (FLEXIO_I2C_MasterSetTransferCount(base, (uint16_t)byteCount) != kStatus_Success)
{
return kStatus_InvalidArgument;
}
/* Configure timer1 disable condition. */
uint32_t tmpConfig = base->flexioBase->TIMCFG[base->timerIndex[1]];
tmpConfig &= ~FLEXIO_TIMCFG_TIMDIS_MASK;
tmpConfig |= FLEXIO_TIMCFG_TIMDIS(kFLEXIO_TimerDisableOnPreTimerDisable);
base->flexioBase->TIMCFG[base->timerIndex[1]] = tmpConfig;
#if I2C_RETRY_TIMES
uint32_t waitTimes = I2C_RETRY_TIMES;
while ((0U == (FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1UL << base->shifterIndex[0]))) &&
(0U != --waitTimes))
{
}
if (0U == waitTimes)
{
return kStatus_FLEXIO_I2C_Timeout;
}
#else
while (0U == (FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1UL << base->shifterIndex[0])))
{
}
#endif
return kStatus_Success;
}
static void FLEXIO_I2C_MasterTransferStateMachineStart(FLEXIO_I2C_Type *base, flexio_i2c_master_handle_t *handle)
{
if (handle->needRestart)
{
FLEXIO_I2C_MasterStart(base, handle->transfer.slaveAddress, kFLEXIO_I2C_Write);
}
else
{
FLEXIO_I2C_MasterStart(base, handle->transfer.slaveAddress, handle->transfer.direction);
}
if (handle->transfer.subaddressSize == 0U)
{
if (handle->transfer.direction == kFLEXIO_I2C_Write)
{
/* Next state, send data. */
handle->state = (uint8_t)kFLEXIO_I2C_SendData;
}
else
{
/* Next state, receive data begin. */
handle->state = (uint8_t)kFLEXIO_I2C_ReceiveDataBegin;
}
}
else
{
/* Next state, send command byte. */
handle->state = (uint8_t)kFLEXIO_I2C_SendCommand;
}
}
static bool FLEXIO_I2C_MasterTransferStateMachineSendCommand(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
uint32_t statusFlags)
{
if ((statusFlags & (uint32_t)kFLEXIO_I2C_TxEmptyFlag) != 0U)
{
if (handle->transfer.subaddressSize > 0U)
{
handle->transfer.subaddressSize--;
FLEXIO_I2C_MasterWriteByte(base, ((handle->transfer.subaddress) >> (8U * handle->transfer.subaddressSize)));
if (handle->transfer.subaddressSize == 0U)
{
/* Load re-start in advance. */
if (handle->transfer.direction == kFLEXIO_I2C_Read)
{
#if I2C_RETRY_TIMES
while ((0U == (FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1UL << base->shifterIndex[0]))) &&
(0U != --waitTimes))
{
}
if (0U == waitTimes)
{
return false;
}
#else
while (0U == (FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1UL << base->shifterIndex[0])))
{
}
#endif
FLEXIO_I2C_MasterRepeatedStart(base);
}
}
}
else
{
if (handle->transfer.direction == kFLEXIO_I2C_Write)
{
/* Send first byte of data. */
if (handle->transfer.dataSize > 0U)
{
/* Next state, send data. */
handle->state = (uint8_t)kFLEXIO_I2C_SendData;
FLEXIO_I2C_MasterWriteByte(base, *handle->transfer.data);
handle->transfer.data++;
handle->transfer.dataSize--;
}
else
{
FLEXIO_I2C_MasterStop(base);
#if I2C_RETRY_TIMES
while ((0U == (FLEXIO_I2C_MasterGetStatusFlags(base) & (uint32_t)kFLEXIO_I2C_RxFullFlag)) &&
(0U != --waitTimes))
{
}
if (0U == waitTimes)
{
return false;
}
#else
while (0U == (FLEXIO_I2C_MasterGetStatusFlags(base) & (uint32_t)kFLEXIO_I2C_RxFullFlag))
{
}
#endif
(void)FLEXIO_I2C_MasterReadByte(base);
handle->state = (uint8_t)kFLEXIO_I2C_Idle;
}
}
else
{
(void)FLEXIO_I2C_MasterSetTransferCount(base, (uint16_t)(handle->transfer.dataSize + 1U));
/* Delay at least one clock cycle so that the restart setup time is up to spec standard. */
SDK_DelayAtLeastUs(1000000UL / base->baudrate, SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY);
FLEXIO_I2C_MasterStart(base, handle->transfer.slaveAddress, kFLEXIO_I2C_Read);
/* Next state, receive data begin. */
handle->state = (uint8_t)kFLEXIO_I2C_ReceiveDataBegin;
}
}
}
return true;
}
static bool FLEXIO_I2C_MasterTransferStateMachineSendData(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
uint32_t statusFlags)
{
if ((statusFlags & (uint32_t)kFLEXIO_I2C_TxEmptyFlag) != 0U)
{
/* Send one byte of data. */
if (handle->transfer.dataSize > 0U)
{
FLEXIO_I2C_MasterWriteByte(base, *handle->transfer.data);
handle->transfer.data++;
handle->transfer.dataSize--;
}
else
{
FLEXIO_I2C_MasterStop(base);
#if I2C_RETRY_TIMES
while ((0U == (FLEXIO_I2C_MasterGetStatusFlags(base) & (uint32_t)kFLEXIO_I2C_RxFullFlag)) &&
(0U != --waitTimes))
{
}
if (0U == waitTimes)
{
return false;
}
#else
while (0U == (FLEXIO_I2C_MasterGetStatusFlags(base) & (uint32_t)kFLEXIO_I2C_RxFullFlag))
{
}
#endif
(void)FLEXIO_I2C_MasterReadByte(base);
handle->state = (uint8_t)kFLEXIO_I2C_Idle;
}
}
return true;
}
static bool FLEXIO_I2C_MasterTransferStateMachineReceiveDataBegin(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
uint32_t statusFlags)
{
if ((statusFlags & (uint32_t)kFLEXIO_I2C_RxFullFlag) != 0U)
{
handle->state = (uint8_t)kFLEXIO_I2C_ReceiveData;
/* Send nak at the last receive byte. */
