MCUXpresso_MIMXRT1021xxxxx/devices/MIMXRT1021/drivers/fsl_sai_edma.c

1014 lines
39 KiB
C

/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2021 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_sai_edma.h"
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.sai_edma"
#endif
/*******************************************************************************
* Definitions
******************************************************************************/
/* Used for 32byte aligned */
#define STCD_ADDR(address) (edma_tcd_t *)(((uint32_t)(address) + 32UL) & ~0x1FU)
static I2S_Type *const s_saiBases[] = I2S_BASE_PTRS;
/* Only support 2 and 4 channel */
#define SAI_CHANNEL_MAP_MODULO(channel) ((channel) == 2U ? kEDMA_Modulo8bytes : kEDMA_Modulo16bytes)
/*<! Structure definition for uart_edma_private_handle_t. The structure is private. */
typedef struct sai_edma_private_handle
{
I2S_Type *base;
sai_edma_handle_t *handle;
} sai_edma_private_handle_t;
/*! @brief sai_edma_transfer_state, sai edma transfer state.*/
enum
{
kSAI_Busy = 0x0U, /*!< SAI is busy */
kSAI_BusyLoopTransfer, /*!< SAI is busy for Loop transfer */
kSAI_Idle, /*!< Transfer is done. */
};
/*<! Private handle only used for internally. */
static sai_edma_private_handle_t s_edmaPrivateHandle[ARRAY_SIZE(s_saiBases)][2];
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get the instance number for SAI.
*
* @param base SAI base pointer.
*/
static uint32_t SAI_GetInstance(I2S_Type *base);
/*!
* @brief SAI EDMA callback for send.
*
* @param handle pointer to sai_edma_handle_t structure which stores the transfer state.
* @param userData Parameter for user callback.
* @param done If the DMA transfer finished.
* @param tcds The TCD index.
*/
static void SAI_TxEDMACallback(edma_handle_t *handle, void *userData, bool done, uint32_t tcds);
/*!
* @brief SAI EDMA callback for receive.
*
* @param handle pointer to sai_edma_handle_t structure which stores the transfer state.
* @param userData Parameter for user callback.
* @param done If the DMA transfer finished.
* @param tcds The TCD index.
*/
static void SAI_RxEDMACallback(edma_handle_t *handle, void *userData, bool done, uint32_t tcds);
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t SAI_GetInstance(I2S_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_saiBases); instance++)
{
if (s_saiBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_saiBases));
return instance;
}
static void SAI_TxEDMACallback(edma_handle_t *handle, void *userData, bool done, uint32_t tcds)
{
sai_edma_private_handle_t *privHandle = (sai_edma_private_handle_t *)userData;
sai_edma_handle_t *saiHandle = privHandle->handle;
status_t status = kStatus_SAI_TxBusy;
if (saiHandle->state != (uint32_t)kSAI_BusyLoopTransfer)
{
if (saiHandle->queueDriver + tcds > (uint32_t)SAI_XFER_QUEUE_SIZE)
{
(void)memset(&saiHandle->saiQueue[saiHandle->queueDriver], 0,
sizeof(sai_transfer_t) * ((uint32_t)SAI_XFER_QUEUE_SIZE - saiHandle->queueDriver));
(void)memset(&saiHandle->saiQueue[0U], 0,
sizeof(sai_transfer_t) * (saiHandle->queueDriver + tcds - (uint32_t)SAI_XFER_QUEUE_SIZE));
}
else
{
(void)memset(&saiHandle->saiQueue[saiHandle->queueDriver], 0, sizeof(sai_transfer_t) * tcds);
}
saiHandle->queueDriver = (uint8_t)((saiHandle->queueDriver + tcds) % (uint32_t)SAI_XFER_QUEUE_SIZE);
/* If all data finished, just stop the transfer */
if (saiHandle->saiQueue[saiHandle->queueDriver].data == NULL)
{
/* Disable DMA enable bit */
SAI_TxEnableDMA(privHandle->base, kSAI_FIFORequestDMAEnable, false);
EDMA_AbortTransfer(handle);
status = kStatus_SAI_TxIdle;
}
}
/* If finished a block, call the callback function */
if (saiHandle->callback != NULL)
{
(saiHandle->callback)(privHandle->base, saiHandle, status, saiHandle->userData);
}
}
static void SAI_RxEDMACallback(edma_handle_t *handle, void *userData, bool done, uint32_t tcds)
{
sai_edma_private_handle_t *privHandle = (sai_edma_private_handle_t *)userData;
sai_edma_handle_t *saiHandle = privHandle->handle;
status_t status = kStatus_SAI_RxBusy;
if (saiHandle->state != (uint32_t)kSAI_BusyLoopTransfer)
{
if (saiHandle->queueDriver + tcds > (uint32_t)SAI_XFER_QUEUE_SIZE)
{
(void)memset(&saiHandle->saiQueue[saiHandle->queueDriver], 0,
sizeof(sai_transfer_t) * ((uint32_t)SAI_XFER_QUEUE_SIZE - saiHandle->queueDriver));
(void)memset(&saiHandle->saiQueue[0U], 0,
sizeof(sai_transfer_t) * (saiHandle->queueDriver + tcds - (uint32_t)SAI_XFER_QUEUE_SIZE));
}
else
{
(void)memset(&saiHandle->saiQueue[saiHandle->queueDriver], 0, sizeof(sai_transfer_t) * tcds);
}
saiHandle->queueDriver = (uint8_t)((saiHandle->queueDriver + tcds) % (uint32_t)SAI_XFER_QUEUE_SIZE);
/* If all data finished, just stop the transfer */
if (saiHandle->saiQueue[saiHandle->queueDriver].data == NULL)
{
/* Disable DMA enable bit */
SAI_RxEnableDMA(privHandle->base, kSAI_FIFORequestDMAEnable, false);
EDMA_AbortTransfer(handle);
status = kStatus_SAI_RxIdle;
}
}
/* If finished a block, call the callback function */
if (saiHandle->callback != NULL)
{
(saiHandle->callback)(privHandle->base, saiHandle, status, saiHandle->userData);
}
}
/*!
