
1

1. Serial Protocol v4 . 2
1.1 Commands Reference . 8

1.1.1 Application Command - Get Data . 9
1.1.2 Application Command - Get Status . 10
1.1.3 Application Command - Send . 11
1.1.4 Authenticate - step 1 . 12
1.1.5 Authenticate - step 2 . 13
1.1.6 Get Configuration Value . 14
1.1.7 Get string length . 16
1.1.8 Oscilloscope Control . 17
1.1.9 Oscilloscope Read . 19
1.1.10 Pipe Control . 20
1.1.11 Pipe Information . 21
1.1.12 Read Memory . 23
1.1.13 Read Memory with Base Address . 24
1.1.14 Recorder Control . 25
1.1.15 Recorder Status . 27
1.1.16 TSA Control . 29
1.1.17 User Resource Read/Write/IOCTL . 32
1.1.18 Write Memory . 36

2

Serial Protocol v4

Author Michal Hanak

Description Design protocol supporting new FreeMASTER 3.0 features

Status DRAFT

Reviewers Petr Gargulak, Vilem Zavodny

Introduction
FreeMASTER 3.0 defines and implements new serial protocol to support all features required in and Low-Level Protocol Requirements MCU Driver

. Formally, the protocol version number is 4 (this is because v3 was used with FreeMASTER 1.2 already).Requirements

Backward Compatibility
The protocol is not required to be backward compatible with previous version. The PC-side tools will support both protocols so from a customer
perspective, everything remains compatible. The new MCU driver included in MCUXpresso SDK will only support new protocol.

Old versions FYI

The old protocol version (v3) is documented in the CHM help file: mcbcom.chm
Old version of the MCU driver is documented here: FMSTRSCIDRVUG.pdf

What is not changed?

Serial protocol physical transport does not change

UART physical transport still uses a principle of SOB (0x2b) byte which restarts the frame. When 0x2b appears in the payload, it is duplicated. So
when a single SOB appears, followed by a different byte, it causes the receiver state machine to reset.

Duplicating of SOB character is aplied on all bytes except the real start character followed by a Command code which is never equal to
SOB value. So duplicating affects the Length, Payload and CRC bytes in frame.
Note that CRC computation does NOT include the duplicated SOB character.

CAN physical transport does not change. CAN uses its own mechanism to transfer the command frame and return the response frame back. CAN
does not use the SOB duplication obviously.
PD-BDM physical transport does not change. The PD-BDM plug-in on PC side uses a BDM direct memory access to upload the command frame
and to download a response frame back.

Command/response principle does not change

Same as before, the protocol is still based on master-slave mechanism. Master sends a command and Slave sends a response. The response
must come until a timeout expires.
The protocol newly supports asynchronous (unsolicited) events to be sent, but this is only possible outside of actual response frame (event
messages never "nest" into response frames)
Response command code still used to represent success (0x00 ... 0x7F) or failure (0x80 ... 0xFF)

New Data Frame Formats

General

ULEB128 is used to encode address and size values in the protocol, e.g. when accessing memory for reading or writing. This helps the protocol
to better accommodate to transports which enable higher MTU. UART/Serial remains 255.
CRC-8 checksum used instead of simple two's complement.
More complex CRC algorithms may be used on transports other than UART.
Transport layer duty is to transfer (COMMAND, LENGTH, PAYLOAD) to the receiver and (STATUS, LENGTH, PAYLOAD) back from receiver.
Each transport may use different way to achieve it.

New transports

https://confluence.sw.nxp.com/display/~nxa17568
https://confluence.sw.nxp.com/display/~nxa06276
https://confluence.sw.nxp.com/display/~nxa22160
https://confluence.sw.nxp.com/display/FREEM3/Low-Level+Protocol+Requirements
https://confluence.sw.nxp.com/display/FREEM3/MCU+Driver+Requirements
https://confluence.sw.nxp.com/display/FREEM3/MCU+Driver+Requirements
https://confluence.sw.nxp.com/download/attachments/79736764/mcbcom.chm?version=1&modificationDate=1548173214356&api=v2
https://confluence.sw.nxp.com/download/attachments/79736764/FMSTRSCIDRVUG.pdf?version=1&modificationDate=1548173264644&api=v2

3

This protocol is designed also for Ethernet, UDP or TCP transports. All addresses and sizes are coded as ULEB128, so the transport-related
MTU does not affect the content encoding.

UART Transport (and USB-CDC)
UART Transport enables maximum 254 MTU of Payload. The target driver implementation may lower the MTU value to save RAM on small MCUs.

UART Frames

UART Command Frame

No longer using "fast commands" known in prior versions because length of the payload is not deterministic (that is because addresses and size
values used inside the Payload use ULEB-coded numbers)
Length is always present in all commands and it one byte long (max 254 bytes of data part)

SOB Command (1 byte) Length (1 byte) Payload CRC (1 byte)

0x2B Any except 0x2B length of Payload variable length 0 .. 254 CRC-8

<---- This part of the frame is covered by CRC ---->

UART Response frame - Short

The short response frame has in Status byte (bit6) and no Length field.cleared VLEN bit
This kind of response is used for any non-error replies (ERR bit clear) from slave to master when master node knows in advance the expected
length of the answer (e.g. when reading memory, the answer length is exactly as specified in the command).Read Memory
Error responses with ERR bit set in the Status byte (bit7) use this Short format unless the Status bit6 is set.without any Payload

SOB Status (1 byte) Payload CRC (1 byte)

0x2B 0x00..0xAF)& (~0x40 known length 0 .. 254 CRC-8

<---- This part of the frame is covered by CRC ---->

UART Response frame - Long

The long response with in Status byte (bit6) contains the length field regardless of ERR bit value.VLEN bit set
This kind of response is used when master does not know the length in advance, for example the or when an Error Get Configuration Value
response contains additional information bytes.

SOB Status (1 byte) Length (1 byte) Payload CRC (1 byte)

0x2B 0x00..0xAF | 0x40 length of Payload variable length 0 .. 254 CRC-8

<---- This part of the frame is covered by CRC ---->

UART CRC

UART transport uses implementation as defined on . CRC-8-CCITT Wikipedia

Data frame bytes which are equal to SOB value and which are duplicated by UART physical transport layer are only calculated into the CRC value once.
The duplicated SOB is NOT calculated to CRC.

UART Throughput Estimation

The following estimations assume the UART communication operates at 115200 bps with one start and one stop bit. Ten bits total are counted for each
transferred byte. All calculations below take the following general protocol overhead into consideration:

Command overhead: (SOB, Command, Length and CRC).4 bytes
Short response overhead: (SOB, Status, CRC)3 bytes
Long response overhead: (SOB, Status, Length, CRC)4 bytes
SOB replication overhead: when SOB byte occurs in payload (probability 1/256). The SOB, Command and Status values are never equal 1 byte
to SOB value.

