MCU Bootloader v2.6.0 Reference
Manual

Document Number: MCUBOOTRM
Rev. 2, 08/2018

h
V"

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

Contents
Section number Title Page
Chapter 1
Introduction
O O U1 L3 (o Ta Al Uot 5 o) 1 VOO TSRS S PSRRUI 9
L2 TOIMINOIOZY ...ttt ettt et b et b et bttt e b e e bt e bt s bt e st s bt et e sheea bt eb e enb e eb e et e e bt e bt eat e sbe et e sbeenaenaeen 9
1.3 BIOCK QIAZTAIMN. ¢...tteiiieiiieiie ettt ettt ettt ettt et e s et e bt e ea bt e bt e e ab e eab e e s abeeabtesab e e bt e eabeeabeeeabeeabeesabeenbeesuneenseenaees 10
1.4 FRAtUIES SUPPOITEA. ... ecueieieiietiete ettt ettt ettt e e et e et e e tte et sa e e bt eaee bt eme e beem s e bt em b e s e emtees e e bt eaee bt emteabeemeesbeensesneensenanans 10
1.5 COMPONENLS SUPPOTEA. . ..c.eeimreriietiriietieitiete ettt ettt ettt et st e et s b e eatesb e es e ebt et e eb e e bt eaeesbeeaeesbeenaesbeenbesbeenbeebsebeesaenneenee 11
Chapter 2
Functional description
2.1 TNEOAUCTION. ...ttt ettt ettt et e b bt bbb bbb e ettt et eb et e s 13
B (5511107 o 8 112 o OO OO OO PSP PTUP PR 13
2.3 The MCU Bootloader Configuration Area (BCA)........ooiiiiiiiiieteeete ettt ettt ettt sttt e e eeee 13
24 STATT-UD PIOCESS. c.teuteutieutetteuteetteteeutertesitesteeetesbeeateabeeat e et e eabeebeeattebeemteeatesbeeatesbeestesb e eab e bt embeebtenbeebt et e ebe e bt ebeesbeemtesbeentesuean 15
2.5 CIOCK CONTIGUIALION. ...cuttiiitieiieeiieeite ettt ettt ettt ettt et esat e e bt e s ab e e bt e s at e e bt e sat e e bt e eabeeabeesabeenseesaseeseesaseenbaesnbeenseens 18
2.6 BOOtIOAART INIY POIMNL.....eeutitieitietieteetiete ettt ettt ettt et e bt et eeb e a b e et e et e es e e bt ea e e et emeesbeemeesbeemseebeenbeebeenteeseenteeneenseeneeneeenes 18
2.7 Application INEEZITLY CRECK......coiiiiiiiiiiiiieieee ettt ettt et sttt st ettt ein et e 19
2.77.1 MCU bootloader flow with iNtegrity CHECKET........cccuiiiiiiiiiiiiiiiiic e 20
2.7.1.1 Bootloader iNTtIAlIZAtION.c..eeueitieieitieteetiete ettt sttt et eae et eaee bt ene et e e e e bt e e e eaeeaeeaean 20
2.7.1.2 Staying in or 1eaving bOOtIOAAET.........ccueriiriiiiriiiiritce ettt 21
Chapter 3
MCU bootloader protocol
31 TNEFOUCTION. ...ttt et et e b bt s a e sh b e a e s a et d ettt et eb et sa e b b s sa e ae 25
3.2 Command With NO dAtA PRASE.......eecuieriiiiiieiiieiieet ettt ettt ettt e bt e st e e bt e sab e e s bt e eabeenbaesabe e beesabeesatesabeenbeesaneens 25
3.3 Command with iNCOMING ALA PRASE.....c..eiuieiiitietieiieteet ettt ettt ettt e b e b e be st e et e ese et e esee bt eneesaeeneesseeneenaes 26
3.4 Command with outZOiNg data PRASE.......cc.eeiiriiiiiriiitee ettt ettt ettt sbe ettt eae 27
Chapter 4

Bootloader packet types

O T 115 4o J¢ 1815 (o) s U USRI 29

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors 3

Section number Title Page
4.2 PING PACKET. ...ttt ettt et h et h et h bbbt e a e h et e b et e b bbb e e et b e a e h et sbe e e eeee 29
4.3 PING RESPONSE PACKEL.....teiiuiiiiiiiiiieite ettt sttt s et e it et e s et e et e esht e e st e e sbt e eabeesbeesabeesatesabeenabeeabeenbeesabeeseenn 30
4.4 FLaMING PACKET. .. ceutieuietiiieiteete ettt ettt ettt et e e et e e et e s bt e aee e bt ea e e e bt em e e eb e emteebeemtees e em bt ese e bt emeeabeemeesbeeneeabeenseebeenteeneans 31
4.5 CRCIO QIZOTIERMIL c.cutiiiiiiiiititieteteet ettt ettt bt e a ettt e bt st e bt et s bt et e e bt e bt satenbeesbesbeestenbeesnesbeenteene 32
4.6 COMMANA PACKEL.eouiiiiiiiiiiiie ettt et at e e bt e e a e et e e e st e et e e sbeeeabeeeb b e eabeebeesabeeestesabe e st e enbe e beesabeenee s 33
4T RESPONSE PACKEL. ... eeeuteeiietteitetieite ettt ettt ettt ettt et e st e et e e bt et e eb e em bt es e et e e st e eaeemeeeaeemeesaeembeeseenbeeseenbees s e bt ense st eneeeneenneenee 35
Chapter 5
MCU bootloader command API
ST B 1 13 (e Ta L Te1 5 e 1 OSSO OSSPSR SRR 39
5.2 GetProperty COMMANM.......cccoiiriiiirieiteiteetert ettt ettt ettt et et e b e et e s bt ea et e ea bt be e st ebeesbeebee bt eatenaeemaesbeestesbeennenbnens 39
5.3 SetProperty COMIMANG........coouiiiiiiiieiieeieesit ettt ettt et e bt e et e bt e e ab e e bt e sab e e bt e sab e e bt e sabeeabtesabeeabeesnbeanseesaseenseenanes 41
5.4 FIashErase All COMMAN........cccuiiuieiiiiiiiieiiete ettt ettt ettt et eae e bt e st e sae et e sbeeaee s bt emseebeenteebeenbeeseenbeeneeneeeneenaeeneas 43
5.5 FlashEraseRegion COMMANM..........cocuiitiiiiniiiiiniiiiritete sttt ettt ettt et et et sttt st s bt este s bt eabesb e et sbeestesbeeaeeaee 44
5.6 FlashErase AllUnsecure COMMANQ.........c.ccoioiiiiiiiiiiiiiiiiiiie e 45
5.7 ReadMemOry COMIMANG.couteitiiuieieiiiett ettt ettt et et eat et e e ete e bt s aee bt sseebeesee bt eaee bt emte st enbeeseeneeeseenseeaeenbeeneenaeeneennean 47
5.8 WIiteMemOry COMMANU.couiiiiriiritintieiteeteete ettt ettt sttt ettt b et b e et e bt et e e bt e bt e bt e bt ebeenbeeatenbeessesbeeatesbeesnesbeenteane 49
5.9 FilIMemMOTY COMIMANM.ccc.tiitiiiiiniieetieette et ee et et ettt ettt e bt e sate et e esab e e bt e sabe e bt e eateeabeeeabeeabeesabeenstesabeenseesabeebbesnseenseenn 51
5.10 FlashSecurityDiSable COMMANG.........cccuiiieiiiiieiiiiete ettt ettt et a et s ee e te s bt ebe e st e beebe e beesee b e eseenseeneenaeenes 53
S5.11 EXECUte COMMANG.......ocuiiiiiiiiiiiieiiiiet ettt ettt et b e s st ettt et e a bt eae et e b s s a et sae e ene 54
5.12 Call COMMEANT......c.oiiiiiiiiiiiiii e sa s b et 55
5.13 RESEE COMIMANM. ... ettt ettt ettt et e e et e s bt e st e bt ea e e bt em e e ebeembeeueemeeesten bt emee bt eateabeemtesbeemseabeensenseanteeseanteans 56
5.14 FlashProgramOnCe COMMANG......c..ccuiruieiiriiiinieente ettt ettt ettt eb ettt et sbe et e bt e et sbeentesbeenbeeatesbeesbesbeeasenbeesnesbeentenne 58
5.15 FlashReadOnce COMMAN...........ccooiiiiiiiiiiiiiiiiii e s 59
5.16 FlashReadReSOUrCe COMIMANA.c..oiuiiiuiiiieiieiieii ettt ettt et et ea et e e et e sbe e st e sbeemeesbeeateebeenseebeenseeneenee 61
5.17 Configure Memory COMMANT.......c..ceruiiieriirieiiiriteiteet ettt ettt sttt sttt et e sbe et e beeabe bt eatesbe et e ebeebesbeesbeeatenbeensenbeas 63
5.18 ReceiveSBFIle COMMAN.........ccocoiiiiiiiiiiiii e 64
5.19 ReliableUpdate COMMAN.......c..ccueiiiiiririiiiitietietesest ettt ettt st sttt ettt eae bbbttt besae et sne e ennene 64
Chapter 6

Supported peripherals

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

Section number Title Page
6.1 TNETOQUCTION. ..ttt ettt et e a bbb b b ss et e e e s et et eae e st ebeeae et e besaeenesaesnens 67
0.2 T2C PEIIPRETAL....eoniiiiitiiiie ettt ettt st b e s et e bt e e at e e bt e s ab e e bt e sab e e ab e e ea bt e bt e ht e e bt e e ab e e bt e e hbeeabe e bt e ebeenate s 67
6.2.1 Performance numMDBErs Or T2C..........ccciiiiiiiiiii ettt ettt et sttt st e e s e e eaee it eae 69
0.3 SPIPEIIPRETIAL...c.eiiiiiiiiieieit ettt ettt b et e h e et e at e sb e e st bt et b e et e h et b et b ettt nae e 71
6.3.1 Performance Numbers for SPL..........cccccooiiiiiiiiiiiiii s 73
6.4 UART PEIIPREIAL ...ttt ettt ettt et s bt et e e bt et e e b e em b e e bt et e e bt et e eaee bt esee bt emeesaeeneesbeentennean 75
6.4.1 Performance Numbers for UARTccooiiiiiiiiiiiiiieeee et 77
6.5 USB HID PEIIPREIAL.......cviuiiiiiiciiiiciiiieierictc ettt ettt se e enenea 79
6.5.1 DEVICE A@SCIIPIOT. c.. ettt ettt sttt ettt ettt et ea e bt be e st et a et et e et et eae e bt eaeebeebesae et b e 79
0.5.2 ENAPOINTS ..ttt ettt ettt ettt ettt b e et h e et h e et h e e st e bttt h e et bt e bt ebeenaeeh b e s bbb nbe e b e nbeeas 79
0.5.3 HID TEPOTES. c.eeutieitteiiteeite ettt ettt ettt ettt et et e e bt e e st e e bt e s ab e e bt e sa bt e bt e eabeeabeeeabeenbeesabeenbtesabeenbteeabeenbaesabeenbee s 80
6.0 USB PEIIPRETALoeiiitieiietieeete ettt ettt et et et et ea e e eb e ea e e eh e e bt e et e ae s bt enbeeb e e beeb e e bt en e et e en e e teeneenaeenee 81
6.7 FIBXCAN PIIPRETAL......couiiiiiiiiiiiiiiieete ettt bt et b et sttt s bt bt s bt e bt et e e ettt e bt ebeesaenaeenee 82
6.8 QUAASPI PEIIPRETALccuiiiniiiiiiiiieeieet ettt et b e s bt et esa e s bt e eab e e bt e eab e e bt e sabeesbtesabeesbbesabeenbbesaseenseean 84
6.8.1 QSPI cONfiguration DIOCK.coueiiiiiiiiiitieteet ettt ettt b et b et e e bt et e bt et e eae et e eseenbesaeeneeeneas 84
0.8.2 LLOOK-UP-LADIC. ...c.eiiiiiiiteiteeit ettt ettt e a ettt sb et s b e b bt e bt e be et ean et e 89
6.8.3 Configure QUadSPI MOAUIE........cccuiiiiiiiiiiiiiiee ettt st st e st st e s bbeebeenaees 90
6.8.4 Access external SPI flash devices using QuadSPI module.............ccoceoeriniiiiiniiniiiiiiiiieienneeee e 92
6.8.5 Boot directly from QUAadSPLL........ccciiiiiiiiiii ettt 92
6.8.6 EXAMPIE QEUB......oiiiiiiiieeiee ettt ettt et et e s h b e e bt e bt e bt e ht e e bt eshte st e e nateeabeenbee 93
Chapter 7
Peripheral interfaces
Tl INEEOAUCTION. ...ttt et b e s bbb e e s e et ea e s b easeneeb e saesa e b nas 95
7.2 ADSIIACt CONEIOL INMEETTACE.......eetieuiiitietietiet ettt ettt et et e st e st e sae e bt saee bt s st e beesee b e en s e b e enteeseeneesseenaeenee 96
7.3 ADSHIACE DYLE INTETTACE. ...cueiutieiiiiieitietceteet ettt ettt ettt e b e bt s bt e et b e e et s bt et e e bt et bt e et ebeenaeenees 97
T4 ADSIIACE PACKEL INLETTACE. ...c.eiiiiiiiiiiie ettt et ettt b e bt e s bt e st e e s bt e et e e sbbeeabeenbeesabeesaeesates 97
7.5 Framing PACKELIZET......ccuetiiiieiieiiiieteteete ettt sttt ettt e b bbbt b b et ettt et et st e bt et e bt eueebe e bt sae et b e 98
7.0 USB HID PACKETIZETcveiiiiiieieiiteteeit ettt ettt ettt ettt ettt h et b et b et e bt et eb e e nb e eatenaeestesbeesbesbeennenbeens 98
T.T USB HID PACKEUZET . c...cciutieiieiiiieiteeite ettt ettt ettt et ettt e st e e s ate e bt e sab e e bt e sab e eabeesabeeabeesabeenseesabeenbeesateeanes 98

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors 5

Section number Title Page
7.8 COMMANA/AALA PTOCESSOTeueeuiirieeieriteteeit ettt et ettt et eteea et sbtestesae e bt s bt enbeeb b e bt ease bt eate bt estesbee st e ebeenbesbeenbeeatenbeensenbeas 99
Chapter 8
Memory interface
8.1 ADSIACT INEITACE.couiiiiiiiiiciiiictt et et eb et b bbb a et ettt e 101
8.2 Flash driver INTEITACE.cccuiiiiiiiiiiici e s s 102
8.3 LOW-1EVE] FlaSh AIIVET....c..iiiiitieiietiee ettt h et ettt a et e a et e e et e sbeemeeebeemtesbeenbesbeenbeeseenteeneentens 103
Chapter 9
MCU bootloader porting
L2 B 1 L3 (e Ta L Ue1 5 o 1 OSSOSO SRR 105
9.2 ChOOSING @ STATTING POINL......eiutitiiiiirteeitentt ettt ettt ettt et ebte et eate st e eatesbeestesbeesbe st e ea bt e bt esteebeenbeebtesbeentesaeemaesbeenaesbeenbenbnens 105
0.3 Preliminary POTtING LASKS.....cocueiiieiiieiieet ettt ettt ettt et et e st esbteea b e e baeeab e e bt e e bt e s st e sabeeshtesabeenbaeenbeenbeeeas 105
9.3.1 Download MCUXPIESSO SDK......cceririiiiiiiiiiiiiiieietet ettt sttt ettt ettt eae ettt besae e nen 106
9.3.2 Copy the ClOSESt MALCH.......eouiiiiiiiiirteitice ettt ettt ettt sttt sttt eate b esbenbeeanenbeeas 106
9.3.3 Provide device startup file (VECIOT taDIE)........eeruiiriiiiiiiiieiie ettt ettt sttt et e e sbeenaeeea 107
9.3.4 Clean up the TAR PIOJECE......ccuiiiiiiiiiieiieitrie sttt ettt ettt st sttt ettt eb e be bbb b saennen 107
9.3.5 BoOtloader PEIIPRETALS........coueiiiriiiiiriieieniteteett ettt ettt et st ettt eb et b et e at e sb et sbe et s be et st naeeanens 109
0.4 Primary POTUNG LASKS.veeruieitieriteeiteitte ettt ettt ettt et e b e et e e bt e s bt e sbtesa bt e sbbeeabe e baeeabeenbeeeabeesstesabeessaesabeenbaesnseenseenns 111
9.4.1 BoOtloader PEIIPREIALS.......cueiiuiiuiiiiiiieiieieitteteet ettt ettt st sttt ettt ettt 111
0.4.1.1 Supported PEriPRETALS.......ccouiiiiiriiiiiiieietieteetete ettt ettt sttt ettt ettt en 112
9.4.1.2 Peripheral iNTtAlIZAtION.ooiuiiiiiiiiiiiie ittt st ettt e s b et e sbeesbeesaee e 112
0.4.1.3 ClOCK INTHAIIZAION.etieiiiiieieiiiet ettt ettt ettt ettt e bt st e b s st e b e es e et e eat et e entesaeeneeeneeneeene 112
9.4.2 BoOtloader CONTIGUIATION. «...c..eitiriiiiiriieieeit ettt ettt ettt sttt sb et sbt bt ea et eab e bt eatesbeetesbeenaesbeenaesanen 113
9.4.3 Bootloader memory mMap CONTIZUIALION.eeveeritietieriieeitterite ettt et ste et e stte et e e bt sbeesatesabeessbesabeesbeesbeenseeens 113
Chapter 10
Creating a custom flash-resident bootloader
LO.1 INEFOAUCTION. ..ttt e b e s b e e e b e eaeeb e saesa et e aesaens 115
LO.2 WRETE@ 0 SEAIT.....eetieuieitiete ittt ettt ettt ettt ettt et et e e bt e a e e bt e st et e e st e bt em e et e em b e b e emeees e entees e e bt es e e bt emte bt emtenbeensenbeensenneenteans 115
10.3 Flash-resident bOOtIOAEr SOUICE tIEL.........cc.evuiiiiiiiiiiiieiieteiet ettt et 116
104 MOIEYING SOUTCE fIIES....ccuuiiiiiiiieeiii ettt h et ettt e s et e s bt e sab e e bt e eab e e bt e sabe e btesabeenbtesabeenbeesabeenbeenas 118
LT 21111 o) (<SPPSR 118

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

Section number Title Page
10.6 Modifying a peripheral configuration MACTO..........ciutitiriitirieieeitee ettt ettt ettt ettt ettt sbe et bt e sae e 118
10.7 How to generate MMCAU functions in DINATY TMAZE....ccveerteerueeriierieeniteeteeniteeieesite ettt st e st e steesiaeesbeesseeebeesieesares 119
Chapter 11
Bootloader Reliable Update
T1.1 IEFOAUCTION. ..ttt e s b e s bbb s e s aeea e b enesa et e aesan 127
11.2 FUNCHONAL ESCIIPIION.eutiiitiitieitietiete ettt ettt ettt ettt e bt e a et e st e bt est et e es e ebeeneeeseemeeeaeesbeemee bt emeeebeenseebeenteebeenteeneenseenee 127
11.2.1 Bootloader workflow with reliable Update...........cccoiiviiriiiiiiiiiiiici e 127
11.2.2 Reliable update iMpIemMENTAION LYPES....cc.uerreerrerieeriieeieertieeteesiteebeestteebeesbteebeesbtesbeesatesabeessbessseessaesseenseeens 128
11.2.3 Reliable Update flOW........cc.couiiiiiiiiiieiiecete sttt sttt ettt ettt s st 129
11.2.3.1 Software implemMENtaAtiON.cc.eeouiriiriiriirieiierteete sttt ettt ettt ettt e e sbeeae st esaesseesaeeanens 129
11.2.3.2 Hardware implementation.cc.ueeiuieriiriteeiieerieeniteeite ettt e et ebeesibeebtesabe e bt e sabeebeesabeebeesabeeseesanes 131
11.3 CONTIGUIATION IIACIOS. c..c.tteutiettettettett et et ettt ete st e eteeueebe et e esbeestenbees e et e es e e bt eaeeeeeaaeeseeembesbeemseeseenseeseenseeseanteeneenseeneenseenes 133
L1.4 GO PIOPLITY ..ottt ettt ettt ettt eb et e a e s bt et sb et s bt et e bt et eb b e st e e b e et e eh e e bt e at e sbe e st e sbeemaesbe et e ebe et e eb b et e ebtebeentenbeenee 134
Chapter 12
Appendix A: status and error codes
Chapter 13
Appendix B: GetProperty and SetProperty commands
Chapter 14
Revision history
TA.T REVISION HISTOTY . couttiiiitiiiieiieiiie ettt ettt ettt e b e s it e e bt e eat e e bt e sab e e bt e sa b e e bt esat e e bt essbeeabeesabeeabeesabeenseenanean 143

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 7

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

Chapter 1
Introduction

1.1 Introduction

The MCU bootloader is a configurable flash programming utility that operates over a
serial connection on MCU devices. It enables quick and easy programming of MCU
devices through the entire product life cycle, including application development, final
product manufacturing, and more. The bootloader is delivered in two ways. The MCU
bootloader is provided as full source code that is highly configurable. The bootloader is
also preprogrammed by NXP into ROM or flash on select devices. Host-side command
line and GUI tools are available to communicate with the bootloader. Users can utilize
host tools to upload and/or download application code via the bootloader.