* brief Initializes the SAI eDMA handle.
*
* This function initializes the SAI master DMA handle, which can be used for other SAI master transactional APIs.
* Usually, for a specified SAI instance, call this API once to get the initialized handle.
*
* param base SAI base pointer.
* param handle SAI eDMA handle pointer.
* param base SAI peripheral base address.
* param callback Pointer to user callback function.
* param userData User parameter passed to the callback function.
* param dmaHandle eDMA handle pointer, this handle shall be static allocated by users.
*/
void SAI_TransferTxCreateHandleEDMA(
I2S_Type *base, sai_edma_handle_t *handle, sai_edma_callback_t callback, void *userData, edma_handle_t *txDmaHandle)
{
assert((handle != NULL) && (txDmaHandle != NULL));
uint32_t instance = SAI_GetInstance(base);
/* Zero the handle */
(void)memset(handle, 0, sizeof(*handle));
/* Set sai base to handle */
handle->dmaHandle = txDmaHandle;
handle->callback = callback;
handle->userData = userData;
handle->interleaveType = kSAI_EDMAInterleavePerChannelSample;
/* Set SAI state to idle */
handle->state = (uint32_t)kSAI_Idle;
s_edmaPrivateHandle[instance][0].base = base;
s_edmaPrivateHandle[instance][0].handle = handle;
/* Need to use scatter gather */
EDMA_InstallTCDMemory(txDmaHandle, (edma_tcd_t *)(STCD_ADDR(handle->tcd)), SAI_XFER_QUEUE_SIZE);
/* Install callback for Tx dma channel */
EDMA_SetCallback(txDmaHandle, SAI_TxEDMACallback, &s_edmaPrivateHandle[instance][0]);
}
/*!
* brief Initializes the SAI Rx eDMA handle.
*
* This function initializes the SAI slave DMA handle, which can be used for other SAI master transactional APIs.
* Usually, for a specified SAI instance, call this API once to get the initialized handle.
*
* param base SAI base pointer.
* param handle SAI eDMA handle pointer.
* param base SAI peripheral base address.
* param callback Pointer to user callback function.
* param userData User parameter passed to the callback function.
* param dmaHandle eDMA handle pointer, this handle shall be static allocated by users.
*/
void SAI_TransferRxCreateHandleEDMA(
I2S_Type *base, sai_edma_handle_t *handle, sai_edma_callback_t callback, void *userData, edma_handle_t *rxDmaHandle)
{
assert((handle != NULL) && (rxDmaHandle != NULL));
uint32_t instance = SAI_GetInstance(base);
/* Zero the handle */
(void)memset(handle, 0, sizeof(*handle));
/* Set sai base to handle */
handle->dmaHandle = rxDmaHandle;
handle->callback = callback;
handle->userData = userData;
handle->interleaveType = kSAI_EDMAInterleavePerChannelSample;
/* Set SAI state to idle */
handle->state = (uint32_t)kSAI_Idle;
s_edmaPrivateHandle[instance][1].base = base;
s_edmaPrivateHandle[instance][1].handle = handle;
/* Need to use scatter gather */
EDMA_InstallTCDMemory(rxDmaHandle, STCD_ADDR(handle->tcd), SAI_XFER_QUEUE_SIZE);
/* Install callback for Tx dma channel */
EDMA_SetCallback(rxDmaHandle, SAI_RxEDMACallback, &s_edmaPrivateHandle[instance][1]);
}
/*!
* brief Initializes the SAI interleave type.
*
* This function initializes the SAI DMA handle member interleaveType, it shall be called only when application would
* like to use type kSAI_EDMAInterleavePerChannelBlock, since the default interleaveType is
* kSAI_EDMAInterleavePerChannelSample always
*
* param handle SAI eDMA handle pointer.
* param interleaveType SAI interleave type.
*/
void SAI_TransferSetInterleaveType(sai_edma_handle_t *handle, sai_edma_interleave_t interleaveType)
{
handle->interleaveType = interleaveType;
}
/*!
* brief Configures the SAI Tx.
*
* note SAI eDMA supports data transfer in a multiple SAI channels if the FIFO Combine feature is supported.
* To activate the multi-channel transfer enable SAI channels by filling the channelMask
* of sai_transceiver_t with the corresponding values of _sai_channel_mask enum, enable the FIFO Combine
* mode by assigning kSAI_FifoCombineModeEnabledOnWrite to the fifoCombine member of sai_fifo_combine_t
* which is a member of sai_transceiver_t.