Reading variable

https://en.wikipedia.org/wiki/Cyclic_redundancy_check

4

The command uses ULEB-encoded address so the body length varies depending on address value. The size is also ULEB-encoded, Read Memory
however variable size is generally smaller than 127 so the size fits to a single byte.

Example calculation when reading 8 bit value at 32bit address.

Command
4 bytes protocol overhead
5 bytes ULEB-encoded 32bit address
1 byte size

Response
3 bytes protocol overhead
1 byte variable value

TOTAL
14 bytes (+8/256 statistically) ~ 1.22ms ~ 821 transfers/sec

Typical operations are summarized in the following table:

Read operations

Byte counts (+SOB replication) UART transactions @115200bps

Cmd. Resp. Total SOB Duration Max. rate

Read 8bit at 32bit address 10 4 14 10/256 1.22ms 820 reads/sec

Read 16bit at 32bit address 10 5 15 11/256 1.31ms 765 reads/sec

Read 32bit at 32bit address 10 7 17 13/256 1.48ms 675 reads/sec

Read 8 bit at 14bit relative address 7 4 11 7/256 0.96ms 1044 reads/sec

Write operations

Write 8bit at 32bit address 12 3 15 11/256 1.31ms 765 writes/sec

Write 32bit at 32bit address 15 3 18 14/256 1.57ms 638 writes/sec

Oscilloscope - read variables to put to real time graph

set of 3x 8bit variables 5 6 11 7/256 0.96ms 1044 samples/sec

set of 3x 16bit variables 5 9 14 10/256 1.22ms 820 samples/sec

set of 3x 32bit variables 5 15 20 16/256 1.74ms 574 samples/sec

CAN Transport
CAN transport uses a sequence of up-to 8-byte CAN frames to transfer a full command to target. The first byte of each CAN frame is a signaling byte, the
following 7 bytes are used to carry data.

For simplicity of implementation, the CAN transfers commands in the same format as UART, only the SOB byte is omitted. The Command/Status byte,
Length byte, Payload and the CRC-8 values are transferred and may be processed the same way as the UART frame.

CAN Frame structure

The FreeMASTER message is split to one or more CAN frames and are transmitted to the CAN bus. Individual CAN frames are not acknowledged by
receiver.

All frames have the following structure.

Data byte Description

0 Control byte

1..7 Data bytes (variable length)

CAN Control byte

CAN control byte describes the CAN frame and enables the receiver to check if all frames were received.

Bit 7 6 5 4 3 2-0

TGL M2S FST LST SPC LEN

5

Bit Name Description

7 TGL Toggle bit. This bit is reset in the first frame and toggled in the following frames.

This bit should be checked by receiver to detect a broken frame sequence.

6 M2S Master-to-slave. This bit is set in FreeMASTER command messages (PC to target) and reset in response messages (target to PC).

This bit enables the FreeMASTER CAN protocol to run on the single CAN message ID

5 FST First frame. This bit is set in the first CAN frame of the FreeMASTER message.

4 LST Last frame. This bit is set in the last CAN frame of the FreeMASTER message. FST and LST bits may be both set.

3 SPC Special command (identified by data[1]). Handled by CAN transport, not passed to FreeMASTER decode logic.

Currently used for CAN ping only.

2-0 LEN Number of data bytes present in this CAN frame.

CAN Throughput Estimations

CAN transport encapsulates the UART frame into a sequence of CAN frames. Each CAN frame carries 1 control byte and 7 data bytes of encapsulated
"UART" payload. The SOB replication is not applicable in this case. General low-level overhead of CAN physical protocol when using Extended frame
format is 100% (128 time-quanta bits are needed to transfer 64 bits of CAN payload).

In our case each 7 useful bytes of encapsulated UART frame require 128 time-quanta bits on the CAN bus. This makes the CAN transmission
approximately 1.83x less effective than UART - assuming the bit rates are equal (and counting 10bits for each UART byte).

With CAN bit rate set to a typical value of 500kbps, the CAN throughput is theoretically 2.37x higher than UART at 115200bps.

Direct BDM Communication
When using direct BDM communication over MCU's background debug module or a JTAG, no communication driver is required to run as part of the MCU
application. PC host tool is able to read and write any RAM memory location without any intervention of the MCU application code. The FreeMASTER
features are limited to plain variable value access. No protocol features like Recorder, TSA or Pipes are available. When any of the features are needed,
use the PD-BDM commuication, which still leverages the BDM direct memory access, but ale uses the communication protocol to implement all supported
features.

Packet-Driven BDM Communication
In packet driven BDM mode, the same protocol as with Serial line is used. The difference is in the way how frames are physically exchanged. The sender
(PC host) initiates the communication by uploading the command frame directly into a target buffer located in the MCU memory. It also uses a dedicated
control/status variable to signal the valid command is ready to be processed. Target MCU driver periodically polls the control/status variable and processes
the command as soon as it is ready. The response frame is again made available in the memory buffer along with appropriate status value in control/status
variable. PC Host downloads the response frame as soon as it finds the status signalled.

There are special constant values used as marks around the target memory buffer in the MCU memory which can be used to locate the communication
buffer and the control/status variable automatically by the PC host tool.

Data throughput cannot be estimated when using PD-BDM communication. Depending on the JTAG or BDM probe used, the typical throughput is going to
vary between 9600bsp to roughly 50kbps of standard serial communication.

Data Formats
The following data formats are used in the protocol design specification

Format Byte Size Description

uint8 1 byte integer

uint16 2 short integer

uint32 4 long integer

6

uint64 8 long long integer

LEB128 1..N LEB128-encoded number, not specifically signed or unsigned.
Only used in general text to refer to variable-sized number.
This document always specifies ULEB128 or SLEB128 when needed.

ULEB128 1..N unsigned ULEB128-encoded number:

SLEB128 1..N signed SLEB-128-encoded number

String N string formed of a sequence of single-byte ASCII characters

Zero-terminated String N string of ASCII characters followed by a zero as a termination

UTF-8 N string with UTF-8 escape sequences allowed

bytes N general array of uint8 bytes

Response Status Codes
Response codes may signal success (ERR=0) or error (ERR=1) result of the processed command. Bits 6 and 5 must be masked off when testing the
status Value.

Status code Bit Fields

7 6 5 4 3 2 1 0

ERR VLEN EVN Value

ERR = (FMSTR_STF_ERR = 0x80): Error Bit: signals an error response. The Short response frame without any Payload is used unless the VLEN
bit is also set.
VLEN = (FMSTR_STF_VLEN = 0x40): Variable Length Bit: signals that this response uses the Long response frame with a Length field and a
Payload.
EVN= (FMSTR_STF_EVN = 0x20): Event Bit: reserved for future use
Value - Status code value.

Note: Any master node code testing the Response Status Code value should only compare bits masked with 0x9F (only ERR and Value fields). The VLEN
and EVN bits should be excluded when evaluating the status code value.