if (handle->transfer.dataSize == 1U)
{
FLEXIO_I2C_MasterEnableAck(base, false);
#if I2C_RETRY_TIMES
while ((0U == (FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1UL << base->shifterIndex[0]))) &&
(0U != --waitTimes))
{
}
if (0U == waitTimes)
{
return false;
}
#else
while (0U == (FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1UL << base->shifterIndex[0])))
{
}
#endif
FLEXIO_I2C_MasterStop(base);
}
else
{
FLEXIO_I2C_MasterEnableAck(base, true);
}
}
else if ((statusFlags & (uint32_t)kFLEXIO_I2C_TxEmptyFlag) != 0U)
{
/* Read one byte of data. */
FLEXIO_I2C_MasterWriteByte(base, 0xFFFFFFFFU);
}
else
{
; /* Avoid MISRA 2012 rule 15.7 */
}
return true;
}
static status_t FLEXIO_I2C_MasterTransferStateMachineReceiveData(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
uint32_t statusFlags)
{
if ((statusFlags & (uint32_t)kFLEXIO_I2C_RxFullFlag) != 0U)
{
*handle->transfer.data = FLEXIO_I2C_MasterReadByte(base);
handle->transfer.data++;
if (0U != handle->transfer.dataSize--)
{
if (handle->transfer.dataSize == 0U)
{
FLEXIO_I2C_MasterDisableInterrupts(base, (uint32_t)kFLEXIO_I2C_RxFullInterruptEnable);
handle->state = (uint8_t)kFLEXIO_I2C_Idle;
/* Return nak if ReceiveNakFlag is not set */
if ((statusFlags & (uint32_t)kFLEXIO_I2C_ReceiveNakFlag) == 0U)
{
return kStatus_FLEXIO_I2C_Nak;
}
}
/* Send nak at the last receive byte. */
if (handle->transfer.dataSize == 1U)
{
FLEXIO_I2C_MasterEnableAck(base, false);
#if I2C_RETRY_TIMES
while ((0U == (FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1UL << base->shifterIndex[0]))) &&
(0U != --waitTimes))
{
}
if (0U == waitTimes)
{
return kStatus_FLEXIO_I2C_Timeout;
}
#else
while (0U == (FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1UL << base->shifterIndex[0])))
{
}
#endif
FLEXIO_I2C_MasterStop(base);
}
}
}
else if ((statusFlags & (uint32_t)kFLEXIO_I2C_TxEmptyFlag) != 0U)
{
if (handle->transfer.dataSize > 1U)
{
FLEXIO_I2C_MasterWriteByte(base, 0xFFFFFFFFU);
}
}
else
{
; /* Avoid MISRA 2012 rule 15.7 */
}
return kStatus_Success;
}
static status_t FLEXIO_I2C_MasterTransferRunStateMachine(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
uint32_t statusFlags)
{
status_t status;
#if I2C_RETRY_TIMES
uint32_t waitTimes = I2C_RETRY_TIMES;
#endif
if ((statusFlags & (uint32_t)kFLEXIO_I2C_ReceiveNakFlag) != 0U)
{
/* Clear receive nak flag. */
FLEXIO_ClearShifterErrorFlags(base->flexioBase, 1UL << base->shifterIndex[1]);
if ((!((handle->state == (uint8_t)kFLEXIO_I2C_SendData) && (handle->transfer.dataSize == 0U))) &&
(!(((handle->state == (uint8_t)kFLEXIO_I2C_ReceiveData) ||
(handle->state == (uint8_t)kFLEXIO_I2C_ReceiveDataBegin)) &&
(handle->transfer.dataSize == 1U))))
{
(void)FLEXIO_I2C_MasterReadByte(base);
FLEXIO_I2C_MasterAbortStop(base);
/* Delay one clk cycle to ensure the bus is idle. */
SDK_DelayAtLeastUs(1000000UL / base->baudrate, SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY);
handle->state = (uint8_t)kFLEXIO_I2C_Idle;
return kStatus_FLEXIO_I2C_Nak;
}
}
if (((statusFlags & (uint8_t)kFLEXIO_I2C_RxFullFlag) != 0U) && (handle->state != (uint8_t)kFLEXIO_I2C_ReceiveData))
{
(void)FLEXIO_I2C_MasterReadByte(base);
}
switch (handle->state)
{
/* Initial state, i2c start state. */
case (uint8_t)kFLEXIO_I2C_Start:
/* Send address byte first. */
FLEXIO_I2C_MasterTransferStateMachineStart(base, handle);
break;
/* Check address only needed for transfer with subaddress */
case (uint8_t)kFLEXIO_I2C_SendCommand:
if (false == FLEXIO_I2C_MasterTransferStateMachineSendCommand(base, handle, statusFlags))
{
return kStatus_FLEXIO_I2C_Timeout;
}
break;
/* Send command byte. */
case (uint8_t)kFLEXIO_I2C_SendData:
if (false == FLEXIO_I2C_MasterTransferStateMachineSendData(base, handle, statusFlags))
{
return kStatus_FLEXIO_I2C_Timeout;
}
break;
case (uint8_t)kFLEXIO_I2C_ReceiveDataBegin:
if (false == FLEXIO_I2C_MasterTransferStateMachineReceiveDataBegin(base, handle, statusFlags))
{
return kStatus_FLEXIO_I2C_Timeout;
}
break;
case (uint8_t)kFLEXIO_I2C_ReceiveData:
status = FLEXIO_I2C_MasterTransferStateMachineReceiveData(base, handle, statusFlags);
if (kStatus_Success != status)
{
return status;
}
break;
default:
/* Add comment to avoid MISRA violation */
break;
}
return kStatus_Success;
}
static void FLEXIO_I2C_MasterTransferComplete(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
status_t status)
{
FLEXIO_I2C_MasterDisableInterrupts(
base, (uint32_t)kFLEXIO_I2C_TxEmptyInterruptEnable | (uint32_t)kFLEXIO_I2C_RxFullInterruptEnable);
if (handle->completionCallback != NULL)
{
handle->completionCallback(base, handle, status, handle->userData);
}
}
#if defined(FSL_FEATURE_FLEXIO_HAS_PIN_STATUS) && FSL_FEATURE_FLEXIO_HAS_PIN_STATUS
/*!