1.2 Terminology

target

The device running the bootloader firmware (aka the ROM).
host

The device sending commands to the target for execution.
source

The initiator of a communications sequence. For example, the sender of a command or
data packet.

destination
Receiver of a command or data packet.

incoming

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors 9

Block diagram

From host to target.

outgoing

From target to host.

1.3 Block diagram

This block diagram describes the overall structure of the MCU bootloader.

CRC Check

Startup and Initialization |

Peripheral drivers

12C

SPI

CAN

UART

USB HID

USB MSC

MAbstract byte interface

h

Active Peripheral Detection

Command phase state machine

Figure 1-1. Block diagram

1.4 Features supported

Here are some of the features supported by the MCU bootloader:
* Supports UART, 12C, SPI, CAN, and USB peripheral interfaces.

* Automatic detection of the active peripheral.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

Command Handlers

Flash erase all

Flash erase region

Read memory

Write memory

Fill memaory

Execute

Get property

Set property

Reset

Flash security disable

etc

C90TFS Flash Driver

Serial QuadSPI Flash Driver

10

NXP Semiconductors

L __4
Chapter 1 Introduction
* Ability to disable any peripheral.
» UART peripheral implements autobaud.
* Common packet-based protocol for all peripherals.
* Packet error detection and retransmit.
* Flash-resident configuration options.
e Fully supports flash security, including ability to mass erase or unlock security via
the backdoor key.
 Protection of RAM used by the bootloader while it is running.
* Provides command to read properties of the device, such as flash and RAM size.
» Multiple options for executing the bootloader either at system start-up or under
application control at runtime.
* Support for internal flash, serial QuadSPI, and other external memories.
* Support for encrypted image download.

1.5 Components supported

Components for the bootloader firmware:

* Startup code (clocking, pinmux, etc.)
e Command phase state machine
e Command handlers

* GenericResponse

* FlashEraseAll

* FlashEraseRegion

* ReadMemory

* ReadMemoryResponse

* WriteMemory

 FillMemory

* FlashSecurityDisable

e GetProperty

* GetPropertyResponse

* Execute

e Call

* Reset

» SetProperty

 FlashEraseAllUnsecure

* FlashProgramOnce

* FlashReadOnce

* FlashReadOnceResponse

* FlashReadResource

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors 11

A
Components supported
* FlashReadResourceResponse

* ConfigureMemory
» ReliableUpdate

» SB file state machine

* Encrypted image support (AES-128)
» Packet interface

* Framing packetizer

* Command/data packet processor

* Memory interface
» Abstract interface
 Flash Driver Interface
* Low-level flash driver
* QuadSPI interface
* Low-level QuadSPI driver
* On-the-fly QuadSPI decryption engine initialization

* Peripheral drivers

e 12C slave

e SPI slave

* CAN
e Auto-baud detector

e UART
e Auto-baud detector

e USB device
e USB controller driver
e USB framework
e USB HID class
* USB Mass storage class

* CRC check engine
» CRC algorithm

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
12 NXP Semiconductors

Chapter 2
Functional description

2.1 Introduction

The following subsections describe the MCU bootloader functionality.

2.2 Memory map

See MCU bootloader chapter of the reference manual of the particular System On Chip
(SoC) for the ROM and RAM memory map used by the bootloader.

2.3 The MCU Bootloader Configuration Area (BCA)

The MCU bootloader reads data from the Bootloader Configuration Area (BCA) to
configure various features of the bootloader. The BCA resides in flash memory at offset
0x3CO0 from the beginning of the user application, and provides all of the parameters
needed to configure the MCU bootloader operation. For uninitialized flash, the MCU
bootloader uses a predefined default configuration. A host application can use the MCU
bootloader to program the BCA for use during subsequent initializations of the
bootloader.

NOTE

Flashloader does not support this feature.

Table 2-1. Configuration Fields for the MCU bootloader

Offset Size (bytes) Configuration Field Description
0x00 - 0x03 4 tag Magic number to verify bootloader
configuration is valid. Must be set to
'kefg'.

Table continues on the next page...

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

13

A ————
The MCU Bootloader Configuration Area (BCA)

Table 2-1. Configuration Fields for the MCU bootloader (continued)

Offset Size (bytes) Configuration Field Description
0x04 - 0x07 4 crcStartAddress Start address for application image
CRC check. To generate the CRC,
see the CRC chapter.
0x08 - 0x0B 4 crcByteCount Byte count for application image CRC
check.
0x0C - OxOF 4 crcExpectedValue Expected CRC value for application
CRC check.
0x10 1 enabledPeripherals Bitfield of peripherals to enable.
bit 0 UART
bit 1 12C
bit 2 SPI bit 3 CAN
bit 4 USB-HID
bit 7 USB MSC
0x11 1 i2cSlaveAddress If not OxFF, used as the 7-bit 12C
slave address.
0x12 - 0x13 2 peripheralDetectionTimeout If not OxFF, used as the timeout in
milliseconds for active peripheral
detection.
0x14 - 0x15 2 usbVid Sets the USB Vendor ID reported by
the device during enumeration.
0x16- 0x17 2 usbPid Sets the USB Product ID reported by
the device during enumeration.
0x18 - Ox1B 4 usbStringsPointer Sets the USB Strings reported by the
device during enumeration.
0x1C 1 clockFlags See clockFlags Configuration Field.
0x1D 1 clockDivider Inverted value of the divider used for
core and bus clocks when in high-
speed mode.
Ox1E 1 bootFlags One's complement of direct boot flag.
OxFE represents direct boot.
Ox1F padoO Reserved, set to OxFF.
0x20 - 0x23 4 mmcauConfigPointer Reserved, holds a pointer value to the
MMCAU configuration.
0x24 - 0x27 4 keyBlobPointer Reserved, holds a value to the key
blob array used to configure OTFAD.
0x28 1 padi Reserved.
0x29 1 canConfig1 ClkSel[1], PropSeg[3], Speedindex[4]
0x2A - 0x2B 2 canConfig2 Pdiv[8], Pseg[3], Pseg2[3], rjw[2]
0x2C - 0x2D 2 canTxld txId
Ox2E - Ox2F 2 canRxId rxld
0x30 - 0x33 4 gspiConfigBlockPointer QuadSPI configuration block pointer

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

14

NXP Semiconductors

L __4
Chapter 2 Functional description
The first configuration field 'tag' is a tag value or magic number. The tag value must be
set to 'kcfg' for the bootloader configuration data to be recognized as valid. If tag-field
verification fails, the MCU bootloader acts as if the configuration data is not present. The
tag value is treated as a character string, so bytes 0-3 must be set as shown in the table.

Table 2-2. tag Configuration Field

Offset tag Byte Value
0 'k' (0x6B)
1 'c' (0x63)
2 'f' (0x66)
3 'g' (0x67)

The flags in the clockFlags configuration field are enabled if the corresponding bit is
cleared (0).

Table 2-3. clockFlags Configuration Field

Bit Flag Description
0 HighSpeed Enable high-speed mode (i.e., 48 MHz).
1-7 - Reserved.

2.4 Start-up process

It is important to note that the startup process for bootloader in ROM, RAM (flashloader),
and flash (flash-resident) are slightly different. See the chip-specific reference manual for
understanding the startup process for the ROM bootloader and flashloader. This section
focuses on the flash-resident bootloader startup only.

There are two ways to get into the flash-resident bootloader.

1. If the vector table at the start of internal flash holds a valid PC and SP, the hardware
boots into the bootloader.

2. A user application running on flash or RAM calls into the MCU bootloader entry
point address in flash to start the MCU bootloader execution.

After the MCU bootloader has started, the following procedure starts the bootloader
operations:

1. Initializes the bootloader's .data and .bss sections.
2. Reads the bootloader configuration data from flash at offset 0x3CO. The
configuration data is only used if the tag field is set to the expected 'kcfg' value. If the

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 15

A
Start-up process
tag is incorrect, the configuration values are set to default, as if the data was all OxFF
bytes.
Clocks are configured.
Enabled peripherals are initialized.
The the bootloader waits for communication to begin on a peripheral.
* If detection times out, the bootloader jumps to the user application in flash if the
valid PC and SP addresses are specified in the application vector table.
 If communication is detected, all inactive peripherals are shut down, and the
command phase is entered.

bl

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
16 NXP Semiconductors

Chapter 2 Functional description

4{ Shutdown all Peripherals Jump to user application J

&

—_—

Enter bootloader

—_— Iz Timeout
v Check enabled
e and has Timeout
Init hardware ocourred?
—
ki
—_—
Load user-
config data Was start
S A byte [0x54)
received on
¥ CANR?
—
Configure clocks
—
¥

Was start
byte (0x5A)
received on
5PIn?

Init Flash, Property, Ma

and Memory
interfaces

Init UARTR,
CAMn, S8In, 12Cn

Was start

¥

p
hw:a_lﬂxSA] Shutdown unused

received on Feripherals

12Cn? -

Enter bootloader

state machine

Was a Ping
packet

received on
UARTR?

I= the user
application valid?

Enzble Timeout Chack
and enable Timeout
valus

Disable Timeout
detection

Figure 2-1. MCU bootloader start-up flowchart

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 17

Clock configuration

2.5 Clock configuration

The clock configuration used by the bootloader depends on the clock settings in the
bootloader configuration area and the requirements of the enabled peripherals. The
bootloader starts by using the default clock configuration of the part out of reset.

 Alternate clock configurations are supported by setting fields in the bootloader
configuration data.

« If the HighSpeed flag of the clockFlags configuration value is cleared, the core and
bus clock frequencies are determined by the clockDivider configuration value.

» The core clock divider is set directly from the inverted value of clockDivider, unless
a USB peripheral is enabled. If a USB peripheral is enabled and clockDivider is
greater than 2, clockDivider is reduced to 2 in order to keep the CPU clock above 20
MHz.

* The bus clock divider is set to 1, unless the resulting bus clock frequency is greater
than the maximum supported value. In this instance, the bus clock divider is
increased until the bus clock frequency is at or below the maximum.

 The flash clock divider is set to 1, unless the resulting flash clock frequency is
greater than the maximum supported value. In this instance, the flash clock divider is
increased until the flash clock frequency is at or below the maximum.

* If flex bus is available, the flex bus clock divider is set to 1, unless the resulting flex
bus clock frequency is greater than the maximum supported value. In this instance,
the flex bus clock divider is increased until the flex bus clock frequency is at or
below the maximum.

 If a USB peripheral is enabled, the IRC48Mhz clock is selected as the USB
peripheral clock and the clock recovery feature is enabled.

* Note that the maximum baud rate of serial peripherals is related to the core and bus
clock frequencies.

* Note that the bootloader code does not always configure the device core clock to run
at 48 MHz. For devices with no USB peripheral and when HighSpeed flag is not
enabled in the BCA, the core clock is configured to run at default clock rate (i.e.,
20.9 MHz). This is also true for devices with USB but HighSpeed flag is not enabled
in the BCA.

2.6 Bootloader entry point

The MCU bootloader provides a function (runBootloader) that a user application can call,
to run the bootloader.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
18 NXP Semiconductors

4
Chapter 2 Functional description

NOTE

Flashloader does not support this feature.

To get the address of the entry point, the user application reads the word containing the
pointer to the bootloader API tree at offset Ox1C of the bootloader's vector table. The
vector table is placed at the base of the bootloader's address range.

The bootloader API tree is a structure that contains pointers to other structures, which
have the function and data addresses for the bootloader. The bootloader entry point is
always the first word of the API tree.

The prototype of the entry point is:
void run bootloader (void * arg) ;

The arg parameter is currently unused, and intended for future expansion. For example,
passing options to the bootloader. To ensure future compatibility, a value of NULL
should be passed for arg.

Example code to get the entry pointer address from the ROM and start the bootloader:

// Variables
uint32_t runBootloaderAddress;
void (*runBootloader) (void * arg);

// Read the function address from the ROM API tree.
runBootloaderAddress = ** (uint32 t **) (0x1c00001c) ;
runBootloader = (void (*) (void * arg))runBootloaderAddress;

// Start the bootloader.
runBootloader (NULL) ;

NOTE

The user application must be executing at Supervisor
(Privileged) level when calling the bootloader entry point.

2.7 Application integrity check

The application integrity check is an important step in the boot process. The MCU
bootloader provides an option, and when enabled, does not allow the application code to
execute on the device unless it passes the integrity check.

MCU bootloader uses CRC-32 as its integrity checker algorithm. To properly configure
this feature, the following fields in the BCA must be set to valid values:

e Set crcStartAddress to the start address that should be used for the CRC check. This
is generally the start address of the application image, where it resides in the flash or
QuadSPI memory.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 19

Application integrity check

Set crcByteCount to the number of bytes to run the CRC check from the start
address. This is generally the length of the application image in bytes.

Set crcExpectedValue to the checksum. This is the pre-calculated value of the
checksum stored in the BCA for the bootloader to compare with the resultant CRC
calculation. If the resultant value matches with the crcExpectedValue, then the
application image passes the CRC check.

NOTE
See Section 2.3, "The MCU Bootloader Configuration Area
(BCA)", in the MCU Bootloader v2.6.0 Reference Manual
(document MCUBOOTRM) for details about the BCA.

2.7.1 MCU bootloader flow with integrity checker

The following steps describe the flow of execution of the MCU bootloader when integrity
check is enabled in the BCA.

2.7.1.1 Bootloader initialization

Load BCA data from flash at offset, corresponding to the application image start
address + 0x3CO.
Initialize the CRC check status. If BCA is invalid (the tag is not set to expected
‘kcfg’ value), or the CRC parameters in valid BCA are not set, then the CRC check
status is set to kStatus_ AppCrcCheckInvalid, meaning the integrity check is not
enabled for the device. Otherwise, the CRC check status is set to
kStatus_AppCrcChecklInactive, meaning the integrity check is due for the device.
If a boot pin is not asserted and application address is a valid address (the address is
not null, the address resides in a valid executable memory range, and the flash is not
blank), then the bootloader begins the CRC check function. Otherwise, the CRC
check function is bypassed.
The CRC check function. The bootloader checks the CRC check status initialized in
the previous steps, and if it is not kStatus_ AppCrcCheckInvalid (integrity check is
enabled for the device), then the bootloader verifies the application resides in internal
flash or external QSPI flash.

a. If the application address range is invalid, then the bootloader sets the status to

kStatus_ AppCrcCheckOutOfRange.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

20

NXP Semiconductors

L __4
Chapter 2 Functional description
b. If the application address range is valid, then the CRC check process begins. If
the CRC check passes, then the bootloader sets the status to
kStatus_AppCrcCheckPassed. Otherwise, the status is set to
kStatus_AppCrcCheckFailed.

2.7.1.2 Staying in or leaving bootloader

* If no active peripheral is found before the end of the detection, the timeout period
expires, and the current CRC check status is either set to
kStatus_AppCrcChecklInvalid (integrity check is not enabled for the device), or
kStatus_AppCrcCheckPassed. Then, the bootloader jumps to the application image.
Otherwise, the bootloader enters the active state and wait for commands from the
host.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 21

Application integrity check

Enter bootloader

¥

Laad BCA data from
fiash at Offset Ox3C0

h 4

Init CRC chack status

5 BCA data invalid
or unsat?

Yeas

¥

Set CRC check status as
AppCreCheckinvalid

Sel CRG check slatlus as
AppCroCheckinactive

Is Boot pin
anserted?

Mo

Is application
address nvalid?

Mo

¥

Start CRC check
fumction

Is CRC check
status invalid?

Ma

Set CRC check stalus as
AppCreChackOutOfRangea

5 CRC chech
address aut of
ranga?

Ma

¥

Yaj ¥
—.@{H}tlnaderr

Start CRC calculation
and validation

&
Jump to application

-

Sot CRC check slalus as |18s
AppCreCheckFailed

5 CRC validation
failed?

Ma
k

o]

Sal CRC check stalus as

AppCroCheckPassed

eripheral ac
during detection
timeout?

Figure 2-2. Application integrity check flow

The following table provides the CRC algorithm which is used for the application
integrity check. The CRC algorithm is the MPEG2 variant of CRC-32.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

22

NXP Semiconductors

4
Chapter 2 Functional description

The characteristics of the MPEG?2 variant are:

Table 2-4. MPEG2 variant characteristics

Width 32
Polynomial 0x04C11BD7
Init Value OxFFFFFFFF
Reflect In FALSE
Reflect Out FALSE
XOR Out 0x00000000

The bootloader computes the CRC over each byte in the application range specified in the
BCA, excluding the crcExpectedValue field in the BCA. In addition, MCU bootloader
automatically pads the extra byte(s) with zero(s) to finalize CRC calculation if the length
of the image is not 4-bytes aligned.

The following procedure shows the steps in CRC calculation.

1. CRC initialization
* Set the initial CRC as OxFFFFFFFF, which clears the CRC byte count to 0.
2. CRC calculation
* Check if the crcExpectedValue field in BCA resides in the address range
specified for CRC calculation.

* If the crcExpectedValue does not reside in the address range, then compute
CRC over every byte value in the address range.

* If the crcExpectedValue does reside in the address range, then split the
address range into two parts, splitting at the address of crcExpectedValue
field in BCA excluding crcExpectedValue. Then, compute the CRC on the
two parts.

* Adjust the CRC byte count according to the actual bytes computed.
3. CRC finalization
* Check if the CRC byte count is not 4-bytes aligned. If it is 4-bytes aligned, then
pad it with necessary zeroes to finalize the CRC. Otherwise, return the current
computed CRC.

NOTE
MCU bootloader assumes that crcExpectedValue field (4 bytes)

resides in the CRC address range completely if it borders on the
CRC address range.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 23

A ————
Application integrity check

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
24 NXP Semiconductors

Chapter 3
MCU bootloader protocol

3.1 Introduction

This section explains the general protocol for the packet transfers between the host and
the MCU bootloader. The description includes the transfer of packets for different
transactions, such as commands with no data phase, and commands with an incoming or
outgoing data phase. The next section describes the various packet types used in a
transaction.

Each command sent from the host is replied to with a response command.
Commands may include an optional data phase.

* [If the data phase is incoming (from the host to MCU bootloader), it is part of the
original command.

* If the data phase is outgoing (from MCU bootloader to host), it is part of the response
command.

3.2 Command with no data phase

NOTE
In these diagrams, the Ack sent in response to a Command or
Data packet can arrive at any time before, during, or after the
Command/Data packet has processed.