The following table describes possible status values returned in the Response Frame.(masked with value 0x9F)

Alias Code Description

FMSTR_STS_OK 0x00 General success code

FMSTR_STS_FALSE 0x01 General success code representing a false response.

FMSTR_STC_INVCMD 0x81 Unknown command code (unsupported operation).

FMSTR_STC_CMDCSERR 0x82 Command checksum error

FMSTR_STC_CMDTOOLONG 0x83 Command exceeds MTU, the receive buffer is too small to accept it

FMSTR_STC_RSPBUFFOVF 0x84 The response exceeds MTU, it would not fit into the transmit buffer

FMSTR_STC_INVBUFF 0x85 Invalid buffer length or operation

FMSTR_STC_INVSIZE 0x86 Invalid size specified

FMSTR_STC_BUSY 0x87 Service is busy

FMSTR_STC_NOTINIT 0x88 Service is not initialized

FMSTR_STC_EACCESS 0x89 Access to target resource is denied

FMSTR_STC_EAUTH 0x91 Access to target needs a password authentication

FMSTR_STC_EPASS 0x92 Password authentication failed

FMSTR_STC_EIOCTL 0x93 User resource does not support the Read, Write or IOCTL operation requested.

https://en.wikipedia.org/wiki/LEB128

7

Commands and Command Codes

Název Alias Code Remarks

Get Configuration Value FMSTR_CMD_GETCONFIG 0x20 Get configuration parameter value (e.g. MTU, platform name,
etc.)

Read Memory FMSTR_CMD_READMEM 0x21 Read target memory

Read Memory with Base
Address

FMSTR_CMD_READMEM_BA 0x22 Read target memory, speed-optimized command

Write Memory FMSTR_CMD_WRITEMEM 0x23 Write to target memory

Recorder Control FMSTR_CMD_SETREC 0x24 Configure or control the recorder

Recorder Status FMSTR_CMD_GETREC 0x25 Get recorder status or configuration

Oscilloscope Control FMSTR_CMD_SETOSC 0x26 Configure Oscilloscope

Oscilloscope Read FMSTR_CMD_READOSC 0x27 Read the oscilloscope variables

Pipe Control FMSTR_CMD_PIPE 0x28 Read/write pipe data

TSA Control FMSTR_CMD_GETTSAINFO 0x29 Get TSA Table Information

Get string length FMSTR_CMD_GETSTRLEN 0x2A Get string length

Authenticate - step 1 FMSTR_CMD_AUTH1 0x2C Initiate password authentication, request authentication
challenge

Authenticate - step 2 FMSTR_CMD_AUTH2 0x2D Provide authentication data to validate that user knows the
password

User Resource Read/Write
/IOCTL

FMSTR_CMD_URESRWI 0x2E User Resource Read, Write or Control

Pipe Information FMSTR_CMD_GETPIPE 0x2F Get pipe information

Application Command - Send FMSTR_CMD_SENDAPPCMD 0x30 Send the Application Command

Application Command - Get
Status

FMSTR_CMD_GETAPPCMDS
TS

0x31 Get the Application Command status

Application Command - Get
Data

FMSTR_CMD_GETAPPCMDD
ATA

0x32 Get the Application Command data

_Template FMSTR_CMD_RESERVED unused:
0x2B

This command is never used

Test Vectors
See protocol test vectors .here

https://confluence.sw.nxp.com/display/FREEM3/_Template
https://confluence.sw.nxp.com/display/FREEM3/Serial+Protocol+Test+Vectors

8

Commands Reference
Název Alias Code Remarks

Get Configuration Value FMSTR_CMD_GETCONFIG 0x20 Get configuration parameter value (e.g. MTU, platform name,
etc.)

Read Memory FMSTR_CMD_READMEM 0x21 Read target memory

Read Memory with Base
Address

FMSTR_CMD_READMEM_BA 0x22 Read target memory, speed-optimized command

Write Memory FMSTR_CMD_WRITEMEM 0x23 Write to target memory

Recorder Control FMSTR_CMD_SETREC 0x24 Configure or control the recorder

Recorder Status FMSTR_CMD_GETREC 0x25 Get recorder status or configuration

Oscilloscope Control FMSTR_CMD_SETOSC 0x26 Configure Oscilloscope

Oscilloscope Read FMSTR_CMD_READOSC 0x27 Read the oscilloscope variables

Pipe Control FMSTR_CMD_PIPE 0x28 Read/write pipe data

TSA Control FMSTR_CMD_GETTSAINFO 0x29 Get TSA Table Information

Get string length FMSTR_CMD_GETSTRLEN 0x2A Get string length

Authenticate - step 1 FMSTR_CMD_AUTH1 0x2C Initiate password authentication, request authentication
challenge

Authenticate - step 2 FMSTR_CMD_AUTH2 0x2D Provide authentication data to validate that user knows the
password

User Resource Read/Write
/IOCTL

FMSTR_CMD_URESRWI 0x2E User Resource Read, Write or Control

Pipe Information FMSTR_CMD_GETPIPE 0x2F Get pipe information

Application Command - Send FMSTR_CMD_SENDAPPCMD 0x30 Send the Application Command

Application Command - Get
Status

FMSTR_CMD_GETAPPCMDS
TS

0x31 Get the Application Command status

Application Command - Get
Data

FMSTR_CMD_GETAPPCMDD
ATA

0x32 Get the Application Command data

_Template FMSTR_CMD_RESERVED unused:
0x2B

This command is never used

https://confluence.sw.nxp.com/display/FREEM3/_Template

9

Application Command - Get Data
Alias FMSTR_CMD_GETAPPCMDDATA

Code 0x32

Remarks Get the Application Command data

Description

This command is used for get the Application Command data.

Data Part

This command carries the following data

Byte Size Format Name Description

1 1..3 ULEB128 data_len Length of requested data.

2 1..10 ULEB128 data_offset Offset of requested data.

Expected Response

When successful the response frame contains the following variable-length data:

Status code: 0x40 (FMSTR_STS_OK | FMSTR_STF_VARLEN)

Byte
Size

Format Name Description

1 0..N bytes data Requsted data of the Application Command response. Size may be lower than requested data_len when no more data are
available at requested data_offset.

10

Application Command - Get Status
Alias FMSTR_CMD_GETAPPCMDSTS

Code 0x31

Remarks Get the Application Command status

Description

This command is used for get the Application Command status.

Data Part

This command carries no data.

Expected Response

When successful the response frame contains the following fixed-length data:

Status code: 0x00 (FMSTR_STS_OK)

Byte Size Format Name Description

1 1 uint8 cmd_status Status of application command.

11

Application Command - Send
Alias FMSTR_CMD_SENDAPPCMD

Code 0x30

Remarks Send the Application Command

Description

This command is used to send an Application Command.

Data Part

This command carries the following data

Byte Size Format Name Description

1 1 uint8 code Application command

2 0..N bytes args Command arguments.