* brief Make sure the bus isn't already pulled down.
*
* Check the FLEXIO pin status to see whether either of SDA and SCL pin is pulled down.
*
* param base Pointer to FLEXIO_I2C_Type structure.
* retval kStatus_Success
* retval kStatus_FLEXIO_I2C_Busy
*/
status_t FLEXIO_I2C_CheckForBusyBus(FLEXIO_I2C_Type *base)
{
uint32_t mask;
/* If in certain loops the SDA/SCL is continuously pulled down, then return bus busy status. */
/* The loop count is determined by maximum CPU clock frequency */
for (uint32_t i = 0U; i < SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY / 600000U; ++i)
{
mask = 1UL << base->SDAPinIndex | 1UL << base->SCLPinIndex;
if ((FLEXIO_ReadPinInput(base->flexioBase) & mask) == mask)
{
return kStatus_Success;
}
}
return kStatus_FLEXIO_I2C_Busy;
}
#endif /*FSL_FEATURE_FLEXIO_HAS_PIN_STATUS*/
/*!
* brief Ungates the FlexIO clock, resets the FlexIO module, and configures the FlexIO I2C
* hardware configuration.
*
* Example
code
FLEXIO_I2C_Type base = {
.flexioBase = FLEXIO,
.SDAPinIndex = 0,
.SCLPinIndex = 1,
.shifterIndex = {0,1},
.timerIndex = {0,1}
};
flexio_i2c_master_config_t config = {
.enableInDoze = false,
.enableInDebug = true,
.enableFastAccess = false,
.baudRate_Bps = 100000
};
FLEXIO_I2C_MasterInit(base, &config, srcClock_Hz);
endcode
*
* param base Pointer to FLEXIO_I2C_Type structure.
* param masterConfig Pointer to flexio_i2c_master_config_t structure.
* param srcClock_Hz FlexIO source clock in Hz.
* retval kStatus_Success Initialization successful
* retval kStatus_InvalidArgument The source clock exceed upper range limitation
*/
status_t FLEXIO_I2C_MasterInit(FLEXIO_I2C_Type *base, flexio_i2c_master_config_t *masterConfig, uint32_t srcClock_Hz)
{
assert((base != NULL) && (masterConfig != NULL));
flexio_shifter_config_t shifterConfig;
flexio_timer_config_t timerConfig;
uint32_t controlVal = 0;
uint16_t timerDiv = 0;
status_t result = kStatus_Success;
(void)memset(&shifterConfig, 0, sizeof(shifterConfig));
(void)memset(&timerConfig, 0, sizeof(timerConfig));
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Ungate flexio clock. */
CLOCK_EnableClock(s_flexioClocks[FLEXIO_I2C_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Do hardware configuration. */
/* 1. Configure the shifter 0 for tx. */
shifterConfig.timerSelect = base->timerIndex[2];
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnPositive;
shifterConfig.pinConfig = kFLEXIO_PinConfigOpenDrainOrBidirection;
shifterConfig.pinSelect = base->SDAPinIndex;
shifterConfig.pinPolarity = kFLEXIO_PinActiveLow;
shifterConfig.shifterMode = kFLEXIO_ShifterModeTransmit;
shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin;
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitHigh;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitLow;
FLEXIO_SetShifterConfig(base->flexioBase, base->shifterIndex[0], &shifterConfig);
/* 2. Configure the shifter 1 for rx. */
shifterConfig.timerSelect = base->timerIndex[2];
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnNegitive;
shifterConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled;
shifterConfig.pinSelect = base->SDAPinIndex;
shifterConfig.pinPolarity = kFLEXIO_PinActiveHigh;
shifterConfig.shifterMode = kFLEXIO_ShifterModeReceive;
shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin;
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitLow;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable;
FLEXIO_SetShifterConfig(base->flexioBase, base->shifterIndex[1], &shifterConfig);
/*3. Configure the timer 0 and timer 1 for generating bit clock. */
/* timer 1 is used to config baudrate */
timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_SHIFTnSTAT(base->shifterIndex[0]);
timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveLow;
timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal;
timerConfig.pinConfig = kFLEXIO_PinConfigOpenDrainOrBidirection;
timerConfig.pinSelect = base->SCLPinIndex;
timerConfig.pinPolarity = kFLEXIO_PinActiveHigh;
timerConfig.timerMode = kFLEXIO_TimerModeSingle16Bit;
timerConfig.timerOutput = kFLEXIO_TimerOutputZeroNotAffectedByReset;
timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnFlexIOClockShiftTimerOutput;
timerConfig.timerReset = kFLEXIO_TimerResetOnTimerPinEqualToTimerOutput;
timerConfig.timerDisable = kFLEXIO_TimerDisableOnPreTimerDisable;
timerConfig.timerEnable = kFLEXIO_TimerEnableOnTriggerHigh;
timerConfig.timerStop = kFLEXIO_TimerStopBitDisabled;
timerConfig.timerStart = kFLEXIO_TimerStartBitDisabled;