Command with no data phase
The protocol for a command with no data phase contains:

e Command packet (from host)
* Generic response command packet (to host)

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 25

Command with incoming data phase

Process Command

Response

Figure 3-1. Command with no data phase

3.3 Command with incoming data phase

The protocol for a command with incoming data phase contains:

* Command packet (from host)(kCommandFlag_HasDataPhase set)
* Generic response command packet (to host)

* Incoming data packets (from host)

* Generic response command packet (to host)

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
26 NXP Semiconductors

Chapter 3 MCU bootloader protocol

Process Command

Initial Response

Y

Process Data

R Ack]
Final Data Packet ’:
Process Data
R Ack]
Final Response >
P Ack]

Figure 3-2. Command with incoming data phase

Notes

* The host may not send any further packets while it is waiting for the response to a

command.

» The data phase is aborted if, prior to the start of the data phase, the Generic Response
packet does not have a status of kStatus_Success.

» Data phases may be aborted by the receiving side by sending the final Generic
Response early with a status of kStatus_AbortDataPhase. The host may abort the

data phase early by sending a zero-length data packet.
» The final Generic Response packet sent after the data phase includes the status for

the entire operation.

3.4 Command with outgoing data phase

The protocol for a command with an outgoing data phase contains:

* Command packet (from host)

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 27

A
Command with outgoing data phase
e ReadMemory Response command packet (to host)(kCommandFlag_HasDataPhase
set)
* Outgoing data packets (to host)
* Generic response command packet (to host)

Host Target
Command o
L
Ack
(___________________________
Process Command
P Initial Response
X Ack
___________________________)
< Data packet
Process Data
Ack
___________________________)
I Final Data Packet I
)
Process Data
Ack
___________________________)
< Final Response
Ack
___________________________)

Figure 3-3. Command with outgoing data phase

Note

» The data phase is considered part of the response command for the outgoing data
phase sequence.

* The host may not send any further packets while the host is waiting for the response
to a command.

» The data phase is aborted if, prior to the start of the data phase, the ReadMemory
Response command packet does not contain the kCommandFlag_HasDataPhase flag.

e Data phases may be aborted by the host sending the final Generic Response early
with a status of kStatus_AbortDataPhase. The sending side may abort the data phase
early by sending a zero-length data packet.

 The final Generic Response packet sent after the data phase includes the status for
the entire operation.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
28 NXP Semiconductors

Chapter 4
Bootloader packet types

4.1 Introduction

The MCU bootloader device works in the slave mode. All data communication is
initiated by a host, which is either a PC or an embedded host. The MCU bootloader
device is the target that receives a command or a data packet. All data communication
between the host and the target is packetized.

NOTE
The term "target" refers to the "MCU bootloader device".

There are six types of packets used:
* Ping packet
* Ping Response packet
* Framing packet
* Command packet
* Data packet
* Response packet

All fields in the packets are in the little-endian byte order.

4.2 Ping packet

The Ping packet is the first packet sent from the host to the target to establish a
connection on a selected peripheral to run the autobaud. The Ping packet can be sent from
the host to the target anytime that the target is expecting a command packet. If the
selected peripheral is UART, the ping packet must be sent before any other
communications. For other serial peripherals it is optional, but it is recommended to
determine the serial protocol version.

In response to the Ping packet, the target sends the Ping Response packet, discussed
further on in the document.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 29

A ————
Ping Response packet

Table 4-1. Ping packet format

Byte # Value Name
0 Ox5A start byte
1 0xA6 ping
Host Target

Ping Packet 0x5a Oxa6

Target executes UART autobaud if necessary

PingResponse Packet

0Ox5a 0xa7 0x00 0x02 0x01 0x50 0x00 0x00 Oxaa Oxea

Figure 4-1. Ping packet protocol sequence

4.3 Ping Response packet

The target sends the Ping Response packet back to the host after receiving the Ping
packet. If the communication is over a UART peripheral, the target uses the incoming
Ping packet to determine the baud rate before replying with the Ping Response packet.
When the Ping Response packet is received by the host, the connection is established and
the host starts sending commands to the target.

Table 4-2. Ping Response packet format

Byte # Value Parameter
0 Ox5A start byte

0xA7 Ping response code

Protocol bugfix

Protocol minor

Protocol major

Protocol name = 'P' (0x50)

Options low

N|lojoa|h~|[w|ND| =

Options high

Table continues on the next page...

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
30 NXP Semiconductors

4
Chapter 4 Bootloader packet types

Table 4-2. Ping Response packet format (continued)

Byte # Value Parameter
8 CRC16 low
9 CRC16 high

The Ping Response packet can be sent from the host to the target anytime the target
expects a command packet. For the UART peripheral to run the autobaud, it must be sent
by the host when a connection is first established. It is optional for the other serial
peripherals, but it is recommended to determine the serial protocol version. The version
number is in the same format as the bootloader version number returned by the
GetProperty command.

4.4 Framing packet

The framing packet is used for the flow control and error detection for the
communications links that do not have such features built in. The framing packet
structure sits between the link layer and the command layer. It wraps the command and
data packets as well.

Every framing packet containing data sent in one direction results in a synchronizing
response framing packet in the opposite direction.

The framing packet described in this section is used for serial peripherals including the
UART, I2C, and SPI. The USB HID peripheral does not use the framing packets. Instead,
the packetization inherent in the USB protocol itself is used.

Table 4-3. Framing Packet Format

Byte # Value Parameter

0 O0x5A start byte

1 packetType

2 length_low Length is a 16-bit field that specifies the entire

3 length_high command or data packet size in bytes.

4 crc16_low This is a 16-bit field. The CRC16 value covers the

5 crc16_high entire framing packet, including the start byte and

- command or data packets, but does not include the
CRC bytes. See the CRC16 algorithm after this table.
6...n Command or Data packet
payload

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 31

A ————
CRC16 algorithm

A special framing packet that contains only a start byte and a packet type is used for
synchronization between the host and the target.

Table 4-4. Special Framing Packet Format

Byte # Value Parameter
0 O0x5A start byte
1 0xAn packetType

The Packet Type field specifies the type of the packet from one of these defined types:
Table 4-5. packetType Field

packetType Name Description

OxA1 kFramingPacketType_Ack The previous packet was received successfully; the sending
of more packets is allowed.

0xA2 kFramingPacketType_Nak The previous packet was corrupt and must be re-sent.

0xA3 kFramingPacketType_AckAbort The data phase is being aborted.

0xA4 kFramingPacketType_Command The framing packet contains a command packet payload.

0xA5 kFramingPacketType_Data The framing packet contains a data packet payload.

0xA6 kFramingPacketType_Ping Sent to verify that the other side is alive. Also used for the
UART autobaud.

0xA7 kFramingPacketType_PingResponse A response to Ping; contains the framing protocol version
number and options.

4.5 CRC16 algorithm
This section provides the CRC16 algorithm.

The CRC is computed over each byte in the framing packet header, excluding the crc16
field itself, plus all payload bytes. The CRC algorithm is the XMODEM variant of
CRC-16.

The characteristics of the XMODEM variant are:
Table 4-6. XMODEM charactertistics

width 16
polynomial 0x1021
init value 0x0000
reflect in false
reflect out false
xor out 0x0000
check result 0x31c3

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
32 NXP Semiconductors

Chapter 4 Bootloader packet types

The check result is computed by running the ASCII character sequence "123456789"
through the algorithm.

uintlé t crclé_update(const uint8 t * src, uint32 t lengthInBytes)

uint32 t crc
uint32 t j;

for (j=0;

j <

= 0;

lengthInBytes; ++3j)

uint32 t i;

uint32 t byte = srcljl;
crc *= byte << 8;
for (i = 0; 1 < 8; ++1)

{

uint32 t temp =

if

crc

crc << 1;
(crc & 0x8000)
temp "= 0x1021;

= temp;

return crc;

4.6 Command packet

The command packet carries a 32-bit command header and a list of 32-bit parameters.

Table 4-7. Command packet format

Command packet format (32 bytes)

Command header (4 bytes) 28 bytes for Parameters (Max 7 parameters)
Tag Flags [Rsvd |Param |Param1 Param2 Param3 Param4 Param5 Param6 Param7
Count |(32-bit) (32-bit) (32-bit) (32-bit) (32-bit) (32-bit) (32-bit)
byte 0 |[byte1 |byte2 |byte3 |- - - - - - -
Table 4-8. Command Header format
Byte # Command header field
0 Command or Response tag The command header is 4 bytes long, with
] Flags these fields.
2 Reserved. Should be 0x00.
3 ParameterCount

The header is followed by 32-bit parameters up to the value of the ParameterCount field
specified in the header. Because a command packet is 32 bytes long, only seven
parameters fit into the command packet.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

33

Command packet

The command packets are also used by the target to send responses back to the host. The
command packets and data packets are embedded into the framing packets for all of the

transfers.

Table 4-9. Command Tags

Command Tags Name
0x01 FlashEraseAll The command tag specifies one of the
0x03 ReadMemory bootloader are listed here.
0x04 WriteMemory
0x05 FillMemory
0x06 FlashSecurityDisable
0x07 GetProperty
0x08 Reserved
0x09 Execute
0x10 FlashReadResource
0x11 Reserved
Ox0A Call
0x0B Reset
0x0C SetProperty
0x0D FlashEraseAllUnsecure
O0xO0E FlashProgramOnce
OxOF FlashReadOnce
0x10 FlashReadResource
0x11 ConfigureMemory
0x12 ReliableUpdate

Table 4-10. Response Tags

Response Tag Name

0xA0 GenericResponse The response tag specifies one of the responses

OxA7 GetPropertyResponse (used for sending EH? MCI% bootloade: (target) Ire:u(rjn;‘ to the host.
responses to GetProperty command only) € valid response tags are listed here.

0xA3 ReadMemoryResponse (used for sending
responses to ReadMemory command only)

OxAF FlashReadOnceResponse (used for sending
responses to FlashReadOnce command only)

0xBO FlashReadResourceResponse (used for sending

responses to FlashReadResource command
only)

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

34

NXP Semiconductors

L __4

Chapter 4 Bootloader packet types
Flags: Each command packet contains a flag byte. Only bit O of the flag byte is used. If
bit 0 of the flag byte is set to 1, then the data packets follow in the command sequence.
The number of bytes that are transferred in the data phase is determined by a command-
specific parameter in the parameters array.

ParameterCount: The number of parameters included in the command packet.

Parameters: The parameters are word-length (32 bits). With the default maximum
packet size of 32 bytes, a command packet can contain up to seven parameters.

4.7 Response packet
The responses are carried using the same command packet format wrapped with the
framing packet data. The types of responses include:

* GenericResponse

* GetPropertyResponse

* ReadMemoryResponse

* FlashReadOnceResponse

» FlashReadResourceResponse

GenericResponse: After the MCU bootloader has processed a command, the bootloader
sends a generic response with the status and command tag information to the host. The
generic response is the last packet in the command protocol sequence. The generic
response packet contains the framing packet data and the command packet data (with
generic response tag = 0xAO0) and a list of parameters (defined in the next section). The
parameter count field in the header is always set to 2, for the status code and command
tag parameters.

Table 4-11. GenericResponse parameters

Byte # Parameter Descripton

0-3 Status code The Status codes are errors encountered during the execution of a
command by the target. If a command succeeds, then a kStatus_Success
code is returned.

4-7 Command tag The Command tag parameter identifies the response to the command sent
by the host.

GetPropertyResponse: The GetPropertyResponse packet is sent by the target in
response to the host query that uses the GetProperty command. The GetPropertyResponse
packet contains the framing packet data and the command packet data with the command/
response tag set to the GetPropertyResponse tag value (0xA7).

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 35

Response packet

The parameter count field in the header is set to greater than 1 to always include the
status code and one or many property values.

Table 4-12. GetPropertyResponse parameters

Byte # Value Parameter
0-3 Status code
4-7 Property value

Can be up to a maximum of six property values, limited to the size of the
32-bit command packet and property type.

ReadMemoryResponse: The ReadMemoryResponse packet is sent by the target in a
response to the host sending a ReadMemory command. The ReadMemoryResponse
packet contains the framing packet data and the command packet data with the command/
response tag set to the ReadMemoryResponse tag value (0xA3) and the flags field is set
to kCommandFlag_HasDataPhase (1).

The parameter count set to 2 for the status code and the data byte count parameters shown
here.

Table 4-13. ReadMemoryResponse parameters

Byte # Parameter Descripton
0-3 Status code The status of the associated Read Memory command.
4-7 Data byte count The number of bytes sent in the data phase.

FlashReadOnceResponse:The FlashReadOnceResponse packet is sent by the target in
response to the host sending a FlashReadOnce command. The FlashReadOnceResponse
packet contains the framing packet data and the command packet data with the command/
response tag set to a FlashReadOnceResponse tag value (OxAF) and the flags field set to
0. The parameter count is set to 2 plus the number of words requested to be read in the
FlashReadOnceCommand.

Table 4-14. FlashReadOnceResponse parameters

Byte # Value Parameter
0-3 Status Code
4-7 Byte count to read

Can be up to 20 bytes of requested read data.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
36 NXP Semiconductors

L __4

Chapter 4 Bootloader packet types
The FlashReadResourceResponse packet is sent by the target in response to the host
sending a FlashReadResource command. The FlashReadResourceResponse packet
contains the framing packet data and command packet data with the command/response
tag set to a FlashReadResourceResponse tag value (0xB0) and the flags field set to
kCommandFlag_HasDataPhase (1).

Table 4-15. FlashReadResourceResponse parameters

Byte # Value Parameter
0-3 Status Code
4-7 Data byte count

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 37

Response packet

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
38 NXP Semiconductors

Chapter 5
MCU bootloader command API

5.1 Introduction

All MCU bootloader command APIs follow the command packet format wrapped by the
framing packet, as explained in the previous sections.

See Table 4-9 for a list of commands supported by the MCU bootloader.
For a list of status codes returned by the MCU bootloader, see Appendix A.

5.2 GetProperty command

The GetProperty command is used to query the bootloader about various properties and
settings. Each supported property has a unique 32-bit tag associated with it. The tag
occupies the first parameter of the command packet. The target returns a
GetPropertyResponse packet with the property values for the property identified with the
tag in the GetProperty command.

The properties are the defined units of data that can be accessed with the GetProperty or
SetProperty commands. The properties may be read-only or read-write. All read-write
properties are 32-bit integers, so they can easily be carried in a command parameter.

For a list of properties and their associated 32-bit property tags supported by the MCU
bootloader, see Appendix B, "GetProperty and SetProperty commands".

The 32-bit property tag is the only parameter required for the GetProperty command.

Table 5-1. Parameters for GetProperty command

Byte # Command
0-3 Property tag
4-7 External Memory Identifier (only applies to get property for external memory)

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 39

GetProperty command

Host Target
GetProperty: Property tag = 0x01
Ox5a a4 Oc 00 4b 33 07 00 00 02 01 00 00 00 00 00 00 0d
Process command
) ACK: Ox5a at-

Generic Response: .
0x5a a4 Oc 00 f4 9d a7 00 00 02 00 00 00 00 00 06 02 4

ACK: Ox5a a+ >

Figure 5-1. Protocol sequence for GetProperty command

Table 5-2. GetProperty command packet format (Example)

GetProperty Parameter Value

Framing packet start byte O0x5A
packetType 0xA4, kFramingPacketType_Command
length 0x0C 0x00
crc16 0x4B 0x33

Command packet commandTag 0x07 — GetProperty

flags 0x00
reserved 0x00
parameterCount 0x02
propertyTag 0x00000001 - CurrentVersion
Memory ID 0x00000000 - Internal Flash (0x00000001 - QSPI0 Memory)

The GetProperty command has no data phase.

Response: In response to a GetProperty command, the target sends a
GetPropertyResponse packet with the response tag set to 0xA7. The parameter count
indicates the number of parameters sent for the property values, with the first parameter
showing the status code 0, followed by the property value(s). The following table shows
an example of a GetPropertyResponse packet.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
40 NXP Semiconductors

Chapter 5 MCU bootloader command API

Table 5-3. GetProperty Response Packet Format (Example)

GetPropertyResponse Parameter Value
Framing packet start byte Ox5A
packetType 0xA4, kFramingPacketType_Command
length 0x0c 0x00 (12 bytes)
crc16 0xf4 9d
Command packet responseTag OxA7
flags 0x00
reserved 0x00
parameterCount 0x02
status 0x00000000
propertyValue 0x4b020600 - CurrentVersion

5.3 SetProperty command

The SetProperty command is used to change or alter the values of the properties or
options of the bootloader. The command accepts the same property tags used with the
GetProperty command. However, only some properties are writable--see Appendix B. If
an attempt to write a read-only property is made, an error is returned indicating that the
property is read-only and cannot be changed.

The property tag and the new value to set are the two parameters required for the
SetProperty command.

Table 5-4. Parameters for SetProperty Command

Byte # Command
0-3 Property tag
4-7 Property value

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 41

SetProperty command

Host Target

SetProperty: Property tag = Ox0a, P
= , Property Value =
Ox5a a4 Oc 00 67 8d Oc 00 00 02 0Oa 00 00 00 01 00 00 0O¢

Process command

P ACK: Oxba at

Generic Response:
0x5a a4 Oc 00 e0 f7 a0 00 00 02 00 00 00 00 Oc

00 00 0

ACK: 0x5a at >

Figure 5-2. Protocol Sequence for SetProperty Command

Table 5-5. SetProperty Command Packet Format (Example)

SetProperty Parameter Value
Framing packet start byte Ox5A

packetType 0xA4, kFramingPacketType_Command
length 0x0C 0x00
crc16 0x67 0x8D

Command packet commandTag 0x0C — SetProperty with property tag 10
flags 0x00
reserved 0x00
parameterCount 0x02
propertyTag 0x0000000A - VerifyWrites
propertyValue 0x00000001

The SetProperty command has no data phase.

Response: The target returns a GenericResponse packet with one of the following status
codes:

Table 5-6. SetProperty Response Status Codes

Status Code

kStatus_Success

Table continues on the next page...

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

42 NXP Semiconductors

Chapter 5 MCU bootloader command API

Table 5-6. SetProperty Response Status Codes (continued)

Status Code
kStatus_ReadOnly
kStatus_UnknownProperty

kStatus_InvalidArgument

5.4 FlashEraseAll command

The FlashEraseAll command performs an erase of the entire flash memory. If any flash
regions are protected, then the FlashErase All command fails and returns an error status
code. Executing the FlashEraseAll command releases the flash security. The flash
security is enabled by setting the FTFA_FSEC register. However, the FSEC field of the
flash configuration field is erased, so unless it is reprogrammed, the flash security is re-
enabled after the next system reset. The Command tag for the FlashEraseAll command is
0x01, set in the commandTag field of the command packet.

The FlashEraseAll command requires memory ID. If the memory ID is not specified, the
internal flash (memory ID =0) is selected as default.

Host Target

- FlashEraseAll

Ox5a a4 08 000c 2201 00 00 0100 00-06-00—»

ACK:]
</Ox5a al

Process command

Generic Response:
l¢«——0x5a a4 0c 00 66 ce a0 00 00 02 00 00 00 00 01 00 00 00

——— ACK
Oxsaal

Figure 5-3. Protocol Sequence for FlashEraseAll Command

Table 5-7. FlashEraseAll Command Packet Format (Example)

FlashEraseAll Parameter Value
Framing packet start byte O0x5A
packetType 0xA4, kFramingPacketType_Command

Table continues on the next page...

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors 43

FlashEraseRegion command

Table 5-7. FlashEraseAll Command Packet Format (Example) (continued)

FlashEraseAll Parameter Value
length 0x08 0x00
crc16 0x0C 0x22
Command packet commandTag 0x01 - FlashEraseAll

flags 0x00

reserved 0x00

parameterCount 0x01

Memory ID 0x00000000 - Internal Flash (0x00000001 - QSPI0O Memory)

The FlashEraseAll command has no data phase.