Expected Response

When successful the response frame contains the following fixed-length data:

Status code: 0x00 (FMSTR_STS_OK)

12

1.
2.

3.

Authenticate - step 1
Alias FMSTR_CMD_AUTH1

Code 0x2C

Remarks Initiate password authentication, request authentication challenge

Description

This command is used to request a random salt as the 1st step when authenticating access with a password. The target provides the identifier of
authentication algorithm which needs to be used to generate the access key (see) and provides salt and other challenge data for as Authenticate - step 2
the algorithm input.

Authentication Algorithms

Target application implements one of the following authentication algorithms. Future versions of protocol specification and new target MCU drivers may
introduce new algorithms and assign them a new ID value. Client must always support all defined authentication algorithms.

No Authentication needed (ID=0)

The 0 is is returned when no password authentication is required for specified access level.

Basic SHA-1 Authentication (ID=1)

Target generates salt 16 bytes and sends it to client
Client calculates the key as

SHA1(salt + SHA1(password) + salt) // where + means concatenation (sequential hashing of each part)

Client sends the key back to target.

Data Part

This command carries the following data

Byte Size Format Name Description

1 1 uint8 access_required Required access:

0x00 = reset access to 0. Client sends this command when terminating session.
0x01 = (R) Read access
0x02 = (RW) Read+Write access
0x03 = (RWF) Read+Write+Flash access

Expected Response

When successful the response frame contains the following variable-length data:

Status code: 0x40 (FMSTR_STS_OK | FMSTR_STF_VLEN)

Byte Size Format Name Description

1 1..5 ULEB128 algo_id ULEB128-encoded Algorithm ID. Identification of FreeMASTER authentication protocol used.

When 0 is returned, no password authentication is needed.

2 N bytes salt Random salt to be used in authentication process

3 optional bytes ... More challenge parameters provided along with the salt as an authentication challenge

13

1.

2.
3.
4.
5.

Authenticate - step 2
Alias FMSTR_CMD_AUTH2

Code 0x2D

Remarks Provide authentication data to validate that user knows the password

Description

This command is used to prove that the client knows a correct password. This command carries the result hash value computed from the salt obtained by A
 and from the access password.uthenticate - step 1

Note that the server may support three different passwords, one for each access level R, RW, RWF. The following scenarios may happen:

There is no password needed for requested level and any lower level. The requested level is granted immediately in . Authenticate - step 1
The "step 1" server returns so this "step 2" is not taken at all.algo_id=0
Client provides correct password for the requested level: The requested level is granted successfully.
Client provides password for higher access level: The level is granted.requested
Client provides password for lower access level: The level is granted.lower
Client does not provide valid password: The AUTH2 command returns an error.

Data Part

This command carries the following data

Byte Size Format Name Description

1 1 uint8 access_required Required access (this is the same value as passed into).Authenticate - step 1

0x01 = (R) Read access
0x02 = (RW) Read+Write access
0x03 = (RWF) Read+Write+Flash access

2 N bytes access_key Access key generated by Key Derivation Function as requested by response earlierAuthenticate - step 1

Expected Response

When successful the response frame contains the following fixed-length data:

Status code: 0x00 (FMSTR_STS_OK)

Byte Size Format Name Description

1 1 uint8 access_granted Currently granted access. This is the same value as access_required when password was valid.

0x01 = R
0x02 = RW
0x03 = RWF

Error codes:

In case the password was invalid or was insufficient for requested access level, the STC_EPASS error code is returned.

14

Get Configuration Value
Alias FMSTR_CMD_GETCONFIG

Code 0x20

Remarks Get configuration parameter value (e.g. MTU, platform name, etc.)

Description

Client uses this command to determine value of a configuration parameter. The parameters are expected to be always constant, defined by the target
application. Parameters are named and are accessed by the name or by index value. The name must be unique, most names are defined by this protocol
and are required to be supported.

Accessing by Name is typical when client needs to know a certain value.
Accessing by index is common to access values indirectly or in a loop.

Rules for naming and indexing:

Index value 0 is reserved..
All named parameters must be accessible also by index values starting at 1 going up to N without any gaps. This enables to enumerate all named
values by a simple loop.
Unnamed parameters must be accessible at any index value N+2 or higher so they are not enumerated along with named parameters.
Index values of unnamed parameters do not need to be consecutive (there may be gaps).

Parameters Defined by Name

Parameter
Name

Format Description

MTU ULEB128 Size of an internal communication buffer for handling command and response frames. MTU must be at least 32 to
enable basic communication.
The client never sends commands larger than MTU and never requests data for which the response frame would
exceed MTU.

VS Zero-terminated
String

Version string

NM Zero-terminated
String

Application name string

DS Zero-terminated
String

Description string

BD Zero-terminated
String

Build date/time string

F1 uint8 Flags1:

0x01 - Big Endian Platform. Set to 0=Little Endian and 1=Big Endian.
0x02 - Enable remote access. When 0, the client must prevent remote hosts to access the target from any
remote machine.
0x04 - reserved
0x30 - Protection level mask value (2 bits value)

0<<4 (0x00) - No password required
1<<4 (0x10) - Password is required to unlock Read access (R) and higher levels
2<<4 (0x20) - Password is required to unlock Write access (W) and higher levels
3<<4 (0x30) - Password is required to unlock Write-Flash access (F) level

0x40 - reserved
0x80 - reserved

BA ULEB128 Base Address for optimized command and for FMSTR_CMD_WRITEMEM FMSTR_CMD_READMEM_BA
command with BA flag set.

RC uint8 Number of recorders implemented in system

SC uint8 Number of oscilloscopes implemented in system

PC uint8 Number of pipes implemented in system

15

Data Part

This command carries the following data

Byte
Size

Format Name Description

1 1..2 ULEB128 param_index Index of the parameter required. When 0, the param_name part must follow. When >0 the param_name may
be omitted.

2 N Zero-terminated
String

param_name Parameter name. This member is ignored when param_index is > 0.

Expected Response

When successful the response frame contains the following data:

Status code: 0x40 (FMSTR_STS_OK | FMSTR_STF_VLEN)

Byte
Size

Format Name Description

1 N Zero-terminated
String

param_name Parameter name

2 N bytes value Data value, format depends on the parameter and must be known to the client so it can properly parse the
value.

16

Get string length
Alias FMSTR_CMD_GETSTRLEN

Code 0x2A

Remarks Get string length

Description

This command is used to get string length. It is used for TSA.

Data Part

This command carries the following data

Byte Size Format Name Description

1 1..10 ULEB128 string_addr Address of string.

Expected Response

When successful the response frame contains the following variable-length data:

Status code: 0x40 (FMSTR_STS_OK | FMSTR_STF_VARLEN)

Byte Size Format Name Description

1 1..3 ULEB128 string_length Length of the string.