/* Set TIMCMP = (baud rate divider / 2) - 1. */
timerDiv = (uint16_t)(srcClock_Hz / masterConfig->baudRate_Bps) / 2U - 1U;
/* Calculate and assign the actual baudrate. */
base->baudrate = srcClock_Hz / (2U * ((uint32_t)timerDiv + 1U));
timerConfig.timerCompare = timerDiv;
FLEXIO_SetTimerConfig(base->flexioBase, base->timerIndex[1], &timerConfig);
/* timer 0 is used to config total shift clock edges */
timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_SHIFTnSTAT(base->shifterIndex[0]);
timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveLow;
timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal;
timerConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled;
timerConfig.pinSelect = base->SCLPinIndex;
timerConfig.pinPolarity = kFLEXIO_PinActiveHigh;
timerConfig.timerMode = kFLEXIO_TimerModeSingle16Bit;
timerConfig.timerOutput = kFLEXIO_TimerOutputOneNotAffectedByReset;
timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnPinInputShiftPinInput;
timerConfig.timerReset = kFLEXIO_TimerResetNever;
timerConfig.timerDisable = kFLEXIO_TimerDisableOnTimerCompare;
timerConfig.timerEnable = kFLEXIO_TimerEnableOnTriggerHigh;
timerConfig.timerStop = kFLEXIO_TimerStopBitDisabled;
timerConfig.timerStart = kFLEXIO_TimerStartBitDisabled;
/* Set TIMCMP when confinguring transfer bytes. */
FLEXIO_SetTimerConfig(base->flexioBase, base->timerIndex[0], &timerConfig);
/* 4. Configure the timer 2 for controlling shifters. */
timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_SHIFTnSTAT(base->shifterIndex[0]);
timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveLow;
timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal;
timerConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled;
timerConfig.pinSelect = base->SCLPinIndex;
timerConfig.pinPolarity = kFLEXIO_PinActiveLow;
timerConfig.timerMode = kFLEXIO_TimerModeSingle16Bit;
timerConfig.timerOutput = kFLEXIO_TimerOutputOneNotAffectedByReset;
timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnPinInputShiftPinInput;
timerConfig.timerReset = kFLEXIO_TimerResetNever;
timerConfig.timerDisable = kFLEXIO_TimerDisableOnPreTimerDisable;
timerConfig.timerEnable = kFLEXIO_TimerEnableOnPrevTimerEnable;
timerConfig.timerStop = kFLEXIO_TimerStopBitEnableOnTimerCompare;
timerConfig.timerStart = kFLEXIO_TimerStartBitEnabled;
/* Set TIMCMP[15:0] = (number of bits x 2) - 1. */
timerConfig.timerCompare = 8U * 2U - 1U;
FLEXIO_SetTimerConfig(base->flexioBase, base->timerIndex[2], &timerConfig);
/* Configure FLEXIO I2C Master. */
controlVal = base->flexioBase->CTRL;
controlVal &=
~(FLEXIO_CTRL_DOZEN_MASK | FLEXIO_CTRL_DBGE_MASK | FLEXIO_CTRL_FASTACC_MASK | FLEXIO_CTRL_FLEXEN_MASK);
controlVal |= (FLEXIO_CTRL_DBGE(masterConfig->enableInDebug) | FLEXIO_CTRL_FASTACC(masterConfig->enableFastAccess) |
FLEXIO_CTRL_FLEXEN(masterConfig->enableMaster));
if (!masterConfig->enableInDoze)
{
controlVal |= FLEXIO_CTRL_DOZEN_MASK;
}
base->flexioBase->CTRL = controlVal;
/* Disable internal IRQs. */
FLEXIO_I2C_MasterDisableInterrupts(
base, (uint32_t)kFLEXIO_I2C_TxEmptyInterruptEnable | (uint32_t)kFLEXIO_I2C_RxFullInterruptEnable);
return result;
}
/*!
* brief De-initializes the FlexIO I2C master peripheral. Calling this API Resets the FlexIO I2C master
* shifer and timer config, module can't work unless the FLEXIO_I2C_MasterInit is called.
*
* param base pointer to FLEXIO_I2C_Type structure.
*/
void FLEXIO_I2C_MasterDeinit(FLEXIO_I2C_Type *base)
{
base->flexioBase->SHIFTCFG[base->shifterIndex[0]] = 0;
base->flexioBase->SHIFTCTL[base->shifterIndex[0]] = 0;
base->flexioBase->SHIFTCFG[base->shifterIndex[1]] = 0;
base->flexioBase->SHIFTCTL[base->shifterIndex[1]] = 0;
base->flexioBase->TIMCFG[base->timerIndex[0]] = 0;
base->flexioBase->TIMCMP[base->timerIndex[0]] = 0;
base->flexioBase->TIMCTL[base->timerIndex[0]] = 0;
base->flexioBase->TIMCFG[base->timerIndex[1]] = 0;
base->flexioBase->TIMCMP[base->timerIndex[1]] = 0;
base->flexioBase->TIMCTL[base->timerIndex[1]] = 0;
base->flexioBase->TIMCFG[base->timerIndex[2]] = 0;
base->flexioBase->TIMCMP[base->timerIndex[2]] = 0;
base->flexioBase->TIMCTL[base->timerIndex[2]] = 0;
/* Clear the shifter flag. */
base->flexioBase->SHIFTSTAT = (1UL << base->shifterIndex[0]);
base->flexioBase->SHIFTSTAT = (1UL << base->shifterIndex[1]);
/* Clear the timer flag. */
base->flexioBase->TIMSTAT = (1UL << base->timerIndex[0]);
base->flexioBase->TIMSTAT = (1UL << base->timerIndex[1]);
base->flexioBase->TIMSTAT = (1UL << base->timerIndex[2]);
}
/*!