* This is an example of multi-channel data transfer configuration step.
* code
* sai_transceiver_t config;
* SAI_GetClassicI2SConfig(&config, kSAI_WordWidth16bits, kSAI_Stereo, kSAI_Channel0Mask|kSAI_Channel1Mask);
* config.fifo.fifoCombine = kSAI_FifoCombineModeEnabledOnWrite;
* SAI_TransferTxSetConfigEDMA(I2S0, &edmaHandle, &config);
* endcode
* param base SAI base pointer.
* param handle SAI eDMA handle pointer.
* param saiConfig sai configurations.
*/
void SAI_TransferTxSetConfigEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transceiver_t *saiConfig)
{
assert((handle != NULL) && (saiConfig != NULL));
/* Configure the audio format to SAI registers */
SAI_TxSetConfig(base, saiConfig);
#if defined(FSL_FEATURE_SAI_HAS_FIFO_COMBINE_MODE) && FSL_FEATURE_SAI_HAS_FIFO_COMBINE_MODE
/* Allow multi-channel transfer only if FIFO Combine mode is enabled */
assert(
(saiConfig->channelNums <= 1U) ||
((saiConfig->channelNums > 1U) && ((saiConfig->fifo.fifoCombine == kSAI_FifoCombineModeEnabledOnWrite) ||
(saiConfig->fifo.fifoCombine == kSAI_FifoCombineModeEnabledOnReadWrite))));
#endif
/* Get the transfer size from format, this should be used in EDMA configuration */
if (saiConfig->serialData.dataWordLength == 24U)
{
handle->bytesPerFrame = 4U;
}
else
{
handle->bytesPerFrame = saiConfig->serialData.dataWordLength / 8U;
}
/* Update the data channel SAI used */
handle->channel = saiConfig->startChannel;
handle->channelMask = saiConfig->channelMask;
handle->channelNums = saiConfig->channelNums;
/* Clear the channel enable bits until do a send/receive */
base->TCR3 &= ~I2S_TCR3_TCE_MASK;
#if defined(FSL_FEATURE_SAI_HAS_FIFO) && (FSL_FEATURE_SAI_HAS_FIFO)
handle->count = (uint8_t)((uint32_t)FSL_FEATURE_SAI_FIFO_COUNTn(base) - saiConfig->fifo.fifoWatermark);
#else
handle->count = 1U;
#endif /* FSL_FEATURE_SAI_HAS_FIFO */
}
/*!
* brief Configures the SAI Rx.
*
* note SAI eDMA supports data transfer in a multiple SAI channels if the FIFO Combine feature is supported.
* To activate the multi-channel transfer enable SAI channels by filling the channelMask
* of sai_transceiver_t with the corresponding values of _sai_channel_mask enum, enable the FIFO Combine
* mode by assigning kSAI_FifoCombineModeEnabledOnRead to the fifoCombine member of sai_fifo_combine_t
* which is a member of sai_transceiver_t.
* This is an example of multi-channel data transfer configuration step.
* code
* sai_transceiver_t config;
* SAI_GetClassicI2SConfig(&config, kSAI_WordWidth16bits, kSAI_Stereo, kSAI_Channel0Mask|kSAI_Channel1Mask);
* config.fifo.fifoCombine = kSAI_FifoCombineModeEnabledOnRead;
* SAI_TransferRxSetConfigEDMA(I2S0, &edmaHandle, &config);
* endcode
* param base SAI base pointer.
* param handle SAI eDMA handle pointer.
* param saiConfig sai configurations.
*/
void SAI_TransferRxSetConfigEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transceiver_t *saiConfig)
{
assert((handle != NULL) && (saiConfig != NULL));
/* Configure the audio format to SAI registers */
SAI_RxSetConfig(base, saiConfig);
#if defined(FSL_FEATURE_SAI_HAS_FIFO_COMBINE_MODE) && FSL_FEATURE_SAI_HAS_FIFO_COMBINE_MODE
/* Allow multi-channel transfer only if FIFO Combine mode is enabled */
assert(
(saiConfig->channelNums <= 1U) ||
((saiConfig->channelNums > 1U) && ((saiConfig->fifo.fifoCombine == kSAI_FifoCombineModeEnabledOnRead) ||
(saiConfig->fifo.fifoCombine == kSAI_FifoCombineModeEnabledOnReadWrite))));
#endif
/* Get the transfer size from format, this should be used in EDMA configuration */
if (saiConfig->serialData.dataWordLength == 24U)
{
handle->bytesPerFrame = 4U;
}
else
{
handle->bytesPerFrame = saiConfig->serialData.dataWordLength / 8U;
}
/* Update the data channel SAI used */
handle->channel = saiConfig->startChannel;
handle->channelMask = saiConfig->channelMask;
handle->channelNums = saiConfig->channelNums;
/* Clear the channel enable bits until do a send/receive */
base->RCR3 &= ~I2S_RCR3_RCE_MASK;
#if defined(FSL_FEATURE_SAI_HAS_FIFO) && (FSL_FEATURE_SAI_HAS_FIFO)
handle->count = saiConfig->fifo.fifoWatermark;
#else
handle->count = 1U;
#endif /* FSL_FEATURE_SAI_HAS_FIFO */
}
/*!
* brief Performs a non-blocking SAI transfer using DMA.