17

Oscilloscope Control
Alias FMSTR_CMD_SETOSC

Code 0x26

Remarks Configure Oscilloscope

Description

This command is used configure the scope instancies.

Data Part

This command is very universal. A general format of the payload follows:

Byte Size Format Name Description

1 1 uint8 osc_ix Oscilloscope instance index value in range 0 to -1SC

2 1 uint8 op_code Operation code

3 1 uint8 op_length Operation data length

4 op_length bytes op_data Operation data

5 More "Operations" (fields 2..4) may follow in the same sequence (op_code, op_length, op_data).
This enables a single command to perform multiple oscilloscope configuration operations.

Scope Configuration Operations

Operation Code
(op_code)

Name Description

0x01 Configure oscilloscope memory Set number of scope variables

0x02 Configure variable Setup address and size of one oscilloscope variable

Configure Scope Memory (op_code=0x01)

Byte Size Format Name Description

1 1 uint8 var_count Number of variables in oscilloscope

Configure Variable (op_code=0x02)

Byte Size Format Name Description

1 1 uint8 var_ix Variable index

2 1-10 ULEB128 var_addr Variable address

3 1 uint8 var_size Variable size, must be one of standard variable sizes: 1, 2, 4, 8.

Expected Response

When successful the response frame contains the following fixed-length data:

Status code: 0x00 (FMSTR_STS_OK)

18

Byte Size Format Name Description

1 no data

19

Oscilloscope Read
Alias FMSTR_CMD_READOSC

Code 0x27

Remarks Read the oscilloscope variables

Description

This command is used to read all configured variables of an Oscolloscope instance.

Data Part

This command carries the following data:

Byte Size Format Name Description

1 1 uint8 osc_ix Oscilloscope instance index value in range 0 to -1SC

Expected Response

When successful the response frame contains the following fixed-length data (client knows the expected size already):

Status code: 0x00 (FMSTR_STS_OK)

Byte Size Format Name Description

1 size of variable 1 bytes variable_1 Value of first configured variable

2 ... bytes

3 size of variable n bytes variable_n Value of last configured variable

20

Pipe Control
Alias FMSTR_CMD_PIPE

Code 0x28

Remarks Read/write pipe data

Description

This command is used to read and write data from pipe and to acknowledge data bytes received previously. Pipe implementation uses transmit buffering to
store data until the data are successfully received and acknowledged by the peer.

Data Part

This command carries the following data

Byte
Size

Format Name Description

1 1 uint8 port_and_to
ggle

Pipe port number in lower 7 bits.

The MSB bit toggles each time next message is sent. The MSB is used to determine any lost message (when bit value
does not match the expected state).

2 1 uint8 bytes_recei
ved

Count of bytes previously received by client. This amount may be safely removed from server's transmit buffer.

3 0..N bytes pipe_data Pipe data to be written to the pipe by the client.

Expected Response

When successful the response frame contains the following variable-length data:

Status code: 0x40 (FMSTR_STS_OK | FMSTR_STF_VARLEN)

Byte
Size

Format Name Description

1 1 uint8 port_and_to
ggle

Pipe port number in lower 7 bits.

The MSB bit toggles each time next message is sent. The MSB is used to determine any lost message (when bit value
does not match the expected state).

2 1 uint8 bytes_recei
ved

Count of bytes previously received by server. This amount may be safely removed from client's transmit buffer.

3 0..N bytes pipe_data Pipe data to be read from the pipe by the client.

21

Pipe Information
Alias FMSTR_CMD_GETPIPE

Code 0x2F

Remarks Get pipe information

Description

This command is used to obtain read-only information about a pipe object.

Data Part

This command carries the following data

Byte Size Format Name Description

1 1 uint8 flags 0x01 - use port instead of index

2 1 uint8 pipe_identifier Pipe index or pipe port depending on flag 0x01,

For indexes value from 0..PC (see)Get Configuration Value

3 1 uint8 cfg_code One of the configuration codes as described in the table below.

Pipe Configuration Operations

Configuration Code
(cfg_code)

Name Description

0x81 Get pipe name String name of pipe object

0x82 Get pipe info Type and formatting information of pipe data

Expected Response

When successful the response frame contains the following variable-length data:

Status code: 0x40 (FMSTR_STS_OK | FMSTR_STF_VARLEN)

Response payload

The response data payload depends on the configuration code (cfg_code) requested:

Get Pipe Description (cfg_code=0x81)

Byte Size Format Name Description

1 N String description Pipe name/description string

Get Pipe Info (cfg_code=0x82)

Byte Size Format Name Description

1 1 uint8 port Pipe port number (value 0..0x7F)

2 1 uint8 type General information about pipe type and intended usage. The type value bits can be extracted as follows:

22

bits 7-4 3-2 1-0

reserved bits pipe usage/mode

0 = console/terminal
1 = uint dump
2 = sint dump
3 = real dump

element size (log)2

0 = 1byte
1 = 2bytes
2 = 4bytes
3 = 8bytes

Terminal types are defined as follows:

0x00 represents the ANSI character I/O terminal.
0x01 represents UNICODE wide-character I/O terminal
0x02..0x03 ... reserved values

Note that "real" values with element size 1 and 2 bytes are reserved

3 1 uint8 flags 0x01 - is open

23

Read Memory
Alias FMSTR_CMD_READMEM

Code 0x21

Remarks Read target memory

Description

Used when reading variables or other kind of target memory.

Data Part

This command carries the following data

Byte Size Format Name Description

1 1-10 ULEB128 addr Address of memory to be read.

2 1-2 ULEB128 size Size of the memory to be read

Expected Response

When successful the response frame contains the following fixed-length data:

Status code: 0x00 (FMSTR_STS_OK)

Byte Size Format Name Description

1 size bytes data The memory content as requested

24

Read Memory with Base Address
Alias FMSTR_CMD_READMEM_BA

Code 0x22

Remarks Read target memory, speed-optimized command

Description

Used when reading variables or other kind of target memory. Size of the read command may be significantly optimized by selecting proper Base Address
(BA) parameter in the configuration.

Data Part

This command carries the following data

Byte Size Format Name Description

1 1-10 SLEB128 addr_offset Address of memory to be read specified as a signed offset from Base Address defined by BA .configuration parameter

2 1-2 ULEB128 size Size of the memory to be read

Expected Response

When successful the response frame contains the following fixed-length data:

Status code: 0x00 (FMSTR_STS_OK)

Byte Size Format Name Description

1 size bytes data The memory content as requested

25

Recorder Control
Alias FMSTR_CMD_SETREC

Code 0x24

Remarks Configure or control the recorder

Description

This command is used to configure or control one of the Recorder instances which is implemented in the system.

Data Part

This command is very universal. A general format of the payload follows:

Byte Size Format Name Description

1 1 uint8 rec_ix Recorder instance index value in range 0 to -1RC

2 1 uint8 op_code Operation code

3 1 uint8 op_length Operation data length

4 op_length bytes op_data Operation data

5 More "Operations" (fields 2..4) may follow in the same sequence (op_code, op_length, op_data).
This enables a single command to perform multiple recorder configuration operations.