Response: The target returns a GenericResponse packet with the status code set to
kStatus_Success for a successful execution of the command, or set to an appropriate error
status code.

5.5 FlashEraseRegion command

The FlashEraseRegion command performs an erase of one or more sectors of the flash
memory.

The start address and number of bytes are the two parameters required for the
FlashEraseRegion command. The start and byte count parameters must be 4-byte aligned
([1:0] = 00), or the FlashEraseRegion command fails and returns
kStatus_FlashAlignmentError(101). If the region specified does not fit into the flash
memory space, the FlashEraseRegion command fails and returns
kStatus_FlashAddressError(102). If any part of the region specified is protected, the
FlashEraseRegion command fails and returns kStatus_MemoryRangelnvalid(10200).

Table 5-8. Parameters for FlashEraseRegion Command

Byte # Parameter
0-3 Start address

4-7 Byte count

8- 11 Memory ID

The FlashEraseRegion command has no data phase.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
44 NXP Semiconductors

.4
Chapter 5 MCU bootloader command API

Response: The target returns a GenericResponse packet with one of the following error
status codes.

Table 5-9. FlashEraseRegion Response Status Codes

Status Code

kStatus_Success (0)
kStatus_MemoryRangelnvalid (10200)
kStatus_FlashAlignmentError (101)
kStatus_FlashAddressError (102)
kStatus_FlashAccessError (103)
kStatus_FlashProtectionViolation (104)
kStatus_FlashCommandFailure (105)

5.6 FlashEraseAllUnsecure command

The FlashErase AllUnsecure command performs a mass erase of the flash memory,
including the protected sectors. The flash security is immediately disabled if it (flash
security) was enabled, and the FSEC byte in the flash configuration field at address
0x40C is programmed to OxFE. However, if the mass erase enable option in the FSEC
field is disabled, then the FlashErase AllUnsecure command fails.

The FlashErase AllUnsecure command requires no parameters.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 45

FlashEraseAllUnsecure command

Host Target

FlashEraseAllUnsecure
Ox5a a4 04 00 f6 61 0d 00 00 00 >

Process command

. ACK: Ox5a at+-

Generic Response:
0x5a a4 Oc 00 54 81 a0 00 00 02 00 00 00 00 0d 00 00 0Of

ACK: 0x5a at >

Figure 5-4. Protocol Sequence for FlashEraseAll Command

Table 5-10. FlashEraseAllUnsecure Command Packet Format (Example)

FlashEraseAllUnsecure Parameter Value

Framing packet start byte Ox5A
packetType 0xA4, kFramingPacketType_Command
length 0x04 0x00
crc16 0xF6 0x61

Command packet commandTag 0x0D - FlashEraseAllUnsecure

flags 0x00
reserved 0x00
parameterCount 0x00

The FlashErase AllUnsecure command has no data phase.

Response: The target returns a GenericResponse packet with the status code either set to
kStatus_Success for successful execution of the commandor set to an appropriate error
status code.

NOTE
When the MEEN bit in the NVM FSEC register is cleared to
disable the mass erase, the FlashErase AllUnsecure command
fails. FlashEraseRegion can be used instead, skipping the
protected regions.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
46 NXP Semiconductors

Chapter 5 MCU bootloader command API

5.7 ReadMemory command

The ReadMemory command returns the contents of the memory at the given address for a
specified number of bytes. This command can read any region of memory accessible by
the CPU and is not protected by security.

The start address and the number of bytes are the two parameters required for the
ReadMemory command.

Table 5-11. Parameters for ReadMemory command

Byte Parameter Description
0-3 Start address Start address of memory to read from
4-7 Byte count Number of bytes to read and return to caller
8-11 Memory ID Internal or external memory Identifier

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

47

ReadMemory command

Host Target

ReadMemory: startAddress = 0
N : = 0x20000400, byteCount = 0
Ox5a a4 10 00 f4 1b 03 00 00 03 00 04 00 20 64 00 00 00 00)C()G 00 00

Process command

ACK: 0x5a at-

Generic Response:
0x5a a4 Oc 00 27 6 a3 01 00 02 00 00 00 00 64 00 00 00

i

ACK: Ox5a at
Data packet:
‘ 0x5a a5 length16 CRC16 data
Process data
ACK: 0x5a at R

l I
' :
Final data packet:
‘ 0x5a a5 length16 CRC16 data

Process data
ACK: 0x5a at .

Generic Response:
0x5a a4 Oc 00 Oe 23 a0 00 00 02 00 00 00 00 03 00 00 00

ACK: 0x5a at N

Figure 5-5. Command sequence for ReadMemory command

ReadMemory Parameter Value
Framing packet Start byte Ox5A0xA4,
packetType kFramingPacketType_Command
length 0x10 00
crc16 0xf4 1b
Command packet commandTag 0x083 - readMemory
flags 0x00

Table continues on the next page...

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

48 NXP Semiconductors

.4
Chapter 5 MCU bootloader command API

ReadMemory Parameter Value
reserved 0x00
parameterCount 0x03
startAddress 0x20000400
byteCount 0x00000064
memoryID 0x0

Data Phase: The ReadMemory command has a data phase. Because the target works in
the slave mode, the host must pull the data packets until the number of bytes of data
specified in the byteCount parameter of the ReadMemory command are received by the
host.

Response: The target returns a GenericResponse packet with a status code either set to
kStatus_Success upon a successful execution of the command, or set to an appropriate
error status code.

5.8 WriteMemory command

The WriteMemory command writes the data provided in the data phase to a specified
range of bytes in the memory (flash or RAM). However, if the flash protection is enabled,
then the writes to the protected sectors fail.

Special care must be taken when writing to the flash.

* First, any flash sector written to must be previously erased with the FlashEraseAll,
FlashEraseRegion, or FlashErase AllUnsecure command.

* First, any flash sector written to must be previously erased with the FlashEraseAll or
FlashEraseRegion command.

* Writing to the flash requires the start address to be 4-byte aligned ([1:0] = 00).

* The byte count is rounded up to a multiple of 4, and the trailing bytes are filled with
the flash erase pattern (0xff).

* If the VerifyWrites property is set to true, then the writes to the flash also perform a
flash verify program operation.

When writing to the RAM, the start address does not need to be aligned, and the data is
not padded.

The start address and the number of bytes are the two parameters required for the
WriteMemory command.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 49

WriteMemory command
Table 5-12. Parameters for WriteMemory Command

Byte # Command
0-3 Start address
4-7 Byte count
8-11 Memory ID
Host Target

WriteMemory: startAddress = 0
i : = 0x20000400, byteCount = 0
Ox5a a4 10 00 97 dd 04 01 00 03 00 04 00 20 64 00 00 00 OOX(g3 00 00

Process command

ACK: Ox5a at+

Generic Response:
0x5a a4 Oc 00 23 72 a0 00 00 02 00 00 00 00 04 00 00 00

i

ACK: Ox5a a4

Data packet:
Ox5a a5 length16 CRC16 data

Process data

ACK: 0x5a at

! Final data packet:
Ox5a a5 length16 CRC16 data

»

Process data

ACK: 0x5a at

Generic Response:
0x5a a4 Oc 00 23 72 a0 00 00 02 00 00 00 00 04 00 00 00

ACK: 0x5a at+ N

Figure 5-6. Protocol Sequence for WriteMemory Command

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

50 NXP Semiconductors

.4
Chapter 5 MCU bootloader command API

Table 5-13. WriteMemory Command Packet Format (Example)

WriteMemory Parameter Value

Framing packet start byte Ox5A
packetType 0xA4, kFramingPacketType_Command
length 0x10 00
crc16 0x97 DD

Command packet commandTag 0x04 - writeMemory
flags 0x01
reserved 0x00
parameterCount 0x03
startAddress 0x20000400
byteCount 0x00000064
memoryID 0x0

Data Phase: The WriteMemory command has a data phase; the host sends data packets
until the number of bytes of data specified in the byteCount parameter of the
WriteMemory command are received by the target.

Response: The target returns the GenericResponse packet with a status code set to
kStatus_Success upon a successful execution of the command, or to an appropriate error
status code.

5.9 FillMemory command

The FillMemory command fills a range of bytes in the memory with a data pattern. It
follows the same rules as the WriteMemory command. The difference between the
FillMemory and the WriteMemory is that a data pattern is included in the FillMemory
command parameter, and there is no data phase for the FillMemory command, while the
WriteMemory command has a data phase.

Table 5-14. Parameters for FillMemory Command

Byte # Command
0-3 Start address of memory to fill
4-7 Number of bytes to write with the pattern

¢ The start address should be 32-bit aligned.

¢ The number of bytes must be evenly divisible by 4. (Note: for a part that
uses FTFE flash, the start address should be 64-bit aligned, and the
number of bytes must be evenly divisible by 8).

8- 11 32-bit pattern

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 51

A ————
FillMemory command
 To fill with a byte pattern (8-bit), the byte must be replicated four times in the 32-bit
pattern.
* To fill with a short pattern (16-bit), the short value must be replicated two times in
the 32-bit pattern.

For example, to fill a byte value with OxFE, the word pattern is OxFEFEFEFE; to fill a
short value Ox5AFE, the word pattern is 0OxX5SAFESAFE.

Special care must be taken when writing to the flash.

* First, any flash sector written to must be previously erased with a FlashEraseAll,
FlashEraseRegion, or FlashEraseAllUnsecure command.

* First, any flash sector written to must be previously erased with a FlashEraseAll or
FlashEraseRegion command.

» Writing to the flash requires the start address to be 4-byte aligned ([1:0] = 00).

* If the VerifyWrites property is set to true, then a write to the flash also performs a
flash verify program operation.

When writing to the RAM, the start address does not need to be aligned, and the data is
not padded.

Host Target

FillMemory, with word pattern 0x12345678
Ox5a a4 10 00 e4 57 05 00 00 03 00 70 00 00 00 08 00 00 78 SW

ACK:
</Ox5a al

Process command

Generic Response:
&—— 0x5a a4 0c 00 97 04 a0 00 00 02 00 00 00 00 05 00 00 00

T ACK:
Ox5aal]

Figure 5-7. Protocol Sequence for FillMemory Command

Table 5-15. FillMemory Command Packet Format (Example)

FillMemory Parameter Value
Framing packet start byte Ox5A
packetType 0xA4, kFramingPacketType_Command
length 0x10 0x00
crc16 OxE4 0x57
Command packet |commandTag 0x05 — FillMemory

Table continues on the next page...

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
52 NXP Semiconductors

.4
Chapter 5 MCU bootloader command API

Table 5-15. FillMemory Command Packet Format (Example) (continued)

FillMemory Parameter Value
flags 0x00
Reserved 0x00
parameterCount 0x03
startAddress 0x00007000
byteCount 0x00000800
patternWord 0x12345678

The FillMemory command has no data phase.

Response: upon a successful execution of the command, the target (MCU bootloader)
returns a GenericResponse packet with a status code set to kStatus_Success, or to an
appropriate error status code.

5.10 FlashSecurityDisable command

The FlashSecurityDisable command performs the flash security disable operation by
comparing the 8-byte backdoor key (provided in the command) against the backdoor key
stored in the flash configuration field (at address 0x400 in the flash).

The backdoor low and high words are the only parameters required for the
FlashSecurityDisable command.

Table 5-16. Parameters for FlashSecurityDisable Command

Byte # Command
0-3 Backdoor key low word
4-7 Backdoor key high word

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 53

Execute command

Host Target

[~ FlashSecureDisable, with backdoor key 0102030405060708
0x5a a4 0c 00 43 70 06 00 00 04 0302 01 0807 06 05 —p»

ACK:
~0x5a al

Process command

Generic Response:
«4— Ox5a a4 0c 00 35 78 a0 00 Oc 02 00 00 00 00 06 00 00 00

Figure 5-8. Protocol Sequence for FlashSecurityDisable Command

Table 5-17. FlashSecurityDisable Command Packet Format (Example)

FlashSecurityDisable | Parameter Value

Framing packet start byte O0x5A
packetType 0xA4, kFramingPacketType_Command
length 0x0C 0x00
crc16 0x43 0x7B

Command packet commandTag 0x06 - FlashSecurityDisable

flags 0x00
reserved 0x00
parameterCount 0x02
Backdoorkey_low 0x04 0x03 0x02 0x01
Backdoorkey_high 0x08 0x07 0x06 0x05

The FlashSecurityDisable command has no data phase.

Response: The target returns a GenericResponse packet with a status code either set to
kStatus_Success upon a successful execution of the command, or set to an appropriate
error status code.

5.11 Execute command

The execute command results in the bootloader setting the program counter to the code at
the provided jump address, RO to the provided argument, and a Stack pointer to the
provided stack pointer address. Before the jump, the system is returned to the reset state.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
54 NXP Semiconductors

.4
Chapter 5 MCU bootloader command API

The Jump address, function argument pointer, and stack pointer are the parameters
required for the Execute command. If the stack pointer is set to zero, the called code is
responsible for setting the processor stack pointer before using the stack.

If the QSPI is enabled, it is initialized before the jump. The QSPI encryption (OTFAD) is
also enabled (if configured).

Table 5-18. Parameters for Execute Command

Byte # Command
0-3 Jump address

4-7 Argument word

8-11 Stack pointer address

The Execute command has no data phase.

Response: Before executing the Execute command, the target validates the parameters
and returns a GenericResponse packet with a status code either set to kStatus_Success or
an appropriate error status code.

5.12 Call command

The Call command executes a function that is written in the memory at the address sent
in the command. The address must be be a valid memory location residing in the
accessible flash (internal or external) or in the RAM. The command supports the passing
of one 32-bit argument. Although the command supports a stack address, at this time, the
call still takes place using the current stack pointer. After the execution of the function, a
32-bit return value is returned in the generic response message.

The QSPI must be initialized before executing the Call command if the call address is on
the QSPI. The Call command does not initialize the QSPI.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 55

Reset command

Host

Call: Address=0x00000¢cd9, arg=0
Ox5a a4 Oc 00 16 5c Oa 00 00 02 d9 Oc 00 00 OO 00O 000 00

ACK: __ ———

e (xba al

Generic Response:
~__Ox5a a4 0c 00 79 d0 a0 00 00 02 00 00 0O 00 0a 00 OO OO

T ACK:
Oxbaal™ ———

Figure 5-9. Protocol sequence for call command

Table 5-19. Parameters for Call Command

Byte # Command
0-3 Call address

4-7 Argument word

8-11 Stack pointer

Response: The target returns a GenericResponse packet with a status code either set to
the return value of the function called or set to kStatus_InvalidArgument (105).

5.13 Reset command
The Reset command results in the bootloader resetting the chip.

The Reset command requires no parameters.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
56 NXP Semiconductors

.4
Chapter 5 MCU bootloader command API

Host

Target
Reset
Ox5a a4 04 00 6f 46 Ob 00 00 00 >
Process command

Generic Response: (
0x5a a4 Oc 00 cd a6 a0 00 00 02 00 00 00 00 0b 0000 0

ACK: Oxba at+-

ACK: 0x5a a4

-

Figure 5-10. Protocol Sequence for Reset Command

Table 5-20. Reset Command Packet Format (Example)

Reset Parameter Value

Framing packet start byte Ox5A
packetType 0xA4, kFramingPacketType_Command
length 0x04 0x00
crc16 O0x6F Ox46

Command packet commandTag 0x0B - reset

flags 0x00
reserved 0x00
parameterCount 0x02

The Reset command has no data phase.

Response: The target returns a GenericResponse packet with a status code set to
kStatus_Success before resetting the chip.

The Reset command can also be used to switch the boot from the flash after a successful
flash image provisioning via the ROM bootloader. After issuing the reset command, wait
five seconds for the user application to start running from the flash.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

57

FlashProgramOnce command

5.14 FlashProgramOnce command
The FlashProgramOnce command writes the data (that is provided in a command packet)
to a specified range of bytes in the program once field. Special care must be taken when
writing to the program once field.
* The program once field only supports programming once, so any attempts to
reprogram a program once field get an error response.
* Writing to the program once field requires the byte count to be 4-byte aligned or 8-
byte aligned.

The FlashProgramOnce command uses three parameters: index 2, byteCount, data.

Table 5-21. Parameters for FlashProgramOnce Command

Byte # Command
0-3 Index of program once field
4-7 Byte count (must be evenly divisible by 4)
8-11 Data
12-16 Data
Host Target

FlashProgramOnce: index=0, byteCount=4, data=0x12345678
0x5a a4 10 00 7e 89 0e 00 00 03 00 00 00 00 04 00 00 00 78 56 34 12

ACKe]
¢« xb5aat

Process command

Generic Response:
l¢—— 0Ox5a a4 0c 00 88 1a a0 00 00 02 00 00 00 00 Oe 00 00 00

—————— ACK:
Ox5a a1\,

Figure 5-11. Protocol Sequence for FlashProgramOnce Command

Table 5-22. FlashProgramOnce Command Packet Format (Example)

FlashProgramOnce | Parameter Value
Framing packet start byte O0x5A
packetType 0xA4, kFramingPacketType_Command
length 0x10 0x00

Table continues on the next page...

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
58 NXP Semiconductors

.4
Chapter 5 MCU bootloader command API

Table 5-22. FlashProgramOnce Command Packet Format (Example) (continued)

FlashProgramOnce | Parameter Value
crc16 0x7E4 0x89
Command packet commandTag 0xOE — FlashProgramOnce

flags 0

reserved 0

parameterCount 3

index 0x0000_0000

byteCount 0x0000_0004

data 0x1234_5678

Response: upon a successful execution of the command, the target (MCU bootloader)
returns a GenericResponse packet with a status code set to kStatus_Success, or to an
appropriate error status code.

5.15 FlashReadOnce command

The FlashReadOnce command returns the contents of the program once field by the
given index and byte count. The FlashReadOnce command uses two parameters: index
and byteCount.

Table 5-23. Parameters for FlashReadOnce Command

Byte # Parameter Description
0-3 index Index of the program once field (to read from)
4-7 byteCount Number of bytes to read and return to the caller

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 59

FlashReadOnce command

Host
FlashReadOnce: index=0, byteCount=4
Ox5a a4 Oc 00 c1 a5 0f 00 00 02 00 0000 0004000000]
ACKe]
¢« Oxb5aat

Generic Response:

4—— 0x5a a4 10 00 3f 6f af 00 00 03 00 00 00 00 04 00 00 00 78 56 34 12

T ACK:
Ox5aal — ——————]

Target

Process command

Figure 5-12. Protocol Sequence for FlashReadOnce Command

Table 5-24. FlashReadOnce Command Packet Format (Example)

FlashReadOnce Parameter Value
Framing packet start byte O0x5A
packetType 0xA4
length 0x0C 0x00
crc 0xC1 0xA5
Command packet commandTag 0xOF — FlashReadOnce
flags 0x00
reserved 0x00
parameterCount 0x02
index 0x0000_0000
byteCount 0x0000_0004

Table 5-25. FlashReadOnce Response Format (Example)

FlashReadOnce Parameter Value
Response

Framing packet start byte Ox5A
packetType 0xA4
length 0x10 0x00
crc 0x3F Ox6F

Command packet commandTag OxAF
flags 0x00
reserved 0x00
parameterCount 0x03
status 0x0000_0000
byteCount 0x0000_0004

Table continues on the next page...

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

60

NXP Semiconductors

Chapter 5 MCU bootloader command API

Table 5-25. FlashReadOnce Response Format (Example) (continued)

FlashReadOnce Parameter Value
Response

data 0x1234_5678

Response: upon a successful execution of the command, the target returns a
FlashReadOnceResponse packet with a status code set to kStatus_Success, a byte count
and corresponding data read from the Program Once Field upon a successful execution of
the command, or a status code set to an appropriate error status code and a byte count set
to 0.

5.16 FlashReadResource command

The FlashReadResource command returns the contents of the IFR field or the Flash
firmware ID by the given offset, byte count, and option. The FlashReadResource
command uses three parameters: start address, byteCount, and option.