* brief Gets the default configuration to configure the FlexIO module. The configuration
* can be used directly for calling the FLEXIO_I2C_MasterInit().
*
* Example:
code
flexio_i2c_master_config_t config;
FLEXIO_I2C_MasterGetDefaultConfig(&config);
endcode
* param masterConfig Pointer to flexio_i2c_master_config_t structure.
*/
void FLEXIO_I2C_MasterGetDefaultConfig(flexio_i2c_master_config_t *masterConfig)
{
assert(masterConfig != NULL);
/* Initializes the configure structure to zero. */
(void)memset(masterConfig, 0, sizeof(*masterConfig));
masterConfig->enableMaster = true;
masterConfig->enableInDoze = false;
masterConfig->enableInDebug = true;
masterConfig->enableFastAccess = false;
/* Default baud rate at 100kbps. */
masterConfig->baudRate_Bps = 100000U;
}
/*!
* brief Gets the FlexIO I2C master status flags.
*
* param base Pointer to FLEXIO_I2C_Type structure
* return Status flag, use status flag to AND #_flexio_i2c_master_status_flags can get the related status.
*/
uint32_t FLEXIO_I2C_MasterGetStatusFlags(FLEXIO_I2C_Type *base)
{
uint32_t status = 0;
status =
((FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1UL << base->shifterIndex[0])) >> base->shifterIndex[0]);
status |=
(((FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1UL << base->shifterIndex[1])) >> (base->shifterIndex[1]))
<< 1U);
status |=
(((FLEXIO_GetShifterErrorFlags(base->flexioBase) & (1UL << base->shifterIndex[1])) >> (base->shifterIndex[1]))
<< 2U);
return status;
}
/*!
* brief Clears the FlexIO I2C master status flags.
*
* param base Pointer to FLEXIO_I2C_Type structure.
* param mask Status flag.
* The parameter can be any combination of the following values:
* arg kFLEXIO_I2C_RxFullFlag
* arg kFLEXIO_I2C_ReceiveNakFlag
*/
void FLEXIO_I2C_MasterClearStatusFlags(FLEXIO_I2C_Type *base, uint32_t mask)
{
if ((mask & (uint32_t)kFLEXIO_I2C_TxEmptyFlag) != 0U)
{
FLEXIO_ClearShifterStatusFlags(base->flexioBase, 1UL << base->shifterIndex[0]);
}
if ((mask & (uint32_t)kFLEXIO_I2C_RxFullFlag) != 0U)
{
FLEXIO_ClearShifterStatusFlags(base->flexioBase, 1UL << base->shifterIndex[1]);
}
if ((mask & (uint32_t)kFLEXIO_I2C_ReceiveNakFlag) != 0U)
{
FLEXIO_ClearShifterErrorFlags(base->flexioBase, 1UL << base->shifterIndex[1]);
}
}
/*!
* brief Enables the FlexIO i2c master interrupt requests.
*
* param base Pointer to FLEXIO_I2C_Type structure.
* param mask Interrupt source.
* Currently only one interrupt request source:
* arg kFLEXIO_I2C_TransferCompleteInterruptEnable
*/
void FLEXIO_I2C_MasterEnableInterrupts(FLEXIO_I2C_Type *base, uint32_t mask)
{
if ((mask & (uint32_t)kFLEXIO_I2C_TxEmptyInterruptEnable) != 0U)
{
FLEXIO_EnableShifterStatusInterrupts(base->flexioBase, 1UL << base->shifterIndex[0]);
}
if ((mask & (uint32_t)kFLEXIO_I2C_RxFullInterruptEnable) != 0U)
{
FLEXIO_EnableShifterStatusInterrupts(base->flexioBase, 1UL << base->shifterIndex[1]);
}
}
/*!
* brief Disables the FlexIO I2C master interrupt requests.
*
* param base Pointer to FLEXIO_I2C_Type structure.
* param mask Interrupt source.
*/
void FLEXIO_I2C_MasterDisableInterrupts(FLEXIO_I2C_Type *base, uint32_t mask)
{
if ((mask & (uint32_t)kFLEXIO_I2C_TxEmptyInterruptEnable) != 0U)
{
FLEXIO_DisableShifterStatusInterrupts(base->flexioBase, 1UL << base->shifterIndex[0]);
}
if ((mask & (uint32_t)kFLEXIO_I2C_RxFullInterruptEnable) != 0U)
{
FLEXIO_DisableShifterStatusInterrupts(base->flexioBase, 1UL << base->shifterIndex[1]);
}
}
/*!
* brief Sets the FlexIO I2C master transfer baudrate.
*
* param base Pointer to FLEXIO_I2C_Type structure
* param baudRate_Bps the baud rate value in HZ
* param srcClock_Hz source clock in HZ
*/
void FLEXIO_I2C_MasterSetBaudRate(FLEXIO_I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
{
uint16_t timerDiv = 0;
FLEXIO_Type *flexioBase = base->flexioBase;
/* Set TIMCMP = (baud rate divider / 2) - 1.*/
timerDiv = (uint16_t)((srcClock_Hz / baudRate_Bps) / 2U - 1U);
flexioBase->TIMCMP[base->timerIndex[1]] = timerDiv;
/* Calculate and assign the actual baudrate. */
base->baudrate = srcClock_Hz / (2U * ((uint32_t)timerDiv + 1U));
}
/*!
* brief Sets the number of bytes to be transferred from a start signal to a stop signal.
*
* note Call this API before a transfer begins because the timer generates a number of clocks according
* to the number of bytes that need to be transferred.
*
* param base Pointer to FLEXIO_I2C_Type structure.
* param count Number of bytes need to be transferred from a start signal to a re-start/stop signal
* retval kStatus_Success Successfully configured the count.