Recorder Configuration Operations

Operation
Code
(op_code)

Name Description

0x01 Configure recorder
memory

Set number of recorder variables, recorder points and pre-trigger points

0x02 Configure variable Setup address, size, and threshold detection of one recorder variable

0x03 Start Recorder Start recorder if not yet running

0x04 Stop Recorder Stop recorder immediately (recorder status may be "no-data" or there may be less data than required when
stopped during the initial cycle)

Configure Recorder Memory (op_code=0x01)

Byte Size Format Name Description

1 1 uint8 var_count Number of variables in Recorder

2 1-10 ULEB128 rec_points Number of recorder points used, 0 means maximal possible count of points that fits into the buffer

3 1-10 ULEB128 pretrg_points Number of "pre-trigger" points to keep in buffer which were recorder before the trigger has occured

4 1-3 ULEB128 time_div Divisor value of recorder "clock"

Configure Variable (op_code=0x02)

Byte
Size

Format Name Description

1 1 uint8 var_ix Variable index

2 1-10 ULEB128 var_addr Variable address

26

3 1 uint8 var_size Variable size, must be one of standard variable sizes: 1, 2, 4, 8.

4 1 uint8 trg_type Trigger type and flags:

0x03 ... mask for variable triggering mode (selection of threshold compare operation)
0x00 .. this variable not used for triggering
0x01 .. use as unsigned integer of var_size
0x02 .. use as signed integer of var_size
0x03 .. use as floating point value (var_size must be 4 or 8)

0x04 .. trigger-only, when this bit is set the variable is NOT recorded and is only used for triggering
0x10 .. trigger when above the threshold
0x20 .. trigger when below the threshold
0x40 .. bit clear: normal edge trigger; bit set: level trigger any time the value is above/below threshold
0x80 .. variable threshold (when set, the trg_thr is an address of variable with the same size)

5 1-10 ULEB128 trg_thr Trigger threshold value, maximum 8-byte value encoded as ULEB128

When (trg_type & 0x80) is non-zero, then this value is an ULEB128-encoded address of variable used as a trigger
threshold.
Such threshold variable is expected to be of the same size and same type as this recorder variable.

Expected Response

When successful the response frame contains the following fixed-length data:

Status code: 0x00 (FMSTR_STS_OK)

Byte Size Format Name Description

1 no data

27

Recorder Status
Alias FMSTR_CMD_GETREC

Code 0x25

Remarks Get recorder status or configuration

Description

This command is used to read status or configuration value of a Recorder instance.

Data Part

This command carries the following data:

Byte Size Format Name Description

1 1 uint8 rec_ix Recorder instance index value in range 0 to -1RC

2 1 uint8 cfg_code Configuration value code

Recorder Configuration Operations

Configuration Code
(cfg_code)

Name Description

0x81 Get recorder
description

String description of recorder sampling point etc. (e.g. "PWM Reload Interrupt", or "Timer interrupt")

0x82 Get recorder limits Get maximum number of recorder variables, and maximum size of the recorder memory in bytes.

0x83 Get recorder info Get recorder base address, number of recorded variables, and other information needed to download
and show recorder graph

0x84 Get recorder status Get current recorder status (running/stopped etc.)

Expected Response

When successful the response frame contains the following variable-length data:

Status code: 0x40 (FMSTR_STS_OK | FMSTR_STF_VLEN)

Response payload

The response data payload depends on the configuration code (cfg_code) requested:

Get Recorder Description (cfg_code=0x81)

Byte Size Format Name Description

1 N String description Recorder description string

Get Recorder Memory Limits (cfg_code=0x82)

Byte
Size

Format Name Description

28

1 N ULEB128 rec_buff_size Size of raw recorder buffer, the buffer is used for both variable configuration storage and for data recording

2 N ULEB128 rec_base_rate_ns Base speed of recorder sampling in nanoseconds. Client may request to sample at integer multiples of this value.

3 N ULEB128 rec_struct_size Size of Recorder internal structure. This could be used to compute total samples count on PC side.

4 N ULEB128 rec_var_struct_size Size of Recorder variable internal structure. This could be used to compute total samples count on PC side.

Get Recorder Info (cfg_code=0x83)

Byte Size Format Name Description

1 1 uint8 rec_status Current recorder status, same as reported by Get Recorder Status (cfg_code=83) - see below

2 1 uint8 var_count Number of variables configured for recording (the trigger-only variables are excluded!)

3 N ULEB128 buff_addr Base address of the recorder buffer

4 N ULEB128 point_size Size of one set of sampled values (sum of sizes of all currently recorded variables)

5 N ULEB128 point_count Size of currently used recorder buffer in points (used_memory = point_count * point_size)

6 N ULEB128 point_first Index of the oldest point in the buffer (i.e. the next write "pointer" when recording in circular buffer)

Get Recorder Status (cfg_code=0x84)

Byte Size Format Name Description

1 1 uint8 rec_status Current recorder status:

0x00 ... not configured
0x01 ... configured, stopped, no-data
0x02 ... running
0x03 ... stopped, not enough data sampled
0x04 ... stopped, data ready

29

TSA Control
Alias FMSTR_CMD_GETTSAINFO

Code 0x29

Remarks Get TSA Table Information

Description

This command is used to get information about all TSA tables provided by the server application. This command returns an address, size and other
information to the client, so the client is able to download and subsequently parse the tables.

TSA Table Structure (TSA version 3)

TSA tables are arrays of fixed-length structure types terminated by an invalid (zero-filled) record. There are 16 bit and 32 bit records, protocol V4 adds new
64 bit record. Record size is identified in tsa_flags.

General entry format, each member is uint16, unit32 or uint64, depending on table record type.

Index Name Description

0 name Object name pointer. An address of Zero-terminated String with name of the object.
This may be name of variable, structure data type or special record like memory-mapped directory or file.

1 type Type name pointer. An address of Zero-terminated String with name of data type.

This name may start with a special (non-printable) character which identifies a native type:

signed/unsigned integer 1, 2, 4, 8 bytes
signed/unsigned fractional number 1, 2, 4, or 8 bytes with custom resolution (UQm.n or Qm.n)
floating point number 4 or 8 bytes
special character type which identifies files, web-links and other resources (type name follows the initial character)

The special character bits can be described as follows:

 111STTZZ: where TT=type[int,frac,fp,special] S=signed ZZ=size[1,2,4,8]
 11101100 (0xEC): special ZZ=0: special memory-mapped object (e.g. MEMFILE, PRJ, HREF)
 11101101 (0xED): special ZZ=1: special non-memory mapped object (e.g. DIR, STRUCT, ENUM,
CONST, U:xxx)

In case the name starts with a normal printable character, this is a user-defined type name (e.g. name of the structure type or
structure member).