Table 5-26. Parameters for FlashReadResource Command

Byte # Parameter Command
0-3 start address Start address of specific non-volatile memory to be read
4-7 byteCount Byte count to be read
8-11 option 0: IFR
1: Flash firmware 1D

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 61

FlashReadResource command

Host

Data packet

Generic Response
5a a4 0c 00 75 a3 a0 00 00 02 00 00 00 00 10 00 00 00

— 5

FlashReadResource: start address=0, byteCount=8, option=1

5a a4 10 00 b3 cc 10 00 00 03 00 00 00 00 08 00 00 00 01 00 00 00

]
/ACK: Ox5a at

FlashReadResource Response
¢« 5a a4 0c 00 08 d2 bo 01 00 02 00 00 00 00 08 00 00 00

[ACK:0x5a af

_)

ACK: Ox5a a1

[

[———

<4 "5a3a508 00 9c d3 00 08 00 00 00 01 00 06

CK:O0xsaal— —

Process command

Process Data

Figure 5-13. Protocol Sequence for FlashReadResource Command

Table 5-27. FlashReadResource Command Packet Format (Example)

FlashReadResource | Parameter Value

Framing packet start byte O0x5A
packetType 0xA4
length 0x10 0x00
crc 0xB3 0xCC

Command packet commandTag 0x10 — FlashReadResource

flags 0x00
reserved 0x00
parameterCount 0x03
startAddress 0x0000_0000
byteCount 0x0000_0008
option 0x0000_0001

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

62

NXP Semiconductors

Chapter 5 MCU bootloader command API

Table 5-28. FlashReadResource Response Format (Example)

FlashReadResource | Parameter Value
Response
Framing packet start byte O0x5A
packetType 0xA4
length 0x0C 0x00
crc 0xD2 0xB0O
Command packet commandTag 0xB0O
flags 0x01
reserved 0x00
parameterCount 0x02
status 0x0000_0000
byteCount 0x0000_0008

Data phase: The FlashReadResource command has a data phase. Because the target
(MCU bootloader) works in a slave mode, the host must pull the data packets until the
number of bytes of data specified in the byteCount parameter of FlashReadResource

command is received by the host.

5.17 Configure Memory command

The Configure Memory command configures the external memory device using a pre-
programmed configuration image. The parameters passed in the command are the
memory ID (which should be 1 QuadSPI Nor Memory) and the memory address from
which the configuration data can be loaded from. The options for loading the data can be
a scenario where the configuration data is written to a RAM or flash location and this
command directs the bootloader to use the data at that location to configure the external

memory devices.

Table 5-29. Parameters for Configure QuadSPI Command

Byte # Command
0-3 Memory ID
4-7 Configuration block address

Response: The target (MCU bootloader) returns a GenericResponse packet with a status
code either set to kStatus_Success upon a successful execution of the command, or set to
an appropriate error code.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 63

ReceiveSBFile command

5.18 ReceiveSBFile command

The ReceiveSBFile command starts the transfer of an SB file to the target. The command
only specifies the size of the SB file that is sent in the data phase (in bytes). The SB file is
processed as it is received by the bootloader.

Table 5-30. Parameters for ReceiveSBFile Command

Byte # Command

0-3 Byte count

Data Phase: The ReceiveSBFile command has a data phase. The host sends data packets
until the number of bytes of data specified in the byteCount parameter of the
ReceiveSBFile command are received by the target.

Response: The target returns a GenericResponse packet with a status code set to
kStatus_Success upon a successful execution of the command or set to an appropriate
error code.

5.19 ReliableUpdate command

The ReliableUpdate command performs the reliable update operation.

* For a software implementation: the backup application address is the parameter
that is required for the ReliableUpdate command. If the backup address is set to 0,
then the bootloader uses the predefined address.

* For a hardware implementation: the swap indicator address is the parameter that is
required for the ReliableUpdate command.

* If the flash swap system is uninitialized, then the swap indicator address can be
arbitrarily specified.

* If the flash swap system is initialized, then the swap indicator must be aligned
with the swap system.

Table 5-31. Parameters for ReliableUpdate command

Byte number Command

0-3 * For a software implementation: the value is the
backup application address.

* For a hardware implementation: the value is the swap
indicator address.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
64 NXP Semiconductors

L __4

Chapter 5 MCU bootloader command API
Response: The target returns a GenericResponse packet with a status code either set to
kStatus_Success upon a successful execution of the command, or set to an appropriate
error status code.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 65

ReliableUpdate command

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
66 NXP Semiconductors

Chapter 6
Supported peripherals

6.1 Introduction

This section describes the peripherals supported by the MCU bootloader. To use an
interface for bootloader communications, the peripheral must be enabled in the BCA. If
the BCA is invalid (for example, all OxFF bytes), then all peripherals are enabled by
default.

6.2 12C peripheral

The MCU bootloader supports loading data into flash via the 12C peripheral, where the
I2C peripheral serves as the 12C slave. A 7-bit slave address is used during the transfer.

Customizing an I12C slave address is also supported. This feature is enabled if the
Bootloader Configuration Area (BCA) is enabled (tag field is filled with ‘kcfg’) and the
12cSlaveAddress field is filled with a value other than OXFF. Otherwise, 0x10 is used as
the default I2C slave address.

The MCU bootloader uses 0x10 as the 12C slave address, and supports 400 kbit/s as the
I2C baud rate.

The maximum supported I2C baud rate depends on corresponding clock configuration
field in the BCA. The typical baud rate is 400 kbit/s with factory settings. The actual
supported baud rate may be lower or higher than 400 kbit/s, depending on the actual
value of the clockFlags and the clockDivider fields.

Because the 12C peripheral serves as an [12C slave device, each transfer should be started
by the host, and each outgoing packet should be fetched by the host.
* An incoming packet is sent by the host with a selected I2C slave address and the
direction bit is set as write.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors 67

12C peripheral

* An outgoing packet is read by the host with a selected I12C slave address and the
direction bit is set as read.

* 0x00 is sent as the response to host if the target is busy with processing or preparing
data.

The following charts show the communication flow of the host reading the ping and ACK
packets, and the corresponding responses from the target.

(Fetch)
Ping response End

Read leftover bytes
Read 1 byte of ping response
r from target packet

Y?as

Ox7A
received?

Figure 6-1. Host reads ping response from target via 12C

‘ Fetch ACK) Report an error

Read 1 byte

from target No—» Report Error

A

No

0xA2

No—»| Head1byte Process NAK «¢—Ye received?

from target

No

Reached
maximum
retries?

Ox5A

oK 1 Read 1 byte

from target

OxA1

Yes—» received?

Yes

Report a timeout
error

Figure 6-2. Host reads ACK packet from target via 12C

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
68 NXP Semiconductors

Chapter 6 Supported peripherals

Fetch
(Response) End

Read 1 byte
from target Read

payload data
0x5A
received?

from target
es

?

Yes

v Payload length Set payload length
Read 1 byte less than supported Nop to maximum
from target length* supported length

Yes

Read Read
Report a timeout OxA4 Yesp| P@Yload length CRC checksum
error (End) received? part from target from target
(2 bytes) (2 bytes)

Figure 6-3. Host reads response from target via 12C

6.2.1 Performance numbers for 12C

The table below provides reference to the expected performance of write speeds to Flash
and RAM memories using the MCU bootloader I2C interface. The numbers have been
measured on a number of platforms running the MCU bootloader from either ROM or
RAM (for flashloaders).

Table 6-1. Performance numbers for I12C

I12C Bus |Flash Average Writing Speed (KB/s) Ram Average Writing Speed (KB/s)

E;eq“e” KL27 |KL28 |KL43 |KL80 |K80 KLO3 [KL27 |KL28 |KL43 [KL80 |K80 KLO3
(KHz)
100 6.42 6.29 6.42 6.7 6.39 6.08 7.67 7.27 7.7 7.91 7.38 6.13
200 10.24 10.08 10.13 10.58 9.82 8.75 14.02 13.25 13.78 14.15 13.43 10.1
300 12.86 11.84 11.95 13.11 11.85 9.69 18.04 17.51 17.92 18.98 17.61 11.9

400 15.54 14.06 14.39 14.74 13.44 10.24 |23.2 22.39 |21.82 2419 |22.04 12.82

500 15.86 16.13 15.96 16.94 1465 |- 24.61 27.9 26.5 30.26 |26.93 |-
600 18.14 |16.51 16.4 17.19 15.19 |- 2944 |28.64 |[27.05 |30.96 |27.57 |-
800 19.5 - 18.51 19.22 16.26 |- 34.44 |- 33.38 |38.36 |32.72 |-
1000 20.48 |- 20.08 [21.35 17.71 - 37.64 |- 41.04 [4538 |[33.65 |-

Table continues on the next page...

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 69

12C peripheral

Table 6-1. Performance numbers for I12C (continued)

Default |48 48 48 48 48 8 48 48 48 48 48 8
core
Frequen
cy
(MHz)
Default |24 24 24 24 24 4 24 24 24 24 24 4
bus
Frequen
cy
(MHz)
NOTE
1. Every test covers all flash or RAM regions with 0x0 - Oxf.
2. Run every test three times and calculate the average.
25
Q)
un]
1"
=
7]
[+1]
=N
[T
=T}
E
=
0
100 200 300 400 500 600 700 800 900 1000

—8— K127 —8—KL28

Figure 6-4. Flash Average Writing Speed

I2C Bus Frequency (KHz)

KL43

KL30 —&—k30 —e—KLOD3

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

70

NXP Semiconductors

.4
Chapter 6 Supported peripherals

Writing Speed (KB/s)

100 200 300 400 500 600 J00 200 S00 1000
12C Bus Frequency (KHz)

—8—KL27 KL28 KL43 KLEQ) —&—K30 —8—KLO3

Figure 6-5. RAM Average Writing Speed

6.3 SPI Peripheral

The MCU bootloader supports loading data into flash via the SPI peripheral, where the
SPI peripheral serves as a SPI slave.

The maximum supported baud rate of the SPI depends on the clock configuration fields
in the Bootloader Configuration Area (BCA). The typical baud rate is 400 kbit/s with the
factory settings. The actual baud rate is lower or higher than 400 kbit/s, depending on the
actual value of the clockFlags and clockDivider fields in the BCA.

Because the SPI peripheral serves as a SPI slave device, each transfer should be started
by the host, and each outgoing packet should be fetched by the host.

The transfer on SPI is slightly different from I2C:

* Host receives 1 byte after it sends out any byte.

» Received bytes should be ignored when host is sending out bytes to target

» Host starts reading bytes by sending 0x00s to target

» The byte 0x00 is sent as response to host if target is under the following conditions:
* Processing incoming packet
* Preparing outgoing data
* Received invalid data

The following flowcharts show how the host reads a ping response, an ACK and a
command response from target via SPI.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 71

SPI Peripheral

(Fetch)
Ping response End

Send 0x00 to Setnld f?xOOsbtcz[shift
shift out 1 byte O;J leftover bytes
T from target of ping response

Ygs

OxA7
received?

Figure 6-6. Host reads ping packet from target via SPI

(Fetch ACK) Report an error

Send 0x00 to
shift out 1 byte
from target

No—p Report Error

A
No

Send 0x00 to
No—— | shift out 1 byte Process NAK |[«—Ye
from target

0xA2
received?

No

maximum
retries?

Send 0x00 to
Yes—p{ shift out 1 byte
from target

‘ Next action }4 Yes

Figure 6-7. Host reads ACK from target via SPI

Ox5A
received?

OxA1
received?

Yes

Report a
timeout error

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
72 NXP Semiconductors

Yes

maximum
retries?

Report a timeout
error (End)

1 Fetch Response)

Send 0x00 to
shift out 1 byte
from target

NO——pf

Send 0x00 to
shift out 1 byte
from target

No

Chapter 6 Supported peripherals

End

Write Ox00s to shift
out payload data [«

from target

Yes

Payload length

less than supported No—»

length?

Set payload length
to maximum
supported length

Write 0x00s to shift
out payload length
part from target

(2 bytes)

Write 0x00s to shift
out CRC checksum

from target
(2 bytes)

Figure 6-8. Host reads response from target via SPI

6.3.1 Performance Numbers for SPI

The table below provides reference to the expected performance of write speeds to Flash
and RAM memories using the MCU bootloader SPI interface. The numbers were
measured on a number of platforms running the MCU bootloader from either the ROM or
the RAM (for flashloaders).

Table 6-2. Performance numbers SPI

SPI Bus |Flash Average Writing Speed (KB/s) Ram Average Writing Speed (KB/s)

E;eq“e” KL27 |KL28 |KL43 |KL80 |K80 KLO3 [KL27 |KL28 |KL43 [KL80 |K80 KLO3
(KHz)

100 7.07 7.46 7.24 6.74 6.71 6.20 8.60 9.25 9.01 8.46 8.04 6.80
200 11.45 12.26 |11.88 11.53 10.18 8.87 15.23 17.98 17.04 16.17 14.19 10.64
300 13.84 15.17 [14.70 15.08 12.42 - 19.91 25.11 23.06 24.65 18.79 -
400 16.42 18.09 (17.23 16.91 13.74 - 25.89 32.95 31.15 28.89 23.95 -
500 18.26 19.82 |(18.17 18.94 14.98 - 31.47 40.10 36.61 36.61 27.83 -
600 18.72 20.72 |19.98 20.63 15.21 - 32.40 44.98 40.96 42.26 27.67 -

800 21.19 22.06 |22.27 22.04 16.11 - 39.83 50.00 51.54 49.98 30.15 -
1000 22.07 23.74 |23.80 22.92 15.99 - 45.83 61.19 55.92 56.34 29.11 -

Table continues on the next page...

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

73

SPI Peripheral

Table 6-2. Performance numbers SPI (continued)

Default |48 48 48 48 48 8 48 48 48 48 48 8
core

Frequen
cy
(MHz)

Default |24 24 24 24 24 4 24 24 24 24 24 4
bus

Frequen
cy
(MHz)

NOTE
1. Every test covers all flash or RAM regions with 0x0 - Oxf.
2. Run every test three times and calculate the average.

s b
g B

Writing Speed (KB/s)
g 8
b
3

ol
=
(=]

=

[=]

=]
=
8

200 300 400 500 200 F00 800 200 1000
SPI Bus Frequency (KHz)

—8&— |37 —B—KL2B KL43 KLBD —8&—KBOD —B—KLO3

Figure 6-9. Flash Average Writing Speed

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

74 NXP Semiconductors

Chapter 6 Supported peripherals

-
=
=

CIECI
8 8 8

Writing Speed [KB/s)
Feud (3]
=
8

10.00

0.00
100 200 300 400 500 600 700 800 900 1000
SPI Bus Frequency [KHz)

—a— K127 KL28 KL43 KL80 —8— K30 —8—KLO3

Figure 6-10. RAM Average Writing Speed

6.4 UART peripheral

The MCU bootloader integrates an autobaud detection algorithm for the UART
peripheral, thereby providing flexible baud rate choices.

Autobaud feature: If UART# is used to connect to the bootloader, then the UARTn_RX
pin must be kept high and not left floating during the detection phase in order to comply
with the autobaud detection algorithm. After the bootloader detects the ping packet
(Ox5A 0xA6) on UARTn_RX, the bootloader firmware executes the autobaud sequence.
If the baudrate is successfully detected, then the bootloader sends a ping packet response
[(0x5A 0xA7), protocol version (4 bytes), protocol version options (2 bytes), and crc16 (2
bytes)] at the detected baudrate. The MCU bootloader then enters a loop, waiting for
bootloader commands via the UART peripheral.

NOTE
The data bytes of the ping packet must be sent continuously
(with no more than 80 ms between bytes) in a fixed UART
transmission mode (8-bit data, no parity bit, and 1 stop bit). If
the bytes of the ping packet are sent one-by-one with more than
an 80 ms delay between them, then the autobaud detection
algorithm may calculate an incorrect baud rate. In this instance,
the autobaud detection state machine should be reset.

Supported baud rates: The baud rate is closely related to the MCU core and system
clock frequencies. Typical baud rates supported are 9600, 19200, 38400, and 57600. Of

course, to influence the performance of autobaud detection, the clock configuration in
BCA can be changed.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors 75

UART peripheral

Packet transfer: After autobaud detection succeeds, bootloader communications can
take place over the UART peripheral. The following flow charts show:

* How the host detects an ACK from the target

* How the host detects a ping response from the target

* How the host detects a command response from the target

Wait Report an error
for ACK P

A
No

0xA2
received?

Wait for 1 byte
o——— P —
N from target Process NAK Ye

No

Ox5A

D Wait for 1 byte
received”

from target

OxA1

Yes—» received?

maximum

retries?
Yes Yes
Report a timeout End

error

Figure 6-11. Host reads an ACK from target via UART

Wait for End
ping response

Wait for
Wait for 1 byte remaining bytes
from target of ping response
packet
A
No Yes

Yesp| Waitfor 1 byte

from target No—» Report Error

Ox5A O0xA7
received? received?

Figure 6-12. Host reads a ping response from target via UART

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
76 NXP Semiconductors

Chapter 6 Supported peripherals

< Wait >
for response End

Wait for 1 byte

No——»
from target
9 Wait for payload
data from target
¢ O0x5A ?
maximym ><-N received? Yes
Yes

Set payload length
No»{ to maximum
supported length

Payload length
less than supported
length?

Wait for 1 byte
Yes from target

i Waitfor payload Waitfor CRC
Report aé'”c‘jeom reg)éﬁldéd? Yes—»| length part from checksum from
error (End) target (2 bytes) target (2 bytes)

No

Figure 6-13. Host reads a command response from target via UART

6.4.1 Performance Numbers for UART

The table below provides reference to the expected performance of write speeds to Flash
and RAM memories using the MCU bootloader SPI interface. The numbers have been
measured on a number of platforms running the MCU bootloader either from ROM or the
RAM (in case of flashloaders).

Table 6-3. Performance numbers for UART

UART |Flash Average Writing Speed (KB/s) Ram Average Writing Speed (KB/s)

2::’: KL27 |KL28 |KL43 |KL80 |K80 KLO3 |KS22 |KL27 |KL28 |[KL43 |[KL80 |K80 KLO3 |KS22
19200 (1.47 |1.47 |1.43 (147 (146 |143 |1.45 |1.51 152 |148 |152 |152 (149 |1.51
38400 |2.81 2.82 2.75 2.82 2.79 2.81 2.75 2.99 3.03 2.95 3.03 3.03 2.9 3.00
57600 |4.07 4.07 3.97 4.08 4.01 - 3.93 4.46 4.53 4.4 4.54 4.51 - 4.47
11520 |7.3 7.31 712 |735 |71 - 6.88 (869 (897 (865 |898 [8.85 |- 8.73
0

23040 (12.14 |- 11.83 (1227 (1142 |- 11.01 [16.57 |- 16.77 (17.58 |[16.73 |- 16.65
0

Default |48 48 48 48 48 8 48 48 48 48 48 48 8 48

core

Freque

ncy

(MHz)

Table continues on the next page...

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 77

A ————
UART peripheral

Table 6-3. Performance numbers for UART (continued)

Default |24 24 24 24 24 4 24 24 24 24 24 24 4 24
bus
Freque
ncy
(MHz)
NOTE

1. Every test covers all flash or RAM region with 0x0 - Oxf.
2. Run every test three times and calculate the average.

14

- 12
&

x 10

T 8
&

16
&

= 4

2 2

0

19200 38400 57600 76300 S6000 115200 134400 153600 172800 1952000 211200 230400
UART Baud Rate
—8—KL27 —8—[KLJE —8—KL43 KLE) —®—KE0 —®—KL03 —8—[K522
Figure 6-14. Flash Average Writing Speed

20

g 15
-
w

210
w
2

£ 5
=

15200 38400 57600 T6800 56000 115200 134400 153600 172800 152000 211200 230400
UART Baud Rate

—8—KL27 —®—KL28 —®—KL43 KL80 —®—K80 —®—KL03 —®—K522

Figure 6-15. RAM Average Writing Speed

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
78 NXP Semiconductors

4
Chapter 6 Supported peripherals

6.5 USB HID Peripheral

The MCU bootloader supports loading data into flash via the USB peripheral. The target
is implemented as a USB HID class.