* retval kStatus_InvalidArgument Input argument is invalid.
*/
status_t FLEXIO_I2C_MasterSetTransferCount(FLEXIO_I2C_Type *base, uint16_t count)
{
/* Calculate whether the transfer count is larger than the max value compare register can achieve */
if (count > ((0xFFFFUL - 1UL) / (16UL + 1UL + 1UL)))
{
return kStatus_InvalidArgument;
}
uint32_t timerConfig = 0U;
FLEXIO_Type *flexioBase = base->flexioBase;
flexioBase->TIMCMP[base->timerIndex[0]] = (uint32_t)count * 18U + 1U;
timerConfig = flexioBase->TIMCFG[base->timerIndex[0]];
timerConfig &= ~FLEXIO_TIMCFG_TIMDIS_MASK;
timerConfig |= FLEXIO_TIMCFG_TIMDIS(kFLEXIO_TimerDisableOnTimerCompare);
flexioBase->TIMCFG[base->timerIndex[0]] = timerConfig;
return kStatus_Success;
}
/*!
* brief Sends START + 7-bit address to the bus.
*
* note This API should be called when the transfer configuration is ready to send a START signal
* and 7-bit address to the bus. This is a non-blocking API, which returns directly after the address
* is put into the data register but the address transfer is not finished on the bus. Ensure that
* the kFLEXIO_I2C_RxFullFlag status is asserted before calling this API.
* param base Pointer to FLEXIO_I2C_Type structure.
* param address 7-bit address.
* param direction transfer direction.
* This parameter is one of the values in flexio_i2c_direction_t:
* arg kFLEXIO_I2C_Write: Transmit
* arg kFLEXIO_I2C_Read: Receive
*/
void FLEXIO_I2C_MasterStart(FLEXIO_I2C_Type *base, uint8_t address, flexio_i2c_direction_t direction)
{
uint32_t data;
data = ((uint32_t)address) << 1U | ((direction == kFLEXIO_I2C_Read) ? 1U : 0U);
FLEXIO_I2C_MasterWriteByte(base, data);
}
/*!
* brief Sends the repeated start signal on the bus.
*
* param base Pointer to FLEXIO_I2C_Type structure.
*/
void FLEXIO_I2C_MasterRepeatedStart(FLEXIO_I2C_Type *base)
{
/* Prepare for RESTART condition, no stop.*/
FLEXIO_I2C_MasterWriteByte(base, 0xFFFFFFFFU);
}
/*!
* brief Sends the stop signal on the bus.
*
* param base Pointer to FLEXIO_I2C_Type structure.
*/
void FLEXIO_I2C_MasterStop(FLEXIO_I2C_Type *base)
{
/* Prepare normal stop. */
(void)FLEXIO_I2C_MasterSetTransferCount(base, 0x0U);
FLEXIO_I2C_MasterWriteByte(base, 0x0U);
}
/*!
* brief Sends the stop signal when transfer is still on-going.
*
* param base Pointer to FLEXIO_I2C_Type structure.
*/
void FLEXIO_I2C_MasterAbortStop(FLEXIO_I2C_Type *base)
{
uint32_t tmpConfig;
/* Prepare abort stop. */
/* Disable timer 0. */
tmpConfig = base->flexioBase->TIMCFG[base->timerIndex[0]];
tmpConfig &= ~FLEXIO_TIMCFG_TIMDIS_MASK;
tmpConfig |= FLEXIO_TIMCFG_TIMDIS(kFLEXIO_TimerDisableOnPinBothEdge);
base->flexioBase->TIMCFG[base->timerIndex[0]] = tmpConfig;
/* Disable timer 1. */
tmpConfig = base->flexioBase->TIMCFG[base->timerIndex[1]];
tmpConfig &= ~FLEXIO_TIMCFG_TIMDIS_MASK;
tmpConfig |= FLEXIO_TIMCFG_TIMDIS(kFLEXIO_TimerDisableOnPinBothEdge);
base->flexioBase->TIMCFG[base->timerIndex[1]] = tmpConfig;
}
/*!
* brief Configures the sent ACK/NAK for the following byte.
*
* param base Pointer to FLEXIO_I2C_Type structure.
* param enable True to configure send ACK, false configure to send NAK.
*/
void FLEXIO_I2C_MasterEnableAck(FLEXIO_I2C_Type *base, bool enable)
{
uint32_t tmpConfig = 0;
tmpConfig = base->flexioBase->SHIFTCFG[base->shifterIndex[0]];
tmpConfig &= ~FLEXIO_SHIFTCFG_SSTOP_MASK;
if (enable)
{
tmpConfig |= FLEXIO_SHIFTCFG_SSTOP(kFLEXIO_ShifterStopBitLow);
}
else
{
tmpConfig |= FLEXIO_SHIFTCFG_SSTOP(kFLEXIO_ShifterStopBitHigh);
}
base->flexioBase->SHIFTCFG[base->shifterIndex[0]] = tmpConfig;
}
/*!
* brief Sends a buffer of data in bytes.
*
* note This function blocks via polling until all bytes have been sent.
*
* param base Pointer to FLEXIO_I2C_Type structure.
* param txBuff The data bytes to send.
* param txSize The number of data bytes to send.
* retval kStatus_Success Successfully write data.
* retval kStatus_FLEXIO_I2C_Nak Receive NAK during writing data.
* retval kStatus_FLEXIO_I2C_Timeout Timeout polling status flags.