The following 0xEC special type strings are defined (the "addr" field points to the record memory and "info" record contains size
and access bits):

"\xEC:MEMFILE" ... Memory-mapped File entry
"\xEC:PRJ" ... Project File Link entry
"\xEC:HREF" ... WEB Link entry

The following 0xED special type strings are defined (the "addr" and "info" fields are values with custom meaning):

"\xED:STRUCT" ... Structure, Union or Class type definition
"\xED:ENUM" ... Enumeration type definition
"\xED:CONST" ... Named constant as part of enumeration type (entry must follow the ENUM definition)
"\xED:DIR" ... Directory entry
"\xED:U:FILE" ... User-defined Resource: File
"\xED:U:FW" ... User-defined Resource: Firmware Image
"\xED:U:PROM" ... User-defined Resource: EEPROM, Flash, or other kind of fixed-size persistent storage

2 addr This value depends on object type:

Variable: variable address

Special EC records:

Memory-mapped File entry: address of file memory
Project File Link entry: address of String with URI of the project location (may be local path or web link)
Web Link entry: address of String with web link URI

30

Special ED records:

Structure type: unused
Structure member type: offset of the member within parent type, in bytes
Enumeration type: unused
Enumeration constant: direct constant value
Directory entry: unused
User-defined Resource: user-defined handle (e.g. pointer to user's callback function)

3 info For variables and EC records:

Contains sizeof(object)<<2. The two LSB bits contain object identification flags:

0x00...0003 ... entry type mask, see below
0xFF...FFFC ... size mask (spans from bit 2 up to MSB of the entry)

for 16bit TSA table, the maximum object size is 14 bits (0...16kB)
for 32bit TSA table, the maximum object size is 30 bits (0...1GB)
for 64bit TSA table, the maximum object size is 38 bits (0...256GB), the upper 24 bits are reserved

Object identification (lower two bits of the info member):

0x0 ... structure member
0x1 ... read-only variable
0x2 ... read-only variable located in flash, can be written as part of Flash-write access
0x3 ... read/write variable

For ED records:

Structure member type: sizeof(type)<<2, same as for EC records. Lower two bits are reserved.
Enumeration type: sizeof(type)<<2, same as for EC records. Lower two bits are reserved.
Enumeration constant: unused
Directory entry: unused
User-defined Resource: user-defined context data (e.g. context parameter of user's callback function specified in addr)

Difference to older TSAv2 format

This new TSAv3 format introduces new features:

Introduces 64bit address support, organization of value returned by FMSTR_CMD_GETTSAINFO command is different.tsa_flags
Redefines meaning of Access flags in the member of TSA table.info
Defines new non-memory mapped resources marked with ED special type
Defines new "Enumeration type" and "Enumeration constant" records to describe C-like "enum" data type which can be referred by variable
definitions as their type.
Defines new "User-defined Resource" object type with application-specific handling.

Data Part

This command carries the following data

Byte Size Format Name Description

1 1..2 ULEB128 table_index Index of table the PC requests. The server should implement tables starting by index 0 to table_count-1 without gaps.

Expected Response

When successful the response frame contains the following variable-length data:

Status code: 0x40 (FMSTR_STS_OK | FMSTR_STF_VARLEN)

Byte Size Format Name Description

1 1 uint8 tsa_flags Contains TSA version, flags and size of TSA table entry items.

0x0f .. version mask, current version 2
0x30 .. table entry size mask

0x00 .. 16bit table (8 bytes table entries)
0x10 .. 32bit table (16 bytes table entries)
0x20 .. 64bit table (32 bytes table entries)

0x80 .. HawkV2 special addressing mode flag for backward compatibility only

2 1..3 ULEB128 table_size Size of the table requested by table_index. 0 is returned when the requested table does not exist (end of table list

31

reached).

3 1..10 ULEB128 table_addr Address of the table (0 when table does not exist)

4 (optional)0..
N

bytes tsa_custom Additional data and flags specific to TSA table version.

32

User Resource Read/Write/IOCTL
Alias FMSTR_CMD_URESRWI

Code 0x2E

Remarks User Resource Read, Write or Control

Description

This command is used to read, write or control any user-defined resource which is not normally mapped to memory. This can be an external EEPROM
content, a file located on external file system like SD Card or hard drive, etc.

Client application uses this command to manipulate user resources which exists statically and are assigned a unique identifier (resource_id). The
resources may be described either by "User Resource" record, or defined fully on the client's side. In any case, the "resource_id" value is used to TSA
uniquely identify the resource and has a form of a pointer value. The value is encoded in ULEB128 format in communication frames. The "resource_id"
value is purely numeric value without any special meaning or encoding in the client application. The server implementation in MCU may treat the
"resource_id" value as a pointer to local context data or as a plain numerical identifier, depending on MCU application design.

In addition to Read and Write operations, there is a general IOCTL operation to perform non-standard access or control operations identified by an IOCTL
code. Set of standard IOCTL codes are defined by this protocol which enables the client-side application to perform "standard" operations like erase, get
size, set size, eject, etc. Each IOCTL operation may be assigned context data on input and/or on output. User may define additional IOCTL codes with
custom application-specific handling.

Note that the standard protocol driver code on the MCU side does not natively handle any command directly. All Read, Write and IOCTL operations are
handled by the application via callback functions from the protocol driver code. This of course enables the application to use any IOCTL operation
(including the standard IOCTL operations) to do whatever is needed. It is however to assign completely different behavior to standard strongly discouraged
IOCTL codes defined in this specification.

Flash Memory Access

The user-defined resource access may be used to implement Flash Programmer Interface similar to the one supported in older version of FreeMASTER
"Classic" tool v2.0 (see specification here:). The Flash interface should support the following standard Read and Write operations and the flash_prog.pdf
following IOCTL operations:

IOCTL_GET_BUSY
IOCTL_GET_ACCESS
IOCTL_ERASE
IOCTL_BLANK_CHECK
IOCTL_HASH
IOCTL_GET_BLKINFO

Standard IOCTL Operations

This table list all IOCTL operation codes defined by this protocol specification.

IOCTL code is always encoded as ULEB128 number.

Range reserved for standard codes is 0 ... 0x7FF. Encoded to single-byte or two bytes ULEB128 value.
Area for user-defined codes is 0x800...0x1FFF. Encoded to two bytes ULEB128 value
Area reserved for future use is the 0x2000 and above.

Note that standard code values use even values (bit0 clear) for GET operations and odd values (bit0 set) for SET operations. This enables the access right
checking to be also performed when executing this command.

Code Name Input Data Output Data Description

0x00 IOCTL_GET_B
USY uint8

status
uint8
err_code

Determine is resource is ready and able to handle read, write and other IOCTL operations.