USB HID does not use framing packets; instead the packetization inherent in the USB
protocol itself is used. The ability for the device to NAK Out transfers (until they can be
received) provides the required flow control; the built-in CRC of each USB packet
provides the required error detection.

6.5.1 Device descriptor

The MCU bootloader configures the default USB VID/PID/Strings as below:
Default VID/PID:

For legacy FSL devices:

e VID = 0x15A2
e PID = 0x0073

For NXP devices:

e VID = 0x1FC9
e PID = 0x007F

Default Strings:

* For legacy FSL devices:
e Manufacturer [1] = "Freescale Semiconductor Inc."
e Product [2] = "Kinetis bootloader"
* For NXP devices:
e Manufacturer [1] = "NXP Semiconductor Inc."
* Product [2] = "Kinetis bootloader"

The USB VID, PID, and Strings can be customized using the Bootloader Configuration
Area (BCA) of the flash. For example, the USB VID and PID can be customized by
writing the new VID to the usbVid(BCA + 0x14) field and the new PID to the
usbPid(BCA + 0x16) field of the BCA in flash. To change the USB strings, prepare a
structure (like the one shown below) in the flash, and then write the address of the
structure to the usbStringsPointer(BCA + 0x18) field of the BCA.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 79

A ————
USB HID Peripheral

6.5.2 Endpoints

The HID peripheral uses 3 endpoints:

e Control (0)
e Interrupt IN (1)
* Interrupt OUT (2)

The Interrupt OUT endpoint is optional for HID class devices, but the MCU bootloader
uses it as a pipe, where the firmware can NAK send requests from the USB host.

6.5.3 HID reports

There are 4 HID reports defined and used by the bootloader USB HID peripheral. The
report ID determines the direction and type of packet sent in the report; otherwise, the
contents of all reports are the same.

Report ID Packet Type Direction
1 Command ouT
2 Data ouT
3 Command IN
4 Data IN

For all reports, these properties apply:

Usage Min 1

Usage Max 1

Logical Min 0
Logical Max 255
Report Size 8
Report Count 34

Each report has a maximum size of 34 bytes. This is derived from the minimum
bootloader packet size of 32 bytes, plus a 2-byte report header that indicates the length (in
bytes) of the packet sent in the report.

NOTE

In the future, the maximum report size may be increased, to
support transfers of larger packets. Alternatively, additional
reports may be added with larger maximum sizes.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
80 NXP Semiconductors

.4
Chapter 6 Supported peripherals

The actual data sent in all of the reports looks like:

Report ID
Packet Length LSB
Packet Length MSB
Packet[0]
Packet[1]
Packet[2]

a|pr|lOINI=2]|O

N+3-1 [Packet[N-1]

This data includes the Report ID, which is required if more than one report is defined in
the HID report descriptor. The actual data sent and received has a maximum length of 35
bytes. The Packet Length header is written in little-endian format, and it is set to the size
(in bytes) of the packet sent in the report. This size does not include the Report ID or the
Packet Length header itself. During a data phase, a packet size of 0 indicates a data phase
abort request from the receiver.

6.6 USB peripheral

The MCU bootloader supports loading data into flash or RAM using the USB peripheral.
The target is implemented as USB-HID and USB MSC (Mass Storage Class) composite
device classes.

When transfer data through USB-HID device class, USB-HID does not use framing
packets. Instead, the packetization, inherent in the USB protocol itself, is used. The
ability for the device to NAK Out transfers (until they can be received) provides the
required flow control. The built-in CRC of each USB packet provides the required error
detection.

When transfer data through USB MSC device class, USB MSC does not use framing
packets. Instead, the packetization, inherent in the USB protocol itself, is used. As with
any mass storage class device, a device drive letter appears in the file manager of the
operating system, and the file image can be dragged and dropped to the storage device.
Right now, the USB MSC download only supports SB file drag-and-drop. Reading the
SB file from the MSC device is not supported.

The USB peripheral can work as HID + MSC in Composite device mode. For HID-only
mode or MSC-only mode, this is configured using macros during compile time. If
configured as the HID and MSC composite device, users can either send commands to
the HID interface, or drag/drop SB files to the MSC device.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 81

A ————
FlexCAN Peripheral

6.7 FlexCAN Peripheral
The MCU Bootloader supports loading data into flash via the FlexCAN peripheral.

It supports four predefined speeds on FlexCAN transferring:

e 125 KHz
* 250 KHz
* 500 KHz
* 1 MHz

The curent FlexCAN IP can support up to 1 MHz speed, so the default speed is set to 1
MHz.

In host applications, the user can specify the speed for FlexCAN by providing the speed
index as 0 through 4, which represents those 5 speeds.

In bootloader, this supports the auto speed detection feature within supported speeds. In
the beginning, the bootloader enters the listen mode with the initial speed (default speed 1
MHz). Once the host starts sending a ping to a specific node, it generates traffic on the
FlexCAN bus. Because the bootloader is in a listen mode. It is able to check if the local
node speed is correct by detecting errors. If there is an error, some traffic will be visible,
but it may not be on the right speed to see the real data. If this happens, the speed setting
changes and checks for errors again. No error means the speed is correct. The settings
change back to the normal receiving mode to see if there is a package for this node. It
then stays in this speed until another host is using another speed and try to communicate
with any node. It repeats the process to detect a right speed before sending host timeout
and aborting the request.

The host side should have a reasonable time tolderance during the auto speed detect
period. If it sends as timeout, it means there is no response from the specific node, or
there is a real error and it needs to report the error to the application.

This flow chart shows the communication flow for how the host reads the ping packet,
ACK, and response from the target.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
82 NXP Semiconductors

Fetch
Ping response

Y

Read 1 byte
from target

End

Chapter 6 Supported peripherals

Read leftover bytes

of ping response
packet

Read 1 byte
from target

Yes

Ox7A
received?

Report Error

Figure 6-16. Host reads ping response from target via FlexCAN

No

Fetch ACK
¥

Read 1 byte

maximum
retries?

Report a timeou

error

from target

Ox5A
received?

Yes—pe

Read 1 byte
from target

Process NAK |e—Ye

Report an error

¥
Mo

OxA2
received?

Mo

OxA1
received?

Figure 6-17. Host reads ACK packet from target via FlexCAN

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

83

QuadSPI Peripheral

.—.- —"\-.\\

7 wait \ I./ End \

" forrespons-% J .\5) __,/I
Wait for 1 byte

from target Waitfor payload |

data from target [~

.T

Yes

Yes

4 Payload lengfh Set pa;.rlo_ad length
less than supported Now 10 maximum
Wait for 1 byte length? supported length
fes from target
g - Waitfor payload Waitfor CRC
: Report aélrgeﬂ‘ﬁﬁ Yes—w length part from » checksum from
_emor(End) target (2 bytes) target (2 bytes)

MNo

Figure 6-18. Host reads command response from target via FlexCAN

6.8 QuadSPI Peripheral

The MCU Bootloader supports read, write, and erase external SPI flash devices (QuadSPI
memory) via the QuadSPI module. It supports booting directly to external SPI flash and
XIP in QuadSPI memory. Before accessing external SPI flash devices, the QuadSPI
module must be configured properly, using the QSPI configuration block.

6.8.1 QSPI configuration block

The QSPI config block (QCB) provides many configuration parameters, which are
intended to support many types of serial flash. All fields in the QSPI config block must
be configured according to the specific flash device provided by your specific vendor,
and all of them are related to the configuration for registers in the QuadSPI module. Also
see the QuadSPI chapter.

NOTE
To correctly configure the QuadSPI, all unused QuadSPI
configuration fields should be set to 0.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
84 NXP Semiconductors

Chapter 6 Supported peripherals

Table 6-4. Configuration fields in QSPI config block

Offset

Size
(bytes)

Configuration Field

Description

0x00 — 0x03

4

tag

A magic number to verify whether the QSPI config
block (QCB) is valid. Must be set to ‘kqcf’

[31:24] - ‘f (0x66)
[23:16] - ‘C’ (0x63)
[15: 8] - ‘q(0x71)
[7: 0] - 'K'(0x6B)

0x04 — 0x07

version

Version number of the QSPI config block
[31:24] - name: must be 'Q' (0x51)
[23:16] - major: must be 1

[15: 8] - minor: must be 0

[7: 0] - bugfix: must be 0

0x08 — 0x0b

lengthinBytes

Size of QSPI config block, in bytes
Must be 512

0x0c — OxOf

dgs_loopback

Enable DQS loopback support
0 DQS loopback is disabled

1 DQS loopback is enabled, the DQS loopback mode
is determined by subsequent ‘dqs_loopback_internal
field

0x10 - 0x13

data_hold_time

Serial flash data hold time. Valid value 0/1/2. See the
QuadSPI chapter for details.

0x14 — Ox1b

Reserved

Ox1c — Ox1f

device_mode_config_en

Configure work mode Enable for external SPI flash
devices

0 Disabled - ROM will not configure work mode of
external flash devices.

1 Enabled - ROM will configure work mode of external
flash devices, based on “device_cmd” and the LUT
entry indicated by” write_cmd_ipcr”.

0x20 — 0x23

device_cmd

Command to configure the work mode of external flash
devices. Effective only if “device_mode_config_en” is
set to 1. It also depends on your specific external SPI
flash device.

0x24 — 0x27

write_cmd_ipcr

IPCR pointed to LUT index for quad mode enablement

Value = index << 24

0x28 — 0x2b

word_addressable

Word Addressable
0 Byte-addressable serial flash mode

1 Word-addressable serial flash mode

0x2c — Ox2f

cs_hold_time

Serial flash CS hold time, in number of flash clock
cycles

0x30 — 0x33

cs_setup_time

Serial flash CS setup time, in number of flash clock
cycles

Table continues on the next page...

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

85

QuadSPI Peripheral

Table 6-4. Configuration fields in QSPI config block
(continued)

Offset

Size
(bytes)

Configuration Field

Description

0x34 — 0x37

4

sflash_A1_size

Size of external flash connected to ports of QSPIOA
and QSPIOA_CSQ0, in bytes

0x38 — 0x3b

sflash_A2_size

Size of external flash connected to ports of QSPIOA
and quadSPIOA_CS1, in bytes

sflash_A2_size field must be set to 0 if the serial flash
device is not present.

0x3c — Ox3f

sflash_B1_size

Size of external flash connected to ports of QSPIOB
and quadSPIOB_CSO0, in bytes

sflash_B1_size field must be set to 0 if the serial flash
device is not present.

0x40 — 0x43

sflash_B2_size

Size of external flash connected to ports of QSPI0OB
and quadSPIOB_CS1, in bytes

sflash_B2_size field must be set to 0 if the serial flash
device is not present.

0x44 — 0x47

sclk_freq

Frequency of QuadSPI serial clock 1
0 Low frequency

1 Mid frequency

2 High frequency

See the MCU bootloader chapter in the chip reference
manual for the definitions of low-frequency, mid-
frequency, and high-frequency. In MK82F2586, they are
24 MHz, 48 MHz, and 96 MHz.

0x48 — 0x4b

busy_bit_offset

Busy bit offset in status register of Serial flash
[31:16] Busy bit polarity, valid range is 0-1:

0 - Busy flag in status register is 1 when flash devices
are busy.

1 - Busy flag in status register is 0 when flash devices
are busy.

[15:0]: The offset of busy flag in status register; valid
range is 0 - 31.

0x4c — Ox4f

sflash_type

Type of serial flash
0 Single mode

1 Dual mode

2 Quad mode

3 Octal mode

0x50 — 0x53

sflash_port

Port enablement for QuadSPI module
0 Only pins for QSPIOA are enabled
1 Pins for both QSPIOA and QSPIOB are enabled

0x54 — 0x57

ddr_mode_enable

Enable DDR mode
0 DDR mode is disabled

Table continues on the next page...

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

86

NXP Semiconductors

.4
Chapter 6 Supported peripherals

Table 6-4. Configuration fields in QSPI config block
(continued)

Offset Size Configuration Field Description
(bytes)

1 DDR mode is enabled
0x58 — 0x5b 4 dgs_enable Enable DQS

0 DQS is disabled

1 DQS is enabled

0x5¢ — Ox5f 4 parallel_mode_enable |Enable Parallel Mode

0 Parallel mode is disabled

1 Parallel mode is enabled
0x60 — 0x63 4 portA_cs1 Enable QuadSPI0OA_CS1

0 QuadSPIOA_CS1 is disabled
1 QuadSPIOA_CS1 is enabled

portA_cs1 field must be set to 1 if sflash_A2_size is
not equal to 0.

0x64 — 0x67 4 portB_cs1 Enable QuadSPIOB_CS1
0 QuadSPIOB_CS1 is disabled
1 QuadSPIOB_CS1 is enabled

portB_cs1 field must be set to 1 if sflash_B2_size is
not equal to 0.

0x68 — 0x6b 4 fsphs Full Speed Phase selection for SDR instructions
0 Select sampling at non-inverted clock

1 Select sampling at inverted clock

0x6¢c — 0x6f 4 fsdly Full Speed Delay selection for SDR instructions
0 One clock cycle delay

1 Two clock cycles delay.

0x70 — 0x73 4 ddrsmp DDR sampling point
Valid range: 0 - 7
0x74 — 0x173 4 look_up_table Look-up-table for sequences of instructions
0x174 — 0x177 4 column_address_space |Column Address Space

Defines the width of the column address

0x178 — 0x17b 4 config_cmd_en Enable additional configuration command
0 Additional configuration command is not needed

1 Additional configuration command is needed

0x17c — 0x18b 16 config_cmds IPCR arrays for each connected SPI flash
All fields must be set to 0 if config_cmd_en is not
asserted.

0x18c - 0x19b 16 config_cmds_args Command arrays needed to be transferred to external
spi flash

All fields must be set to 0 if config_cmd_en is not
asserted.

Table continues on the next page...

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 87

A
QuadSPI Peripheral

Table 6-4. Configuration fields in QSPI config block
(continued)

Offset

Size
(bytes)

Configuration Field

Description

0x19c — 0x19f

4

differential_clock_pin_ena
ble

Enable differential flash clock pin
0 Differential flash clock pin is disabled

1 Differential flash clock pin is enabled

Ox1a0 — Ox1a3

flash_CK2_clock_pin_ena
ble

Enable Flash CK2 Clock pin
0 Flash CK2 Clock pin is disabled
1 Flash CK2 Clock pin is enabled

Ox1a4 — Ox1a7

dgs_inverse_sel

Select clock source for internal DQS generation
0 Use 1x internal reference clock for DQS generation

1 Use inverse 1x internal reference clock for DQS
generation

Ox1a8 — Ox1ab

dgs_latency_enable

DQS Latency Enable
0 DQS latency disabled

1 DQS feature with latency included enabled

Ox1ac — Ox1af

dgs_loopback_internal

DQS loopback from internal DQS signal or DQS Pad

0 DQS loopback is sent to DQS pad first and then
looped back to QuadSPI

1 DQS loopback from internal DQS signal directly

0x1b0 — O0x1b3

dgs_phase_sel

Select Phase Shift for internal DQS generation
0 No Phase shift

1 Select 45° phase shift

2 Select 90° phase shift

3 Select 135° phase shift

0x1b4 — 0x1b7

dgs_fa_delay_chain_sel

Delay chain tap number selection for QuadSPIOA DQS
Valid range: 0 - 63

0x1b8 — Ox1bb

dgs_fb_delay_chain_sel

Delay chain tap number selection for QuadSPIOB DQS
Valid range: 0 - 63

Ox1bc — 0x1c3

Reserved

Ox1c4 — Ox1c7

page_size

Page size of external SPI flash.!

Page size of all SPI flash devices must be the same

Ox1c8 — Ox1cb

sector_size

Sector size of external SPI flash.!

Sector size of all SPI flash devices must be the same.

Ox1cc - Ox1cf

timeout_milliseconds

Timeout in terms of milliseconds.
0 Timeout check is disabled.

NOTE: If the time that the external SPI device is busy
is more than this timeout value, then the

QuadSPI driver returns a timeout.

0x1d0 — 0x1d3

ips_cmd_second_divider

Second divider for IPs command based on
QSPI_MCR[SCLKCFG]; the maximum value of

Table continues on the next page...

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

88

NXP Semiconductors

.4
Chapter 6 Supported peripherals

Table 6-4. Configuration fields in QSPI config block
(continued)

Offset Size Configuration Field Description
(bytes)
QSPI_MCR[SCLKCFG] depends on the specific
device.
0x1d4 — 0x1d7 4 need_multi_phase 0 Only 1 phase is necessary to access external flash
devices

1 Multiple phases are necessary to erase/program
external flash devices

0x1d8 — 0x1db 4 is_spansion_hyperflash |0 External flash devices is not in the Cypress
HyperFlash family

1 External flash devices is in the Cypress HyperFlash

family
Ox1dc — Ox1df 4 pre_read_status_cmd_add | Additional address for the PreReadStatus command.
ress_offset? Set this field to OXFFFF FFFF if it is not required.
0x1e0 — 0x1e3 4 pre_unlock_cmd_address |Additional address for PreWriteEnable command. Set
_offset? this field to OxFFFF FFFF if it is not required.
Ox1e4 — Ox1e7 4 unlock_cmd_address_offs | Additional address for WriteEnable command. Set this
et? field to OXFFFF FFFF if it is not required.
0x1e8 — Ox1eb 4 pre_program_cmd_addres | Additional address for PrePageProgram command.
s_offset? Set this field to OXFFFF FFFF if it is not required.
Ox1ec — Ox1ef 4 pre_erase_cmd_address_ | Additional address for PreErase command. Set this
offset? field to OXFFFF FFFF if it is not required.
0x1f0 — Ox1f3 4 erase_all_cmd_address_o | Additional address for EraseAll command. Set this field
ffset? to OXFFFF FFFF if it is not required.
0x1f4 — Ox1ff 12 - Reserved

1. If parallel mode is enabled, then page size and sector size must be twice the actual size.
2. These fields are effective only if “need_multi_phase” field is set to 1.

NOTE
It is recommended to configure QSPI to SDR mode with one
QCB during the program and switch to DDR mode with
another QCB after the program completes, where it is possible
to achieve higher program performance with the MCU
bootloader.

6.8.2 Look-up-table

The look-up table (LUT) is a part of the QCB, and contains sequences for instructions,
such as read and write instructions. The MCU bootloader defines LUT entries to support
erase, program, and read operations.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 89

QuadSPI Peripheral

NOTE

The sequence in each LUT entry is target-specific. See the
datasheet or reference manual of the corresponding serial flash

device.

Table 6-5. Look-up table entries for bootloader

Index Field Description

0 Read Sequence for read instructions

1 WriteEnable Sequence for WriteEnable instructions

2 EraseAll Sequence for EraseAll instructions

3 ReadStatus Sequence for ReadStatus instructions

4 PageProgram Sequence for Page Program instructions

6 PreErase’ Sequence for Pre-Erase instructions

7 SectorErase Sequence for Sector Erase

8 Dummy Sequence for dummy operation if needed.
For example, if continuous read is configured in index 0, then the dummy LUT
should be configured to force the external SPI flash to exit continuous read
mode.
If a dummy operation is not required, then this LUT entry must be set to 0.

9 PreWriteEnable' Sequence for Pre-WriteEnable instructions

10 PrePageProgram’ Sequence for Pre-PageProgram instructions

11 PreReadStatus’ Sequence for Pre-ReadStatus instructions

5,12, 13, 14, |Undefined" All of these sequences are free to be used for other purpose. For example,
15 index 5 can be used for enabling Quad mode of SPI flash devices, see

Section 3.3.2 for more details.