*/
status_t FLEXIO_I2C_MasterWriteBlocking(FLEXIO_I2C_Type *base, const uint8_t *txBuff, uint8_t txSize)
{
assert(txBuff != NULL);
assert(txSize != 0U);
uint32_t status;
#if I2C_RETRY_TIMES
uint32_t waitTimes = I2C_RETRY_TIMES;
#endif
while (0U != txSize--)
{
FLEXIO_I2C_MasterWriteByte(base, *txBuff++);
/* Wait until data transfer complete. */
#if I2C_RETRY_TIMES
waitTimes = I2C_RETRY_TIMES;
while ((0U == ((status = FLEXIO_I2C_MasterGetStatusFlags(base)) & (uint32_t)kFLEXIO_I2C_RxFullFlag)) &&
(0U != --waitTimes))
{
}
if (0U == waitTimes)
{
return kStatus_FLEXIO_I2C_Timeout;
}
#else
while (0U == ((status = FLEXIO_I2C_MasterGetStatusFlags(base)) & (uint32_t)kFLEXIO_I2C_RxFullFlag))
{
}
#endif
if ((status & (uint32_t)kFLEXIO_I2C_ReceiveNakFlag) != 0U)
{
FLEXIO_ClearShifterErrorFlags(base->flexioBase, 1UL << base->shifterIndex[1]);
return kStatus_FLEXIO_I2C_Nak;
}
}
return kStatus_Success;
}
/*!
* brief Receives a buffer of bytes.
*
* note This function blocks via polling until all bytes have been received.
*
* param base Pointer to FLEXIO_I2C_Type structure.
* param rxBuff The buffer to store the received bytes.
* param rxSize The number of data bytes to be received.
* retval kStatus_Success Successfully read data.
* retval kStatus_FLEXIO_I2C_Timeout Timeout polling status flags.
*/
status_t FLEXIO_I2C_MasterReadBlocking(FLEXIO_I2C_Type *base, uint8_t *rxBuff, uint8_t rxSize)
{
assert(rxBuff != NULL);
assert(rxSize != 0U);
#if I2C_RETRY_TIMES
uint32_t waitTimes = I2C_RETRY_TIMES;
#endif
while (0U != rxSize--)
{
/* Wait until data transfer complete. */
#if I2C_RETRY_TIMES
waitTimes = I2C_RETRY_TIMES;
while ((0U == (FLEXIO_I2C_MasterGetStatusFlags(base) & (uint32_t)kFLEXIO_I2C_RxFullFlag)) &&
(0U != --waitTimes))
{
}
if (0U == waitTimes)
{
return kStatus_FLEXIO_I2C_Timeout;
}
#else
while (0U == (FLEXIO_I2C_MasterGetStatusFlags(base) & (uint32_t)kFLEXIO_I2C_RxFullFlag))
{
}
#endif
*rxBuff++ = FLEXIO_I2C_MasterReadByte(base);
}
return kStatus_Success;
}
/*!
* brief Performs a master polling transfer on the I2C bus.
*
* note The API does not return until the transfer succeeds or fails due
* to receiving NAK.
*
* param base pointer to FLEXIO_I2C_Type structure.
* param xfer pointer to flexio_i2c_master_transfer_t structure.
* return status of status_t.
*/
status_t FLEXIO_I2C_MasterTransferBlocking(FLEXIO_I2C_Type *base, flexio_i2c_master_transfer_t *xfer)
{
assert(xfer != NULL);
#if defined(FSL_FEATURE_FLEXIO_HAS_PIN_STATUS) && FSL_FEATURE_FLEXIO_HAS_PIN_STATUS
/* Return an error if the bus is already in use not by us.*/
status_t status = FLEXIO_I2C_CheckForBusyBus(base);
if (status != kStatus_Success)
{
return status;
}
#endif /*FSL_FEATURE_FLEXIO_HAS_PIN_STATUS*/
flexio_i2c_master_handle_t tmpHandle;
uint32_t statusFlags;
status_t result = kStatus_Success;
#if I2C_RETRY_TIMES
uint32_t waitTimes = I2C_RETRY_TIMES;
#endif
/* Zero the handle. */
(void)memset(&tmpHandle, 0, sizeof(tmpHandle));
/* Set up transfer machine. */
result = FLEXIO_I2C_MasterTransferInitStateMachine(base, &tmpHandle, xfer);
if (result != kStatus_Success)
{
return result;
}
do
{
/* Wait either tx empty or rx full flag is asserted. */
#if I2C_RETRY_TIMES
waitTimes = I2C_RETRY_TIMES;
while ((0U == ((statusFlags = FLEXIO_I2C_MasterGetStatusFlags(base)) &
((uint32_t)kFLEXIO_I2C_TxEmptyFlag | (uint32_t)kFLEXIO_I2C_RxFullFlag))) &&
(0U != --waitTimes))
{
}
if (0U == waitTimes)
{
return kStatus_FLEXIO_I2C_Timeout;
}
#else
while (0U == ((statusFlags = FLEXIO_I2C_MasterGetStatusFlags(base)) &
((uint32_t)kFLEXIO_I2C_TxEmptyFlag | (uint32_t)kFLEXIO_I2C_RxFullFlag)))
{
}
#endif
FLEXIO_ClearTimerStatusFlags(base->flexioBase, ((1UL << base->timerIndex[0]) | (1UL << base->timerIndex[1])));
result = FLEXIO_I2C_MasterTransferRunStateMachine(base, &tmpHandle, statusFlags);
} while ((tmpHandle.state != (uint8_t)kFLEXIO_I2C_Idle) && (result == kStatus_Success));
/* Timer disable on timer compare, wait until bit clock TSF set, which means timer disable and stop has been sent.
*/
while (0U == (FLEXIO_GetTimerStatusFlags(base->flexioBase) & (1UL << base->timerIndex[1])))
{
}
return result;
}
/*!
* brief Initializes the I2C handle which is used in transactional functions.
*
* param base Pointer to FLEXIO_I2C_Type structure.
* param handle Pointer to flexio_i2c_master_handle_t structure to store the transfer state.
* param callback Pointer to user callback function.
* param userData User param passed to the callback function.