Possible "status" output values:

0x00 ... resource is ready, the last operation has finished well
0x01 ... resource is busy and does not accept any other read/write/IOCTL operations
(command would return FMSTR_STC_BUSY)

In case the status returns 0x00, the err_code is present and informs about the result of the last
operation (one of error codes).FMSTR_STC_xxx

0x01 IOCTL_WRITE_
FLUSH

Flush data pending in write cache into the physical device.

https://confluence.sw.nxp.com/download/attachments/79749339/flash_prog.pdf?version=1&modificationDate=1549985311970&api=v2

33

0x02 IOCTL_GET_A
CCESS uint8

access

Get required access level to be able to read, write and IOCTL get/set operations

Possible output values:

0x03 ... mask for operationread
0x0c ... mask for IOCTL or other non-intrusive operations (code with bit0=0)GET
0x30 ... mask for operationwrite
0xc0 ... mask for IOCTL or other intrusive operations (code with bit0=1)SET

Each pair of bits encode one of the following values:

0 ... read level is enough
1 ... write level must be authorized
2 ... flash level must be authorized
3 ... reserved

Default output values are different for different kinds of user resources (assumed when IOCTL is
not implemented):

U:FILE ... 0x50
U:FW ... 0xaa
U:PROM ... 0x55

0x04 IOCTL_GET_SI
ZE ULEB128

Get current size of resource (e.g. EEPROM size or SD Card File size).

0x05 IOCTL_SET_SI
ZE ULEB128

set_size
ULEB128
new_size

Set size of resource (e.g. SD Card File size). Returns the new resource size.

0x06 IOCTL_GET_M
AX_SIZE ULEB128

Get maximum size of a resource for resources which support IOCTL_SET_SIZE

0x07 IOCTL_ERASE
ULEB128
address
ULEB128
size

Erase portion of the resource content defined by address and size.

0x08 IOCTL_BLANK_
CHECK ULEB128

address
ULEB128
size

Determine if portion of the resource is erased.

0x0A IOCTL_HASH
ULEB128
hash_type
ULEB128
address
ULEB128
length

bytes
hash_result

Calculate hash value of the portion of the resource content.

Possible hash_types (server does not need to support all types):

0x00 ... CRC-8-CCITT
0x01 ... CRC-16-CCITT
0x02 ... CRC-32-CCITT
0x10 ... SHA-1
0x11 ... SHA-256
0x12 ... SHA-512

0x0C IOCTL_GET_BL
KINFO ULEB128

address
ULEB128
w_base
ULEB128
w_size
ULEB128
e_base
ULEB128
e_size

Determine the base address and size of the writable and erasable block containing given address.

Default Behavior

Implementing IOCTL commands is not mandatory for any resource being accessed. The server application should return FMSTR_STC_EIOCTL when it
does not support the requested IOCTL operation code. In this case, the client will assume a default response value of "empty" or zero, unless specified
differently in the table above.

Data Part

This command carries the following data

34

Byte Size Format Name Description

1 1 uint8 op_code Operation to perform and flags

0x07 ... operation mask
0x00 ... Read
0x01 ... Write
0x02 ... IOCTL
0x03 ... reserved

0xF8 ... reserved flags

2 1..10 ULEB128 resource_id The ID of the resource to perform operation with.

3 N bytes data Data accompanying the requested operation.

See next tables for different options

Read Operation Data

The Read Operation command carries the following data

Byte Size Format Name Description

1 1 uint8 op_code
0x00 ... Read operation code encoded in lower two bits (mask 0x03)
No flags are defined yet for read operation, bits in mask 0xF8 are all zero

2 1..10 ULEB128 resource_id The ID of the resource to perform operation with.

3 1..10 ULEB128 read_offset Zero-based offset to read the resource at

4 1..2 ULEB128 read_len Length in bytes to read from the resource

Write Operation Data

The Write Operation command carries the following data

Byte Size Format Name Description

1 1 uint8 op_code
0x01 ... Write operation code encoded in lower two bits (mask 0x03)
No flags are defined yet for write operation, bits in mask 0xF8 are all zero

2 1..10 ULEB128 resource_id The ID of the resource to perform operation with.

3 1..10 ULEB128 write_offset Zero-based offset to write the resource at

4 1..2 ULEB128 write_len Length in bytes to write to the resource

5 write_len bytes write_data Data to be written

IOCTL Operation Data

The IOCTL Operation command carries the following data

Byte Size Format Name Description

1 1 uint8 op_code
0x02 ... IOCTL operation code encoded in lower two bits (mask 0x03)
No flags are defined yet for IOCTL operation, bits in mask 0xF8 are all zero

2 1..10 ULEB128 resource_id The ID of the resource to perform operation with.

3 1..3 ULEB128 ioctl_code IOCTL code

4 N bytes input_data IOCTL input data (see standard IOCTL codes in table above)

Expected Response

When successful the response frame contains the following variable-length data:

Status code: 0x40 (FMSTR_STS_OK | FMSTR_STF_VLEN)

35

Byte
Size

Format Name Description

1 N bytes output_d
ata

For read operation:

Data provided as a response to read. Output size N is the "read_len" amount of bytes required by the command or it may
be less (even 0) if resource reaches an end-of-file condition.

For write operation

ULEB128-encoded number of bytes accepted for the write operation. This is the amount required by the "write_len" or it
may be less (even 0) if resource reaches an maximum size or other end-of-file condition.

For IOCTL operation

Data provided as a response to IOCTL operation. See the "Output Data" column in IOCTL code table above.

Possible error codes

FMSTR_STC_EIOCTL ... required Read, Write or IOCTL operation is not supported
FMSTR_STC_BUSY ... resource is currently busy, repeat the operation again

36

Write Memory
Alias FMSTR_CMD_WRITEMEM

Code 0x23

Remarks Write to target memory

Description

Used by the client when writing to target memory including the flash memory (which must be signaled specifically).

Data Part

This command carries the following data

Byte Size Format Name Description

1 1 uint8 flags Write flags:

0x01 ... Write with Mask.The data are followed by an AND-mask value of the same size.

2 1-10 ULEB128 addr Address of memory to be written.

3 1-2 ULEB128 size Size of the memory content to be written

4 size bytes data memory content ("size" bytes long) to be written

5 size (optional) bytes mask AND-mask for the write ("size" bytes long) - only used when flags indicate the "Write with mask" operation

Expected Response

When successful the response frame contains the following fixed-length data:

Status code: 0x00 (FMSTR_STS_OK)

Byte Size Format Name Description

no data

	Serial Protocol v4
	Commands Reference
	Application Command - Get Data
	Application Command - Get Status
	Application Command - Send
	Authenticate - step 1
	Authenticate - step 2
	Get Configuration Value
	Get string length
	Oscilloscope Control
	Oscilloscope Read
	Pipe Control
	Pipe Information
	Read Memory
	Read Memory with Base Address
	Recorder Control
	Recorder Status
	TSA Control
	User Resource Read/Write/IOCTL
	Write Memory