*
* note This interface returns immediately after the transfer initiates. Call
* SAI_GetTransferStatus to poll the transfer status and check whether the SAI transfer is finished.
*
* In classic I2S mode configuration.
* 1. The data source sent should be formatted as below if handle->interleaveType =
* kSAI_EDMAInterleavePerChannelSample :
* --------------------------------------------------------------------------------------------------
* |LEFT CHANNEL | RIGHT CHANNEL | LEFT CHANNEL | RIGHT CHANNEL | LEFT CHANNEL | RIGHT CHANNEL | ...|
* --------------------------------------------------------------------------------------------------
* 2. The data source sent should be formatted as below if handle->interleaveType =
* kSAI_EDMAInterleavePerChannelBlock :
* -------------------------------------------------------------------------------------------------------
* |LEFT CHANNEL | LEFT CHANNEL | LEFT CHANNEL | ...| RIGHT CHANNEL | RIGHT CHANNEL | RIGHT CHANNEL | ...|
* -------------------------------------------------------------------------------------------------------
*
* This function support multi channel transfer,
* 1. for the sai IP support fifo combine mode, application should enable the fifo combine mode, no limitation
* on channel numbers
* 2. for the sai IP not support fifo combine mode, sai edma provide another solution which using
* EDMA modulo feature, but support 2 or 4 channels only.
*
* param base SAI base pointer.
* param handle SAI eDMA handle pointer.
* param xfer Pointer to the DMA transfer structure.
* retval kStatus_Success Start a SAI eDMA send successfully.
* retval kStatus_InvalidArgument The input argument is invalid.
* retval kStatus_TxBusy SAI is busy sending data.
*/
status_t SAI_TransferSendEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transfer_t *xfer)
{
assert((handle != NULL) && (xfer != NULL));
edma_transfer_config_t config = {0};
uint32_t destAddr = SAI_TxGetDataRegisterAddress(base, handle->channel);
uint32_t destOffset = 0U;
uint32_t srcOffset = xfer->dataSize / 2U;
edma_tcd_t *currentTCD = STCD_ADDR(handle->tcd);
edma_minor_offset_config_t minorOffset = {.enableSrcMinorOffset = true,
.enableDestMinorOffset = false,
.minorOffset = 0xFFFFFU - 2U * srcOffset + 1U + handle->bytesPerFrame};
/* Check if input parameter invalid */
if ((xfer->data == NULL) || (xfer->dataSize == 0U))
{
return kStatus_InvalidArgument;
}
if (handle->saiQueue[handle->queueUser].data != NULL)
{
return kStatus_SAI_QueueFull;
}
/* Change the state of handle */
handle->state = (uint32_t)kSAI_Busy;
/* Update the queue state */
handle->transferSize[handle->queueUser] = xfer->dataSize;
handle->saiQueue[handle->queueUser].data = xfer->data;
handle->saiQueue[handle->queueUser].dataSize = xfer->dataSize;
handle->queueUser = (handle->queueUser + 1U) % (uint8_t)SAI_XFER_QUEUE_SIZE;
#if !(defined(FSL_FEATURE_SAI_HAS_FIFO_COMBINE_MODE) && FSL_FEATURE_SAI_HAS_FIFO_COMBINE_MODE)
if (handle->channelNums > 1U)
{
destOffset = sizeof(uint32_t);
}
#endif
if (handle->interleaveType == kSAI_EDMAInterleavePerChannelSample)
{
/* Prepare edma configure */
EDMA_PrepareTransferConfig(&config, xfer->data, (uint32_t)handle->bytesPerFrame, (int16_t)handle->bytesPerFrame,
(uint32_t *)destAddr, (uint32_t)handle->bytesPerFrame, (int16_t)destOffset,
(uint32_t)handle->count * handle->bytesPerFrame, xfer->dataSize);
}
else
{
EDMA_PrepareTransferConfig(&config, xfer->data, (uint32_t)handle->bytesPerFrame, (int16_t)srcOffset,
(uint32_t *)destAddr, (uint32_t)handle->bytesPerFrame, (int16_t)destOffset,
(uint32_t)2U * handle->bytesPerFrame, xfer->dataSize);
EDMA_TcdSetTransferConfig(currentTCD, &config, NULL);
EDMA_TcdSetMinorOffsetConfig(currentTCD, &minorOffset);
EDMA_TcdEnableInterrupts(currentTCD, (uint32_t)kEDMA_MajorInterruptEnable);
EDMA_TcdEnableAutoStopRequest(currentTCD, true);
EDMA_InstallTCD(handle->dmaHandle->base, handle->dmaHandle->channel, currentTCD);
}
/* Store the initially configured eDMA minor byte transfer count into the SAI handle */
handle->nbytes = handle->count * handle->bytesPerFrame;
if (EDMA_SubmitTransfer(handle->dmaHandle, &config) != kStatus_Success)
{
return kStatus_SAI_QueueFull;
}
#if !(defined(FSL_FEATURE_SAI_HAS_FIFO_COMBINE_MODE) && FSL_FEATURE_SAI_HAS_FIFO_COMBINE_MODE)
if (handle->channelNums > 1U)
{
if ((handle->channelNums % 2U) != 0U)
{
return kStatus_InvalidArgument;
}
EDMA_SetModulo(handle->dmaHandle->base, handle->dmaHandle->channel, kEDMA_ModuloDisable,
SAI_CHANNEL_MAP_MODULO(handle->channelNums));
}
#endif
/* Start DMA transfer */
EDMA_StartTransfer(handle->dmaHandle);
/* Enable DMA enable bit */
SAI_TxEnableDMA(base, kSAI_FIFORequestDMAEnable, true);
/* Enable SAI Tx clock */
SAI_TxEnable(base, true);
/* Enable the channel FIFO */
base->TCR3 |= I2S_TCR3_TCE(handle->channelMask);
return kStatus_Success;
}
/*!