1. If these LUT entries are are not required, then they are allowed to be used for other purposes.

NOTE

For most types of SPI flash devices available in the market,
only index 0, 1, 3, 4, 7, and 8 are required. However, for other
types of high-end SPI flash devices, i.e., Cypress HyperFlash,
additional indexes listed above may be required.

6.8.3 Configure QuadSPI module

The MCU bootloader is able to access external SPI devices via the QuadSPI module, but
only after the QuadSPI module is configured. There are 2 ways to configure the QuadSPI

module:

* Configure QuadSPI module at runtime
* Configure QuadSPI module at start-up

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

90

NXP Semiconductors

Table 6-6. Configuring the QuadSPI

Chapter 6 Supported peripherals
module

Configure Procedure Clock updates during QuadSPI
QuadSPI at module configuration
runtime 1. Use a WriteMemory command to program the QCB to |If QuadSPI module is configured at
either a region of RAM or internal flash. runtime: The System Core clock will not
2. Use the ConfigQuadSPIl command to configure the be updated if the QuadSPI module is
QuadSPI module with the QCB that was programmed | configured at runtime; only
before. QUADSPI_MCR [SCLKCFG] is updated
3. After the above operations, the QuadSPI module has according to sclk_freq field within the
been set to an expected mode specified by the QCB, so | QCB. In this case, the clock source for
the MCU bootloader is now able to access all QuadSPI module is MCGFLL
connected SPI flash devices. (QUADSPIO_SOCCR [QSPISRC] equals
1).
start-up The steps of configuring QuadSPI at startup is based on the |If QuadSPI module is configured at

runtime procedure, if the QCB is not present at address 0 of
the 1st external SPI flash device.

1. Configure the QuadSPI module at runtime (procedure
above).

2. Erase the 1st sector of the 1st connected external SPI
flash device using the FlashEraseRegion command.

3. Program the QCB to address 0 of the 1st connected
external SPI flash device using the WriteMemory
command.

NOTE: For some types of SPI flash
devices (like Cypress HyperFlash)
which do not support basic reads
(0x03) with 24-bit addresses, an
alternative is available: for this
step, program the QCB to internal
flash, set the
“gspiConfigBlockPointer” in the
BCA to the start address of QCB,
and program the BCA to 0x3c0.

4. Update BOOTSRC_SEL field (bits [7:6]) in
FOPTregister at the address 0x40D to “Ob’10”, which
means "boot from ROM with QuadSPI configured".

5. Reset the target.

6. After start-up, ROM code reads the QCB from address
0 of the external SPI flash and then configures the
QuadSPI according to the QCB.

7. Now, the MCU bootloader is able to access all
connected SPI flash devices.

The QuadSPI module will be configured automatically out of
reset, if the QCB is already present and the BOOTSRC_SEL
field (bits [7:6]) in FOPTregister at the address 0x40D equals
to “0'b10”.

start-up: The System Core clock will be
updated to 72/96 MHz, if the QuadSPI
module is configured at start-up. In this
case, the clock source of the QuadSPI
module switches to MCGFLL. The
corresponding registers are updated with
the values listed in the table Register
value updates when the QuadSPI
module is configured at start-up.

NOTE: For K80/1/2, the core clock is
updated to 96 MHz. For KL81/2,
the core clock is updated to 72
MHz.

NOTE

The user application boot from QuadSPI in XIP mode should
not change the QuadSPI source clock from what ROM has
configured (as shown in the previous table); otherwise a hard
fault may occur. However, the QuadSPI source clocks (listed in

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

91

QuadSPI Peripheral

the next table) can be changed successfully, if the application
avoids shutting down the QSPI clock during clock switching;
for example, if the clock switch-related codes are relocated in

either internal flash or SRAM.

6.8.4 Access external SPI flash devices using QuadSPIl module
The MCU bootloader supports access to external SPI flash devices using the following

commands:

* Flash-erase-all: This command can erase all SPI flash devices defined in the QCB.
For example, if “flash-erase-all 17, the 1 represents the source of the erasure

command is QuadSPI memory.

* Flash-erase-region: This command can erase a specified range of flash within
connected SPI flash devices. For example “flash-erase-region 0x68000000

0x10000”.

* Write-memory: The MCU bootloader calls the Write-memory command to program
specified data to a given region of connected SPI flash devices. For example, “write-
memory 0x68001000 led_demo.bin™.

* Read-memory: The MCU bootloader calls the Read-memory command to read data
from a given region of connected SPI flash devices. For example, “read-memory

0x68000000 1024 temp.bin”.

These commands return error codes.

Table 6-7. Status Error Codes for accessing QuadSPI memory

Error Code Value Description

kStatus_Success 0 Operation succeeded without error

kStatus_QspiFlashSizeError 400 Size of external SPI flash is invalid

kStatus_QspiFlashAlignmentError 401 Start Address for program is not page-aligned

kStatus_QspiFlashAddressError 402 The address is invalid

kStatus_QspiFlashCommandFailure 403 The operation failed

kStatus_QspiNotConfigured 405 QSPI module is not successfully configured

kStatus_QspiFlashUnkownProperty 404 Unknown QSPI property

kStatus_QspiCommandNotSupported 406 The command is not supported under certain modes

kStatus_QspiCommandTimeout 407 The time that the external SPI device is busy more than the
timeout value (timeout_milliseconds).

kStatus_QspiWriteFailure 408 QSPI module cannot perform a program command at the
current clock frequency

kStatus_QspiModuleBusy 409 QSPI module is busy, or caused by incorrect configuation of

QCB

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

92

NXP Semiconductors

.4
Chapter 6 Supported peripherals

6.8.5 Boot directly from QuadSPI

The MCU bootloader supports booting directly from QuadSPI. To boot directly from
QuadSPI, the following conditions must be met:

* The bootFlags field in BCA is set to OXFE, which means "boot directly from
QuadSPI".
The BOOTSRC_SEL field (bits [7:6]) in the FOPT register at address 0x40D is set to
“0’b10”, which means "boot from ROM with QuadSPI configured".
User application is valid.
QuadSPI configuration block (QCB) is valid
CRC check passed if the CRC check feature is enabled.

6.8.6 Example QCB

Here is an example QCB for the MX25U3235F device on TWR-K80F150M, FRDM-
K82F, TWR-KL82Z72M, and FRDM-KL82Z. See the MCU Bootloader QuadSPI User's
Guide (document MBOOTQSPIUG) for more details.

const gspi config t gspi config block =

.tag = kQspiConfigTag, // Fixed value, do not change
.version = {.version = kQspiVersionTag}, // Fixed value, do not change
.lengthInBytes = 512, //Fixed value, do not change
.sflash Al size = 0x400000, // 4MB

.sclk freqg = kQspiSerialClockFreq High, // High frequency, in K82-256, it means
96MHz/1 = 96MHz

.sflash type = kQspiFlashPad Quad, // SPI Flash devices work under quad-pad mode

.sflash port = kQspiPort EnableBothPorts, // Both QSPIOA and QSPIOB are enabled.

.busy bit offset = 0, // Busy offset is 0

.ddr_mode_enable = 0, // disable DDR mode

.dgs_enable = 0, // Disable DQS feature

.parallel mode enable = 0, // QuadSPI module work under serial mode

.pagesize = 256, // Page Size : 256 bytes

.sectorsize = 0x1000, // Sector Size: 4KB

.device mode config en = 1, // Enable quad mode for SPI flash

.device cmd = 0x40, // Enable quad mode via set bit 6 in
status register to 1

.write_cmd_ipcr = 0x05000000U, // IPCR indicating seq id for Quad Mode Enable
(5<<24)

.ips_command second divider = 3, //Set second divider for QSPI serial clock to 3

.look up table =

{

// Seqg0 : Quad Read (maximum supported freq: 104MHz)

/*

CMD: 0XEB - Quad Read, Single pad

ADDR: 0x18 - 24bit address, Quad pads

DUMMY : 0x06 - 6 clock cycles, Quad pads
READ: 0x80 - Read 128 bytes, Quad pads
JUMP_ON CS: 0

*/

[0] = OxO0A1804EB, [1l] = 0x1E800E06, [2] = 0x2400,

// Seqgl: Write Enable (maximum supported freq: 104MHz)
/*
CMD: 0x06 - Write Enable, Single pad

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 93

A
QuadSPI Peripheral

*/
[4] = 0x406,

// Seg2: Erase All (maximum supported freq: 104MHz)

/*

CMD: 0x60 - Erase All chip, Single pad
*/

[8] = 0x460,

//Seq3: Read Status (maximum supported freq: 104MHz)

/*

CMD: 0x05 - Read Status, single pad
READ: 0x01 - Read 1 byte

*/

[12] = 0x1c010405,

// Seg4: 4 I/O Page Program (maximum supported freq: 104MHz)

/*

CMD: 0x38 - 4 I/O Page Program, Single pad
ADDR: 0x18 - 24bit address, Quad pad

WRITE: 0x40 - Write 64 bytes at one pass, Quad pad
*/

[16] = 0x0A180438, [17] = 0x2240,

// Seg5: Write status register to enable quad mode
/*

CMD: 0x01 - Write Status Register, single pad
WRITE: 0x01 - Write 1 byte of data, single pad

*/

[20] = 0x20010401,

// Seq7: Erase Sector

/*

CMD: 0x20 - Sector Erase, single pad
ADDR: 0x18 - 24 bit address, single pad
*/

[28] = 0x08180420,

// Seg8: Dummy

/*

CMD: 0 - Dummy command, used to force SPI flash to exit continuous read mode.
unnecessary here because the continuous read mode is not enabled.

*/

[32] = 0,

I
Vi

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

94 NXP Semiconductors

Chapter 7

Peripheral interfaces

7.1

Introduction

The block diagram shows connections between components in the architecture of the

peripheral interface.

v

i ™y
Abstract control interface

[12C slave

Abstract byte interface

5Pl slave

12C byte abstraction

SPI byte abstraction

s

CAN

I
|
I
\

CAN byte abstraction

=

UART byte abstraction

LUSB device HID class

|
[
[e
[

]

~

l

Abstract packet
interface

—tFraming packetizer]

:' HID packetizer |

J

@SE HID + MSC device class

MSC packetizer

Iy

Command/data
packet processor

Figure 7-1. Components peripheral interface

Sb file handler
[{Command/Data packet processor)

Figure 7-2. USB/MSC Peripheral interface

In this diagram, the byte and packet interfaces are shown to inherit from the control

interface.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

95

A
Abstract control interface

All peripheral drivers implement an abstract interface built on top of the driver's internal
interface. The outermost abstract interface is a packet-level interface. It returns the
payload of packets to the caller. Drivers that use framing packets have another abstract
interface layer that operates at the byte level. The abstract interfaces allow the higher
layers to use exactly the same code regardless which peripheral is being used.

The abstract packet interface feeds into the command and data packet processor. This
component interprets the packets returned by the lower layer as command or data
packets.

7.2 Abstract control interface

This control interface provides a common method to initialize and shutdown peripheral
drivers. It also provides the means to perform the active peripheral detection. No data
transfer functionality is provided by this interface. That is handled by the interfaces that
inherit the control interface.

The main reason this interface is separate from the byte and packet interfaces is to show
the commonality between the two. It also allows the driver to provide a single control
interface structure definition that can be easily shared.

struct PeripheralDescriptor {
//! @brief Bit mask identifying the peripheral type.
A
//! See # peripheral types for a list of valid bits.
uint32 t typeMask;

//! @brief The instance number of the peripheral.
uint32 t instance;

//! @brief Configure pinmux setting for the peripheral.
void (*pinmuxConfig) (uint32_ t instance, pinmux type t pinmux) ;

//! @brief Control interface for the peripheral.
const peripheral control interface t * controlInterface;

//! @brief Byte-level interface for the peripheral.

[/}
//! May be NULL because not all periperhals support this interface.
const peripheral byte inteface t * bytelInterface;

//! @brief Packet level interface for the peripheral.
const peripheral packet interface t * packetInterface;

Vi

struct PeripheralControlInterface

{

bool (*pollForActivity) (const PeripheralDescriptor * self);
status_t (*init) (const PeripheralDescriptor * self, BoatloaderInitInfo * info);
void (*shutdown) (const PeripheralDescriptor * self);

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
96 NXP Semiconductors

Chapter 7 Peripheral interfaces

void (*pump) (const peripheral descriptor t *self);

Table 7-1. Abstract control interface

Interface Description
pollForActivity() Check whether communications has started.
init() Fully initialize the driver.
shutdown() Shutdown the fully initialized driver.
pump Provide execution time to driver.

7.3 Abstract byte interface

This interface gives the framing packetizer a common interface for the peripherals that
use framing packets (see framing packetizer).

The abstract byte interface inherits the abstract control interface.

struct PeripheralByteInterface

{

status_t (*init) (const peripheral descriptor t * self);
status_t (*write) (const peripheral descriptor t * self, const uint8 t *buffer, uint32 t

byteCount) ;

7

Table 7-2. Abstract byte interface

Interface Description
init() Initialize the interface
write() Write the requested number of bytes
NOTE

The byte interface has no read() member. Interface reads are
performed in an interrupt handler at the packet level.

7.4 Abstract packet interface

The abstract packet interface inherits the abstract control interface.

status_t (*init) (const peripheral descriptor t *self);
status_t (*readPacket) (const peripheral descriptor t *self,
uint8_t **packet,
uint32 t *packetLength,
packet type t packetType) ;
status_t (*writePacket) (const peripheral descriptor t *self,

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors 97

Framing packetizer

const uint8_ t *packet,

uint32_t byteCount,

packet type t packetType) ;
void (*abortDataPhase) (const peripheral descriptor t *self);
status_t (*finalize) (const peripheral_descriptor_t *self);
uint32 t (*getMaxPacketSize) (const peripheral descriptor t *self);
void (*byteReceivedCallback) (uint8 t byte);

Table 7-3. Abstract packet interface

Interface Description
init() Initialize the peripheral.
readPacket() Read a full packet from the peripheral.
writePacket() Send a complete packet to the peripheral.
abortDataPhase() Abort receiving of data packets.
finalize() Shut down the peripheral when done with use.
getMaxPacketSize Returns the current maximum packet size.
byteReceivedCallback Notification of received byte.

7.5 Framing packetizer

The framing packetizer processes framing packets received via the byte interface with
which it communicates. The framing packetizer builds and validates a framing packet as
it reads bytes. The framing packetizer also constructs outgoing framing packets as needed
to add flow control information and command or data packets. The framing packetizer
also supports data phase abort.

7.6 USB HID packetizer

The USB HID packetizer implements the abstract packet interface for USB HID, taking
advantage of the USB's inherent flow control and error detection capabilities. The USB
HID packetizer provides a link layer that supports variable length packets and data phase
abort.

7.7 USB HID packetizer

The USB HID packetizer implements the abstract packet interface for USB HID, taking
advantage of the USB's inherent flow control and error detection capabilities.

The image shows the USB MSC command/data/status flow chart.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
98 NXP Semiconductors

Command Transport - CBW

{Command Block Wrappper)

Data — Out (from host to device)

Chapter 7 Peripheral interfaces

Data - In (from device to host)

>
Y

Status Transport CSW
{Command Staus Wrapper)

Figure 7-3. USB MSC status flow chart

* The CBW begins on a packet boundary, and ends as a short packet. Exactly 31 bytes

are transferred.

* The CSW begins on a packet boundary, and ends as a short packet. Exactly 13 bytes

are transferred.

» The data packet begins on a packet boundary, and ends as a short packet. Exactly 64

bytes are transferred.

7.8 Command/data processor

This component reads complete packets from the abstract packet interface, and interprets
them as either command packets or data packets. The actual handling of each command
1s done by command handlers called by the command processor. The command handler
tells the command processor whether a data phase is expected and how much data it is

expected to receive.

The command/data processor ignores any unexpected commands or data packets if
received. In this instance, the communications link resynchronizes upon reception of the

next valid command.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

99

Command/data processor

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
100 NXP Semiconductors

Chapter 8
Memory interface

8.1 Abstract interface

The bootloader uses a common, abstract interface to implement the memory read/write/
fill commands. This is to keep the command layer from having to know the details of the
memory map and special routines.

This shared memory interface structure is used for both the high-level abstract interface,
as well as low-level entries in the memory map.

struct MemoryInterface

{
status_t (*init) (void);
status_t (*read) (uint32 t address, uint32 t length, uint8 t * buffer);
status_t (*write) (uint32 t address, uint32 t length, const uint8 t * buffer);
status_t (*£ill) (uint32 t address, uint32_t length, uint32 t pattern);
status_t (*flush) (void) ;
status_t (*erase) (uint32 t address, uint32 t length)

The global bootloader context contains a pointer to the high-level abstract memory
interface, which is one of the MemorylInterface structures. The internal implementation of
this abstract interface uses a memory map table, referenced from the global bootloader
context that describes the various regions of memory that are accessible and provides
region-specific operations.

The high-level functions are implemented to iterate over the memory map entries until it
finds the entry for the specified address range. Read and write operations are not
permitted to cross region boundaries, and an error is returned if such an attempt is made.

The BootloaderContext::memoryMap member is set to an array of these structures:

struct MemoryMapEntry

{

uint32 t startAddress;

uint32 t endAddress;

bool isExecutable;

const MemoryInterface * interface;

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 101

Flash driver interface

This array must be terminated with an entry with all fields set to zero.

The same MemoryInterface structure is also used to hold the memory-type-specific
operations.

Note that the MemoryMapEntry::endAddress field must be set to the address of the last
byte of the region, because a <= comparison is used.

During bootloader startup, the memory map is copied into RAM and modified to match
the actual sizes of flash and RAM on the chip.

8.2 Flash driver interface

The flash driver uses the common memory interface to simplify the interaction with flash.
It takes care of high level features such as read back verification, flash protection
awareness, and so on. The flash memory functions map to the interface functions as so:

const memory region_interface_t g flashMemoryInterface =

{

.read = &flash mem read,

.write = &flash mem write,
.f111 = &flash mem fill,
.flush = NULL,

.erase flash mem erase

}i

Bootloader startup code is responsible for initializing the flash memory.

API Description
flash_mem_read() Performs a normal memory read if the specified region isn't
protected from reading.
flash_mem_write() Calls the low-level flash_program() API. Also performs
program verification if enabled with the Set Property
command.
flash_mem_fill() Performs intelligent fill operations on flash memory ranges. If

the fill patterns are all 1's, special action is taken. If the range
is a whole number of sectors, then those sectors are erased
rather than filled. Any part of an all-1's fill that is not sector-
aligned and -sized is ignored (the assumption being that it has
been erased to 1's already). Fills for patterns other than all 1's
call into flash_program().

flash_mem_erase() Calls the low-level flash_erase() API. Also performs erasure
verification if enabled with the Set Property command
(Enabled by default).

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
102 NXP Semiconductors

Chapter 8 Memory interface

All flash_mem_read(), flash_mem_write(), flash_mem_fill(), and flash_mem_erase()
check the flash protection status for the sectors being read or programmed or erased and
return an appropriate error if the operation is not allowed.

8.3 Low-level flash driver

The low-level flash driver (LLFD) handles erase and write operations on a word basis. It
cannot perform writes of less than a full word.

The bootloader startup code is responsible for initializing and shutting down the LLFD.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 103

Low-level flash driver

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
104 NXP Semiconductors

Chapter 9
MCU bootloader porting

9.1 Introduction

This chapter discusses the steps required to port an existing MCU bootloader to a new
device. Each step of the porting process is discussed in detail in the following sections.

9.2 Choosing a starting point

The first step is to download the latest bootloader release. Updates for the bootloader are
released multiple times per year, so having the latest package is important for finding the
best starting point for your port. To find the most recent bootloader release, click on
mcuxpresso.nxp.com, select middleware mcu-boot when configuring the sdk package.
MCU Bootloader projects can be found in <sdk_package>/boards/<board>/
bootloader_examples.

The easiest way to port the bootloader is to choose a supported target that is the closest
match to the desired target device.