* retval kStatus_Success Successfully create the handle.
* retval kStatus_OutOfRange The FlexIO type/handle/isr table out of range.
*/
status_t FLEXIO_I2C_MasterTransferCreateHandle(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
flexio_i2c_master_transfer_callback_t callback,
void *userData)
{
assert(handle != NULL);
IRQn_Type flexio_irqs[] = FLEXIO_IRQS;
/* Zero the handle. */
(void)memset(handle, 0, sizeof(*handle));
/* Register callback and userData. */
handle->completionCallback = callback;
handle->userData = userData;
/* Clear pending NVIC IRQ before enable NVIC IRQ. */
NVIC_ClearPendingIRQ(flexio_irqs[FLEXIO_I2C_GetInstance(base)]);
(void)EnableIRQ(flexio_irqs[FLEXIO_I2C_GetInstance(base)]);
/* Save the context in global variables to support the double weak mechanism. */
return FLEXIO_RegisterHandleIRQ(base, handle, FLEXIO_I2C_MasterTransferHandleIRQ);
}
/*!
* brief Performs a master interrupt non-blocking transfer on the I2C bus.
*
* note The API returns immediately after the transfer initiates.
* Call FLEXIO_I2C_MasterTransferGetCount to poll the transfer status to check whether
* the transfer is finished. If the return status is not kStatus_FLEXIO_I2C_Busy, the transfer
* is finished.
*
* param base Pointer to FLEXIO_I2C_Type structure
* param handle Pointer to flexio_i2c_master_handle_t structure which stores the transfer state
* param xfer pointer to flexio_i2c_master_transfer_t structure
* retval kStatus_Success Successfully start a transfer.
* retval kStatus_FLEXIO_I2C_Busy FlexIO I2C is not idle, is running another transfer.
*/
status_t FLEXIO_I2C_MasterTransferNonBlocking(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
flexio_i2c_master_transfer_t *xfer)
{
assert(handle != NULL);
assert(xfer != NULL);
status_t result = kStatus_Success;
#if defined(FSL_FEATURE_FLEXIO_HAS_PIN_STATUS) && FSL_FEATURE_FLEXIO_HAS_PIN_STATUS
/* Return an error if the bus is already in use not by us.*/
result = FLEXIO_I2C_CheckForBusyBus(base);
if (result != kStatus_Success)
{
return result;
}
#endif /*FSL_FEATURE_FLEXIO_HAS_PIN_STATUS*/
if (handle->state != (uint8_t)kFLEXIO_I2C_Idle)
{
return kStatus_FLEXIO_I2C_Busy;
}
else
{
/* Set up transfer machine. */
result = FLEXIO_I2C_MasterTransferInitStateMachine(base, handle, xfer);
if (result != kStatus_Success)
{
return result;
}
/* Enable both tx empty and rxfull interrupt. */
FLEXIO_I2C_MasterEnableInterrupts(
base, (uint32_t)kFLEXIO_I2C_TxEmptyInterruptEnable | (uint32_t)kFLEXIO_I2C_RxFullInterruptEnable);
return kStatus_Success;
}
}
/*!
* brief Aborts an interrupt non-blocking transfer early.
*
* note This API can be called at any time when an interrupt non-blocking transfer initiates
* to abort the transfer early.
*
* param base Pointer to FLEXIO_I2C_Type structure
* param handle Pointer to flexio_i2c_master_handle_t structure which stores the transfer state
*/
void FLEXIO_I2C_MasterTransferAbort(FLEXIO_I2C_Type *base, flexio_i2c_master_handle_t *handle)
{
assert(handle != NULL);
/* Disable interrupts. */
FLEXIO_I2C_MasterDisableInterrupts(
base, (uint32_t)kFLEXIO_I2C_TxEmptyInterruptEnable | (uint32_t)kFLEXIO_I2C_RxFullInterruptEnable);
/* Reset to idle state. */
handle->state = (uint8_t)kFLEXIO_I2C_Idle;
}
/*!
* brief Gets the master transfer status during a interrupt non-blocking transfer.
*
* param base Pointer to FLEXIO_I2C_Type structure.
* param handle Pointer to flexio_i2c_master_handle_t structure which stores the transfer state.
* param count Number of bytes transferred so far by the non-blocking transaction.
* retval kStatus_InvalidArgument count is Invalid.
* retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
* retval kStatus_Success Successfully return the count.
*/
status_t FLEXIO_I2C_MasterTransferGetCount(FLEXIO_I2C_Type *base, flexio_i2c_master_handle_t *handle, size_t *count)
{
if (NULL == count)
{
return kStatus_InvalidArgument;
}
/* Catch when there is not an active transfer. */
if (handle->state == (uint8_t)kFLEXIO_I2C_Idle)
{
*count = 0;
return kStatus_NoTransferInProgress;
}
*count = handle->transferSize - handle->transfer.dataSize;
return kStatus_Success;
}
/*!
* brief Master interrupt handler.
*
* param i2cType Pointer to FLEXIO_I2C_Type structure
* param i2cHandle Pointer to flexio_i2c_master_transfer_t structure
*/
void FLEXIO_I2C_MasterTransferHandleIRQ(void *i2cType, void *i2cHandle)
{
FLEXIO_I2C_Type *base = (FLEXIO_I2C_Type *)i2cType;
flexio_i2c_master_handle_t *handle = (flexio_i2c_master_handle_t *)i2cHandle;
uint32_t statusFlags;
status_t result;
statusFlags = FLEXIO_I2C_MasterGetStatusFlags(base);
result = FLEXIO_I2C_MasterTransferRunStateMachine(base, handle, statusFlags);
if (handle->state == (uint8_t)kFLEXIO_I2C_Idle)
{
FLEXIO_I2C_MasterTransferComplete(base, handle, result);
}
}