* brief Performs a non-blocking SAI receive using eDMA.
*
* note This interface returns immediately after the transfer initiates. Call
* the SAI_GetReceiveRemainingBytes to poll the transfer status and check whether the SAI transfer is finished.
*
* In classic I2S mode configuration.
* 1. The output data will be formatted as below if handle->interleaveType =
* kSAI_EDMAInterleavePerChannelSample :
* --------------------------------------------------------------------------------------------------
* |LEFT CHANNEL | RIGHT CHANNEL | LEFT CHANNEL | RIGHT CHANNEL | LEFT CHANNEL | RIGHT CHANNEL | ...|
* --------------------------------------------------------------------------------------------------
* 2. The output data will be formatted as below if handle->interleaveType =
* kSAI_EDMAInterleavePerChannelBlock :
* -------------------------------------------------------------------------------------------------------
* |LEFT CHANNEL | LEFT CHANNEL | LEFT CHANNEL | ...| RIGHT CHANNEL | RIGHT CHANNEL | RIGHT CHANNEL | ...|
* -------------------------------------------------------------------------------------------------------
*
* This function support multi channel transfer,
* 1. for the sai IP support fifo combine mode, application should enable the fifo combine mode, no limitation
* on channel numbers
* 2. for the sai IP not support fifo combine mode, sai edma provide another solution which using
* EDMA modulo feature, but support 2 or 4 channels only.
*
* param base SAI base pointer
* param handle SAI eDMA handle pointer.
* param xfer Pointer to DMA transfer structure.
* retval kStatus_Success Start a SAI eDMA receive successfully.
* retval kStatus_InvalidArgument The input argument is invalid.
* retval kStatus_RxBusy SAI is busy receiving data.
*/
status_t SAI_TransferReceiveEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transfer_t *xfer)
{
assert((handle != NULL) && (xfer != NULL));
edma_transfer_config_t config = {0};
uint32_t srcAddr = SAI_RxGetDataRegisterAddress(base, handle->channel);
uint32_t srcOffset = 0U;
uint32_t destOffset = xfer->dataSize / 2U;
edma_tcd_t *currentTCD = STCD_ADDR(handle->tcd);
edma_minor_offset_config_t minorOffset = {
.enableSrcMinorOffset = false,
.enableDestMinorOffset = true,
.minorOffset = 0xFFFFFU - 2U * destOffset + 1U + (uint32_t)handle->bytesPerFrame};
/* Check if input parameter invalid */
if ((xfer->data == NULL) || (xfer->dataSize == 0U))
{
return kStatus_InvalidArgument;
}
if (handle->saiQueue[handle->queueUser].data != NULL)
{
return kStatus_SAI_QueueFull;
}
/* Change the state of handle */
handle->state = (uint32_t)kSAI_Busy;
/* Update queue state */
handle->transferSize[handle->queueUser] = xfer->dataSize;
handle->saiQueue[handle->queueUser].data = xfer->data;
handle->saiQueue[handle->queueUser].dataSize = xfer->dataSize;
handle->queueUser = (handle->queueUser + 1U) % (uint8_t)SAI_XFER_QUEUE_SIZE;
#if !(defined(FSL_FEATURE_SAI_HAS_FIFO_COMBINE_MODE) && FSL_FEATURE_SAI_HAS_FIFO_COMBINE_MODE)
if (handle->channelNums > 1U)
{
srcOffset = sizeof(uint32_t);
}
#endif
if (handle->interleaveType == kSAI_EDMAInterleavePerChannelSample)
{
/* Prepare edma configure */
EDMA_PrepareTransferConfig(&config, (uint32_t *)srcAddr, (uint32_t)handle->bytesPerFrame, (int16_t)srcOffset,
xfer->data, (uint32_t)handle->bytesPerFrame, (int16_t)handle->bytesPerFrame,
(uint32_t)handle->count * handle->bytesPerFrame, xfer->dataSize);
}
else
{
EDMA_PrepareTransferConfig(&config, (uint32_t *)srcAddr, (uint32_t)handle->bytesPerFrame, (int16_t)srcOffset,
xfer->data, (uint32_t)handle->bytesPerFrame, (int16_t)destOffset,
(uint32_t)2U * handle->bytesPerFrame, xfer->dataSize);
EDMA_TcdSetTransferConfig(currentTCD, &config, NULL);
EDMA_TcdSetMinorOffsetConfig(currentTCD, &minorOffset);
EDMA_TcdEnableInterrupts(currentTCD, (uint32_t)kEDMA_MajorInterruptEnable);
EDMA_TcdEnableAutoStopRequest(currentTCD, true);
EDMA_InstallTCD(handle->dmaHandle->base, handle->dmaHandle->channel, currentTCD);
}
/* Store the initially configured eDMA minor byte transfer count into the SAI handle */
handle->nbytes = handle->count * handle->bytesPerFrame;
if (EDMA_SubmitTransfer(handle->dmaHandle, &config) != kStatus_Success)
{
return kStatus_SAI_QueueFull;
}
#if !(defined(FSL_FEATURE_SAI_HAS_FIFO_COMBINE_MODE) && FSL_FEATURE_SAI_HAS_FIFO_COMBINE_MODE)
if (handle->channelNums > 1U)
{
if ((handle->channelNums % 2U) != 0U)
{
return kStatus_InvalidArgument;
}
EDMA_SetModulo(handle->dmaHandle->base, handle->dmaHandle->channel, SAI_CHANNEL_MAP_MODULO(handle->channelNums),
kEDMA_ModuloDisable);
}
#endif
/* Start DMA transfer */
EDMA_StartTransfer(handle->dmaHandle);
/* Enable DMA enable bit */
SAI_RxEnableDMA(base, kSAI_FIFORequestDMAEnable, true);
/* Enable the channel FIFO */
base->RCR3 |= I2S_RCR3_RCE(handle->channelMask);
/* Enable SAI Rx clock */
SAI_RxEnable(base, true);
return kStatus_Success;
}
/*!
* brief Performs a non-blocking SAI loop transfer using eDMA.
*
* note This function support loop transfer only,such as A->B->...->A, application must be aware of
* that the more counts of the loop transfer, then more tcd memory required, as the function use the tcd pool in
* sai_edma_handle_t, so application could redefine the SAI_XFER_QUEUE_SIZE to determine the proper TCD pool size.
* This function support one sai channel only.
*
* Once the loop transfer start, application can use function SAI_TransferAbortSendEDMA to stop the loop transfer.
*
* param base SAI base pointer.
* param handle SAI eDMA handle pointer.
* param xfer Pointer to the DMA transfer structure, should be a array with elements counts >=1(loopTransferCount).
* param loopTransferCount the counts of xfer array.
* retval kStatus_Success Start a SAI eDMA send successfully.
* retval kStatus_InvalidArgument The input argument is invalid.
*/
status_t SAI_TransferSendLoopEDMA(I2S_Type *base,
sai_edma_handle_t *handle,
sai_transfer_t *xfer,
uint32_t loopTransferCount)
{
assert((handle != NULL) && (xfer != NULL));
edma_transfer_config_t config = {0};
uint32_t destAddr = SAI_TxGetDataRegisterAddress(base, handle->channel);
sai_transfer_t *transfer = xfer;
edma_tcd_t *currentTCD = STCD_ADDR(handle->tcd);
uint32_t tcdIndex = 0U;
/* Change the state of handle */
handle->state = (uint32_t)kSAI_Busy;
for (uint32_t i = 0U; i < loopTransferCount; i++)
{
transfer = &xfer[i];
if ((transfer->data == NULL) || (transfer->dataSize == 0U) || (tcdIndex >= (uint32_t)SAI_XFER_QUEUE_SIZE))
{
return kStatus_InvalidArgument;
}
/* Update the queue state */
handle->transferSize[tcdIndex] = transfer->dataSize;
handle->saiQueue[tcdIndex].data = transfer->data;
handle->saiQueue[tcdIndex].dataSize = transfer->dataSize;
/* Prepare edma configure */
EDMA_PrepareTransfer(&config, transfer->data, handle->bytesPerFrame, (uint32_t *)destAddr,
handle->bytesPerFrame, (uint32_t)handle->count * handle->bytesPerFrame, transfer->dataSize,
kEDMA_MemoryToPeripheral);
if (i == (loopTransferCount - 1U))
{
EDMA_TcdSetTransferConfig(&currentTCD[tcdIndex], &config, &currentTCD[0U]);
EDMA_TcdEnableInterrupts(&currentTCD[tcdIndex], (uint32_t)kEDMA_MajorInterruptEnable);
handle->state = (uint32_t)kSAI_BusyLoopTransfer;
break;
}
else
{
EDMA_TcdSetTransferConfig(&currentTCD[tcdIndex], &config, &currentTCD[tcdIndex + 1U]);
EDMA_TcdEnableInterrupts(&currentTCD[tcdIndex], (uint32_t)kEDMA_MajorInterruptEnable);
}
tcdIndex = tcdIndex + 1U;
}
EDMA_InstallTCD(handle->dmaHandle->base, handle->dmaHandle->channel, &currentTCD[0]);
/* Start DMA transfer */
EDMA_StartTransfer(handle->dmaHandle);
/* Enable DMA enable bit */
SAI_TxEnableDMA(base, kSAI_FIFORequestDMAEnable, true);
/* Enable SAI Tx clock */
SAI_TxEnable(base, true);
/* Enable the channel FIFO */
base->TCR3 |= I2S_TCR3_TCE(1UL << handle->channel);
return kStatus_Success;
}
/*!
* brief Performs a non-blocking SAI loop transfer using eDMA.
*
* note This function support loop transfer only,such as A->B->...->A, application must be aware of
* that the more counts of the loop transfer, then more tcd memory required, as the function use the tcd pool in
* sai_edma_handle_t, so application could redefine the SAI_XFER_QUEUE_SIZE to determine the proper TCD pool size.
* This function support one sai channel only.
*
* Once the loop transfer start, application can use function SAI_TransferAbortReceiveEDMA to stop the loop transfer.
*
* param base SAI base pointer.
* param handle SAI eDMA handle pointer.
* param xfer Pointer to the DMA transfer structure, should be a array with elements counts >=1(loopTransferCount).
* param loopTransferCount the counts of xfer array.
* retval kStatus_Success Start a SAI eDMA receive successfully.
* retval kStatus_InvalidArgument The input argument is invalid.
*/
status_t SAI_TransferReceiveLoopEDMA(I2S_Type *base,
sai_edma_handle_t *handle,
sai_transfer_t *xfer,
uint32_t loopTransferCount)
{
assert((handle != NULL) && (xfer != NULL));
edma_transfer_config_t config = {0};
uint32_t srcAddr = SAI_RxGetDataRegisterAddress(base, handle->channel);
sai_transfer_t *transfer = xfer;
edma_tcd_t *currentTCD = STCD_ADDR(handle->tcd);
uint32_t tcdIndex = 0U;
/* Change the state of handle */
handle->state = (uint32_t)kSAI_Busy;
for (uint32_t i = 0U; i < loopTransferCount; i++)
{
transfer = &xfer[i];
if ((tcdIndex >= (uint32_t)SAI_XFER_QUEUE_SIZE) || (xfer->data == NULL) || (xfer->dataSize == 0U))
{
return kStatus_InvalidArgument;
}
/* Update the queue state */
handle->transferSize[tcdIndex] = transfer->dataSize;
handle->saiQueue[tcdIndex].data = transfer->data;
handle->saiQueue[tcdIndex].dataSize = transfer->dataSize;
/* Prepare edma configure */
EDMA_PrepareTransfer(&config, (uint32_t *)srcAddr, handle->bytesPerFrame, transfer->data, handle->bytesPerFrame,
(uint32_t)handle->count * handle->bytesPerFrame, transfer->dataSize,
kEDMA_PeripheralToMemory);
if (i == (loopTransferCount - 1U))
{
EDMA_TcdSetTransferConfig(&currentTCD[tcdIndex], &config, &currentTCD[0U]);
EDMA_TcdEnableInterrupts(&currentTCD[tcdIndex], (uint32_t)kEDMA_MajorInterruptEnable);
handle->state = (uint32_t)kSAI_BusyLoopTransfer;
break;
}
else
{
EDMA_TcdSetTransferConfig(&currentTCD[tcdIndex], &config, &currentTCD[tcdIndex + 1U]);
EDMA_TcdEnableInterrupts(&currentTCD[tcdIndex], (uint32_t)kEDMA_MajorInterruptEnable);
}
tcdIndex = tcdIndex + 1U;
}
EDMA_InstallTCD(handle->dmaHandle->base, handle->dmaHandle->channel, &currentTCD[0]);
/* Start DMA transfer */
EDMA_StartTransfer(handle->dmaHandle);
/* Enable DMA enable bit */
SAI_RxEnableDMA(base, kSAI_FIFORequestDMAEnable, true);
/* Enable the channel FIFO */
base->RCR3 |= I2S_RCR3_RCE(1UL << handle->channel);
/* Enable SAI Rx clock */
SAI_RxEnable(base, true);
return kStatus_Success;
}
/*!
* brief Aborts a SAI transfer using eDMA.
*
* This function only aborts the current transfer slots, the other transfer slots' information still kept
* in the handler. If users want to terminate all transfer slots, just call SAI_TransferTerminateSendEDMA.
*
* param base SAI base pointer.
* param handle SAI eDMA handle pointer.
*/
void SAI_TransferAbortSendEDMA(I2S_Type *base, sai_edma_handle_t *handle)
{
assert(handle != NULL);
/* Disable dma */
EDMA_AbortTransfer(handle->dmaHandle);
/* Disable the channel FIFO */
base->TCR3 &= ~I2S_TCR3_TCE_MASK;
/* Disable DMA enable bit */
SAI_TxEnableDMA(base, kSAI_FIFORequestDMAEnable, false);
/* Disable Tx */
SAI_TxEnable(base, false);
/* If Tx is disabled, reset the FIFO pointer and clear error flags */
if ((base->TCSR & I2S_TCSR_TE_MASK) == 0UL)
{
base->TCSR |= (I2S_TCSR_FR_MASK | I2S_TCSR_SR_MASK);
base->TCSR &= ~I2S_TCSR_SR_MASK;
}
/* Handle the queue index */
(void)memset(&handle->saiQueue[handle->queueDriver], 0, sizeof(sai_transfer_t));
handle->queueDriver = (handle->queueDriver + 1U) % (uint8_t)SAI_XFER_QUEUE_SIZE;
/* Set the handle state */
handle->state = (uint32_t)kSAI_Idle;
}
/*!
* brief Aborts a SAI receive using eDMA.
*
* This function only aborts the current transfer slots, the other transfer slots' information still kept
* in the handler. If users want to terminate all transfer slots, just call SAI_TransferTerminateReceiveEDMA.
*
* param base SAI base pointer.
* param handle SAI eDMA handle pointer.
*/
void SAI_TransferAbortReceiveEDMA(I2S_Type *base, sai_edma_handle_t *handle)
{
assert(handle != NULL);
/* Disable dma */
EDMA_AbortTransfer(handle->dmaHandle);
/* Disable the channel FIFO */
base->RCR3 &= ~I2S_RCR3_RCE_MASK;
/* Disable DMA enable bit */
SAI_RxEnableDMA(base, kSAI_FIFORequestDMAEnable, false);
/* Disable Rx */
SAI_RxEnable(base, false);
/* If Rx is disabled, reset the FIFO pointer and clear error flags */
if ((base->RCSR & I2S_RCSR_RE_MASK) == 0UL)
{
base->RCSR |= (I2S_RCSR_FR_MASK | I2S_RCSR_SR_MASK);
base->RCSR &= ~I2S_RCSR_SR_MASK;
}
/* Handle the queue index */
(void)memset(&handle->saiQueue[handle->queueDriver], 0, sizeof(sai_transfer_t));
handle->queueDriver = (handle->queueDriver + 1U) % (uint8_t)SAI_XFER_QUEUE_SIZE;
/* Set the handle state */
handle->state = (uint32_t)kSAI_Idle;
}
/*!
* brief Terminate all SAI send.
*
* This function will clear all transfer slots buffered in the sai queue. If users only want to abort the
* current transfer slot, please call SAI_TransferAbortSendEDMA.
*
* param base SAI base pointer.
* param handle SAI eDMA handle pointer.
*/
void SAI_TransferTerminateSendEDMA(I2S_Type *base, sai_edma_handle_t *handle)
{
assert(handle != NULL);
/* Abort the current transfer */
SAI_TransferAbortSendEDMA(base, handle);
/* Clear all the internal information */
(void)memset(handle->tcd, 0, sizeof(handle->tcd));
(void)memset(handle->saiQueue, 0, sizeof(handle->saiQueue));
(void)memset(handle->transferSize, 0, sizeof(handle->transferSize));
handle->queueUser = 0U;
handle->queueDriver = 0U;
}
/*!
* brief Terminate all SAI receive.
*
* This function will clear all transfer slots buffered in the sai queue. If users only want to abort the
* current transfer slot, please call SAI_TransferAbortReceiveEDMA.
*
* param base SAI base pointer.
* param handle SAI eDMA handle pointer.
*/
void SAI_TransferTerminateReceiveEDMA(I2S_Type *base, sai_edma_handle_t *handle)
{
assert(handle != NULL);
/* Abort the current transfer */
SAI_TransferAbortReceiveEDMA(base, handle);
/* Clear all the internal information */
(void)memset(handle->tcd, 0, sizeof(handle->tcd));
(void)memset(handle->saiQueue, 0, sizeof(handle->saiQueue));
(void)memset(handle->transferSize, 0, sizeof(handle->transferSize));
handle->queueUser = 0U;
handle->queueDriver = 0U;
}
/*!
* brief Gets byte count sent by SAI.
*
* param base SAI base pointer.
* param handle SAI eDMA handle pointer.
* param count Bytes count sent by SAI.
* retval kStatus_Success Succeed get the transfer count.
* retval kStatus_NoTransferInProgress There is no non-blocking transaction in progress.
*/
status_t SAI_TransferGetSendCountEDMA(I2S_Type *base, sai_edma_handle_t *handle, size_t *count)
{
assert(handle != NULL);
status_t status = kStatus_Success;
if (handle->state != (uint32_t)kSAI_Busy)
{
status = kStatus_NoTransferInProgress;
}
else
{
*count = (handle->transferSize[handle->queueDriver] -
(uint32_t)handle->nbytes *
EDMA_GetRemainingMajorLoopCount(handle->dmaHandle->base, handle->dmaHandle->channel));
}
return status;
}
/*!
* brief Gets byte count received by SAI.
*
* param base SAI base pointer
* param handle SAI eDMA handle pointer.
* param count Bytes count received by SAI.
* retval kStatus_Success Succeed get the transfer count.
* retval kStatus_NoTransferInProgress There is no non-blocking transaction in progress.
*/
status_t SAI_TransferGetReceiveCountEDMA(I2S_Type *base, sai_edma_handle_t *handle, size_t *count)
{
assert(handle != NULL);
status_t status = kStatus_Success;
if (handle->state != (uint32_t)kSAI_Busy)
{
status = kStatus_NoTransferInProgress;
}
else
{
*count = (handle->transferSize[handle->queueDriver] -
(uint32_t)handle->nbytes *
EDMA_GetRemainingMajorLoopCount(handle->dmaHandle->base, handle->dmaHandle->channel));
}
return status;
}
/*!
* @rief Gets valid transfer slot.
*
* This function can be used to query the valid transfer request slot that the application can submit.
* It should be called in the critical section, that means the application could call it in the corresponding callback
* function or disable IRQ before calling it in the application, otherwise, the returned value may not correct.
*
* param base SAI base pointer
* param handle SAI eDMA handle pointer.
* retval valid slot count that application submit.
*/
uint32_t SAI_TransferGetValidTransferSlotsEDMA(I2S_Type *base, sai_edma_handle_t *handle)
{
uint32_t validSlot = 0U;
for (uint32_t i = 0U; i < (uint32_t)SAI_XFER_QUEUE_SIZE; i++)
{
if (handle->saiQueue[i].data == NULL)
{
validSlot++;
}
}
return validSlot;
}