NOTE
Just because a supported device has a similar part number to the
desired target device, it may not necessarily be the best starting
point. To determine the best match, refer to the data sheet and
reference manual for all of the supported MCU devices.

9.3 Preliminary porting tasks

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 105

https://mcuxpresso.nxp.com/en/welcome

A
Preliminary porting tasks

All references to paths in the rest of this chapter are relative to the root of the extracted
SDK package. MCU Bootloader is a middleware in SDK package loacted at middleware/
mcu-boot. Before modifying source code, the following tasks should be performed.

9.3.1 Download MCUXpresso SDK

Porting the MCU bootloader to a new target is a manual process that requires updating
the device header files. This process is time-consuming and error-prone, so NXP provides
Software Development Kit (SDK) for ARM Cortex-M Core devices. SDK package
contains device header files and drivers. These SDK packages can be downloaded from
MCUXpresso.nxp.com.

NOTE

Do not proceed with a port if a package does not yet exist for
the desired target device.

In the downloaded package, header files including <device>.h, <device>_features.h,
fsl_device_registers, system_<device>.h can be found in devices/<device>, and drivers
can be found in devices/<device>/drivers. Add these two folders to include directories of
the target device's bootloader project or add these header files and drivers to the target
device's bootloader project.

9.3.2 Copy the closest match

Copy the folder of the device that most closely matches the target device in the /
middleware/mcu-boot/targets folder of the bootloader source tree. Rename the folder to
match the target device part number.

After the files are copied, browse the newly created folder. Rename all files that have
reference to the device from which they were copied. Rename the following files:

* clock_config_<old_device>.c —> clock_config_<new_device>.c

e hardware init_<old_device>.c —> hardware_init _<new_device>.c
* memory_map_<old_device>.c —> memory_map _<new_device>.c
* peripherals_<old_device>.c —> peripherals _<new_device>.c

Copy the following files from their location in devices/<device>/<tool chain> to the new
middleware/mcu-boot/targets/<device>/src/startup folder:

* <tool chain>/startup_<device>.s

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
106 NXP Semiconductors

https://mcuxpresso.nxp.com/en/welcome

4
Chapter 9 MCU bootloader porting

9.3.3 Provide device startup file (vector table)

A device-specific startup file is a key piece to the port. The bootloader may not function
correctly without the correct vector table. A startup file from the closest match device can
be used as a reference, but it is strongly recommended that the file be thoroughly checked
before using it to port due to differences in interrupt vector mappings between devices.

Create the startup file and place into the middleware/mcu-boot/targets/<devices/src/startup/
<tool chains> folder. Startup files are often assembly (*.s) and are named
startup_<device>.s.

NOTE
For Kinetis devices, the 16-byte Flash Configuration Field
should be carefully set in the bootloader image. The Flash
Configuration Field is placed at the offset 0x400 in the
bootloader image. The field is documented in the SOC
reference manual under the subsection called, "Flash
Configuration Field" in the "Flash Memory Module" chapter.
To change the default 16-byte value for the field in the template
startup_<device>.s file of the bootloader project, follow these
steps:

1. Open the startup_<device>.s file in a text editor.

2. Locate the symbol where Flash Configuration Field is
specified. The symbol name is "__FlashConfig" The 16-
byte Flash Configuration Field data is enclosed with
__FlashConfig and __FlashConfig_End symbols in the
startup_<device>.s file

3. Change the 16-byte setting to the correct value. For
example set the flash security byte, enable or disable
backdoor access key, specify the 8-byte backdoor key, and
SO on.

4. Once the field is updated, save the startup_<device>.s file
and close the text editor.

9.3.4 Clean up the IAR project

This example uses the AR tool chain for the new project. Other supported tool chains
can be used in a similar manner.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 107

Preliminary porting tasks

MCU Bootloader projects can be found in <boards>/board/bootloader_examples. Open a
bootloader project of the most similar device. This image shows an example of what a
workspace looks like and the files that need to be touched.

2 @ freedom_bootloader - debug *

M drivers

—&) W MKB4F12 < Rename
bl_dspi_irg_config_common.c
bl_iZc_irg_config_common.c
bl_uart_irg_config_commaon.c

— [bootloader_config.h

clock_config_MKE4F12.c
hardware_init_ MKB4F12.c Replace with files for target device from

[memoary_map_MKB4F12.c middleware/mcu-boot/targets/<device>/src
peripherals_MKB4F12.c

— [peripherals_pinmux.h

pinmux_utility_common.c

— [target_config.h

— [1] ush_device_config.h

W osa

kL Replace with files for target device from

— W startup ; .
R ——— middleware/mcu-boot/targets/<device>/
& crtl.s src/startup/<tool chain>

startup.c
[startup_MKB4F12.s
systemn_MKB4F12.c }_ Replace with files for target device from

- k] systerm_MKB4F12.h devices/<device>
M ush

M utilities

B Output

Figure 9-1. IAR workspace

Once changes have been made, update the project to reference the target device. This can
be found in the project options.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
108 NXP Semiconductors

Chapter 9 MCU bootloader porting

Categony:

General Options
Static Analysis
Runtime Chedking
C/C++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
CADIL
CMSIS DAP
GDE Server
I-jet/ITTAGjet
ILink/1-Trace
TI Stellaris
Mu-Link
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TI ¥D5

Options for node "freedom_bootloader”

pod

MISRA-C: 2004
Library Configuration

Librany Options 2
Target Output

Processor variant

() Core Cortex-M4

MISRA-C:1998
Library Options 1

(® Device NXP MEE4FNTM oo 12

(O CMSIS-Pack More

Endian mode Floating point settings
Little FPU VFPv4 single precision
Big
BE3Z O registers 16
BES
Advanced SIMD (NEON)
D5SF Extension TrustZone
o

Figure 9-2. Project options

9.3.5 Bootloader peripherals

The bootloader source uses a C/C++ preprocessor define to configure the bootloader
based on the target device. Update this define to reference the correct set of device-

specific header files.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

109

Preliminary porting tasks

.

it

Options for node "freedom_bootloader” | &=
Calegory: [Factomy Settings]
General Options || Mubti-file Compilation
Runtime Checking Discard Unused Publics
—_—

Assembler | Language 2 | Code | Optimizations | Output | List | Preprocessor ||« |»
Output Converter ,
Custom Build || Ignore standard include directories
Build Actions Additional include directories: (one per line)
Linker SPROJ_DIRS\. \.\..\. \srehinclude - [;]
Debugger SPROJ_DIRS\. N N erchinclude\device B
Simulator $PROJ_DIRS\. N\)\ \sre -
Angel SPROJ_DIRS\.\\.\. \src\drivers
CMSIS DAP SPROJ_DIRS\. \.\.\ \src\statup -
GDEB Server Prainclude file:
TAR ROM-monitor (]
I-jet/ITAGjet
J-Link/)-Trace Defined symbols: (one per line)
1 Stellaris FREEDOM » []Preprocessor output to file
. wi=se Preserve comments
Ma
reiger CPU_MKB4FN1MOVMD12 Generate Mine drectives
PE micro BL_TARGET FLASH -
RDI
ST-LINK
Third-Party Driver
XDS 100,/200/1CDI
| OK || Cancel

Figure 9-3. Options for node "freedom_bootloader"

If the memory configuration of the target device differs from the closest match, the linker
file must be replaced. Refer to linker files in devices/<device>/<tool chain> and update it
as per the bootloader project. Update the linker settings via the project options.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

110

NXP Semiconductors

4
Chapter 9 MCU bootloader porting

F B
Cptions for nede "freedom_bootleader” ﬁ

Cateqgany: [Factary Settings]

General Options
Runtime Chedking
C/C++ Compiler
Assembler Corfig | Library | Input | Optimizations | Advanced | Output | List | «|*
Output Converter
Custom Build
Build Actions
Debugger
Simulator
Angel
CMSIS DAP
GDB Server Configuration file symbol definttions: {one per ling)
TAR. ROM-monitor
I-4jet/TTAGjet
J-Link/J-Trace
TI Stellaris
Macraigor
PE micro
ROI
STLINK
Third-Party Driver
XDS100/200/1CDI

Linker configuration file

[OF.] [Cancel

Figure 9-4. Porting guide change linker file

9.4 Primary porting tasks

After the basic file structure and source files are in place, the porting work can begin.
This section describes which files need to be modified and how to modify them.

9.4.1 Bootloader peripherals

There are two steps required to enable and configure the desired peripherals on the target
device:

* Choose which peripherals can be used by the bootloader.

» Configure the hardware at a low level to enable access to those peripherals.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 111

Primary porting tasks

9.4.1.1 Supported peripherals

The bootloader uses the peripherals_<device>.c file to define which peripheral interfaces
are active in the bootloader. The source file includes a single table, g_peripheraisii, that
contains active peripheral information and pointers to configuration structures. This file is
found in middleware/mcu-boot/targets/<device>/src.

Only place configurations for peripherals that are present on the target device. Otherwise,
the processor generates fault conditions when trying to initialize a peripheral that is not
physically present.

For the content of each entry in the g_peripherals(] table, reuse existing entries and only
modify the .instance member. For example, starting with the following UARTO member,
make the change to UART]1 by simply changing .instance from “0” to “1”.

{

.typeMask kPeripheralType UART,

.instance 0,

.pinmuxConfig = uart pinmux config,
.controlInterface = &g scuartControlInterface;
.byteInterface = &g scuartBytelnterfacek;
.packetInterface = &g framingPacketInterface;

}

When the table has all required entries, it must be terminated with a null { o } entry.

9.4.1.2 Peripheral initialization

After the peripheral configuration has been selected, the low-level initialization must be
accounted for. The bootloader automatically enables the clock and configures the
peripheral, so the only thing required for the port is to tell the bootloader which pins to
use for each peripheral. This is handled in the peripherals_pinmux.h file in middleware/
mcu-boot/targets/<device>/src. The hardware_init_<device>.c file selects the boot pin
used by the bootloader, which may need to be changed for the new target device.

These files most likely require significant changes to account for the differences between
devices when it comes to pin routing. Each function should be checked for correctness
and modified as needed.

9.4.1.3 Clock initialization

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
112 NXP Semiconductors

L __4

Chapter 9 MCU bootloader porting
The MCU bootloader typically uses the device default clock configuration in order to
avoid dependencies on external components and simplify use. In some situations, the
default clock configuration cannot be used due to accuracy requirements of supported
peripherals. On devices that have on-chip USB and CAN, the default system
configuration is not suficient and the bootloader configures the device to run from the
high-precision internal reference clock (IRC) if available. Otherwise, it depends on the
external oscillator supply.

The bootloader uses the clock_config_<device>.c file in middleware/mcu-boot/targets/
<device>/src to override the default clock behavior. If the port's target device supports
USB, this file can be used. If the port's target device does not support USB, the functions
within clock_config_<device>.c can be stubbed out or set to the required port value.

9.4.2 Bootloader configuration

Configure the bootloader to match the supported features and the specific memory map
for the target device. Turn features on or off by using #define statements in the
bootloader_config.h file in middleware/mcu-boot/targets/<device>/src. See examples for
using these macros in bl_command.c (g_commandHandlerTable[] table) in the
middleware/mcu-boot/src/bootloader/src folder. All checks that reference a BL_* feature
can be turned on or off. Examples of these features are BL_MIN_PROFILE,
BL_HAS_MASS_ERASE, and BL_FEATURE_READ_MEMORY.

One of the most important bootloader configuration choices is where to set the start
address (vector table) of the user application. This is determined by the
BL_APP_VECTOR_TABLE_ADDRESS define in bootloader_config.h. Most
bootloader configurations choose to place the user application at address 0xA000 because
that accommodates the full-featured bootloader image. It is possible to move this start
address if the resulting port reduces features (and therefore, code size) of the bootloader.

NOTE
Load the Release build of the flash-resident bootloader if you
plan to place the user application at 0xA000. Loading the
Debug build requires you to move the application address
beyond the end of the bootloader image. This address can be
determined from the bootloader map file.

9.4.3 Bootloader memory map configuration

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 113

AR
Primary porting tasks

The MCU device memory map and flash configuration must be defined for proper
operation of the bootloader. The device memory map is defined in the g memoryMap(]
structure of the memory_map_<device>.c file, which can be found in middleware/mcu-
boot/targets/<device>/src. An example memory map configuration is shown.

memory map entry t g memoryMapl[] =

{0x00000000, 0x000E£££f, kMemoryIsExecutable, &g flashMemoryInterface}, // Flash array
(1024KB)

{Oxlfff0000,0x2002ffff, kMemoryIsExecutable, &g_normalMemoryInterface}, // SRAM (256KB)

{0x40000000, 0x4007£££f, kMemoryNotExecutable, &g _deviceMemoryInterface},// AIPS
peripherals

{0x400££000, 0x400£££ff, kMemoryNotExecutable, &g deviceMemoryInterface}, // GPIO

{OerOOOOO0,0erOfffff, kMemoryNotExecutable, &g_deviceMemoryInterface},// M4 private

peripherals

{0}

bi

In addition to the device memory map, the correct SRAM initialization file must be

selected according to the target device. This file is split based on ARM® Cortex®-M4 and
Cortex-MO+ based devices, so the likelihood of having to change it is low.

// Terminator

The sram_init_cmé4.c file is located in middleware/mcu-boot/src/memory/src for M4
devices and sram_init_cmOplus.c for MO+ devices.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
114 NXP Semiconductors

Chapter 10
Creating a custom flash-resident bootloader

10.1 Introduction

In some situations the ROM-based or full-featured flash-resident bootloader cannot meet
the requirements of a use application. Examples of such situations include special
signaling requirements on IO and peripherals not supported by the bootloader, or the
more basic need to have as small of a code footprint as possible (for the flash-resident
bootloader). This section discusses how to customize the flash-resident bootloader for a
specific use case. The IAR tool chain is used for this example. Other supported tool
chains can be similarly configured.

10.2 Where to start

The MCU bootloader comes with various preconfigured projects, including
configurations for a flashloader (if applicable for the device) and a flash-resident
bootloader. For all of these projects, supported features can easily be enabled or disabled
to suit the needs of a custom application.

The projects containing these preconfigured options are located in the <sdk_package>/
boards/<board>/bootloader_examples folder. Inside of this folder there are bootloader
projects including flash-resident bootloader, flashloader, flashloader_loader, and
demo_apps. The figure below shows the bootloader projects for FRDM-K64F board.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 115

Flash-resident bootloader source tree

O5Disk (C:) » SDK_2.3.1_FRDM-KedF » boards » frdmk&df > bootloader_examples

o

Mame Date modified Type
demo_apps 41772018 3:47 PM File folder
flashloader AA7/2018 247 PM File folder
flashloader_loader 4172018 3:47 PM File folder
freedom_bootloader 4172018 3:47 PM File folder

Figure 10-1. Bootloader projects

10.3 Flash-resident bootloader source tree

It is important to understand the source tree to understand where modifications are
possible. Here is an example of a source tree for one of the bootloader configurations.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
116 NXP Semiconductors

Chapter 10 Creating a custom flash-resident bootloader

@ freedom_bootloader - debug *
B drivers

1 W MEBAFT1 2
bl_dspi_irg_config_common.c
bl_i2c_irg_config_common.c
bl_uart_irg_config_common.c
hootloader_canfig.h
clock_config_MKE4F12.C
harchware_init_tKBAF12.c
memory_map_MEBEAF1Z.c
peripherals_MKE4F12.c

k] petipherals_pinmusx.h
pinmux_utility_common.c
target_config.h
ush_device_config.h

B osa

4] W source

M autobaud

M hootloader

B cre

B drivers

M include

B memary

B packet

M property

M shloader

B security

B ush

B utilities

ltc.h

M startup

B ush

B utilities

[alanaaladd

LT

Figure 10-2. Source tree for bootloader configuration

There are two folders in each bootloader project: a device-specific folder and a *“source”
folder. All files in the device-specific folder are located in the <sdk_package>/
middleware/mcu-boot/targets/<device>/src folder, and are specific to the target device.
The “source” folder is located at the top level of the bootloader tree, and the subfolders in
the project correspond to the real folder/file structure on the PC. The files in the “source”
folder are the core files of the bootloader.

The bootloader source is separated in a way that creates a clear line between what a user
needs to modify and what they do not. Among other things, the files in the device-
specific folder allow the application to select which peripherals are active as well as how
to configure the clock, and are intended to be modified by the user. The files in the
“source” folder can be modified, but should only require modification where very
specific customization is needed in the bootloader.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 117

Modifying source files

10.4 Modifying source files

The files that cover the majority of the customization options needed by applications are
located in the device-specific folder. These files allow modification to the basic
configuration elements of the bootloader application, and are not associated with the core
functionality of the bootloader.

In the device-specific folder, the source files contain this information:

* bootloader_config.h — Bootloader configuration options such as encryption,
timeouts, CRC checking, the UART module number and baud rate, and most
importantly, the vector table offset for the user application.

* clock_config_<device>.c — Configures the clock for the device. This includes
system, bus, etc.

* hardware_init_<device>.c — Enables and configures peripherals used by the
application. This includes pin muxing, peripheral initialization, and the pin used as a
bootloader re-entry (bootstrap) mechanism.

* memory_map_<device>.c — Contains a table that stores the memory map
information for the targeted device.

* peripherals_<device>.c — Contains the table used by the bootloader to check which
peripheral interfaces are enabled. This is the file used to disable any unused
peripheral interfaces.

* peripherals_pinmux.h - Contains macros to identifiy peripheral pin mux, typically
specific to a target platform.

10.5 Example

One of the most common customizations performed on the MCU bootloader is removing
unused or unwanted peripheral interfaces. The default configuration of the bootloader
enables multiple interfaces, including UART, SPI, I2C and (on some devices) USB and
CAN. This example will describe how to remove the SPIO interface from the provided
bootloader projects . The same methodology can be used to select any of the supported
interfaces.

10.6 Modifying a peripheral configuration macro

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
118 NXP Semiconductors

e

Chapter 10 Creating a custom flash-resident bootloader
The bootloader_confg.h file is located in <sdk_package>/middleware/mcu-boot/targets/
<device>/src. It contains macros such as:

#if !defined (BL_CONFIG SPIO)

#define BL_CONFIG SPIO (1)

#endif

To remove an interface, either modify this file to set the macro to (0), or pass the macro

define to the toolchain compiler in the project settings. For example:

BL_CONFIG_SPI0=0

Setting this macro to zero removes the interface from the g_peripherals table and
prevents related code from linking into the bootloader image.

10.7 How to generate MMCAU functions in binary image

1. Add the MMCAU driver to the project.

Add the MMCAU driver mmcau_aes_functions.c to the project. There are only three
functions in this driver.

//! @brief An initialization function for the decryption peripheral
void mmcau aes init (uint32 t *key, uint32 t *keySchedule, uint32 t *rcon);

//! @ebrief Encrypts a 16 byte block of data//!

in and out may use the same address so encrypting in place is supported

void mmcau aes encrypt (uint32 t *in, uint32 t *key, uint32 t *keySchedule, uint32 t
*out) ;

//! @brief Decrypts a 16 byte block of data//!

in and out may use the same address so decrypting in place is supported

void mmcau_aes decrypt (uint32 t *in, uint32 t *key, uint32 t *keySchedule, uint32 t
*out) ;

The following figure shows that the driver has been added to the K8OF256
bootloader project

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 119

How to generate MMCAU functions in binary image

r
i - - (= g
% bootloader - IAR Embedded Workbench IDE . | — - - Su-amn

File Edit View Project Tools Window Help
NS H@ S| R | m - LY Er e P EHBURS|S D
Workspace x mmcau_aes_functions.st tower_bootloader.map | +x
[DBbUQ i 1266 mem_is_block reserved 00000763 Oxda Code Gb memory.c [1] —"

Fil e BE, 1267 mem_read 0x00007541 0x30 Code Gb memory.c [1]

LES S| 1268 mem write 0x00007571 0x56 Code Gb memory.o [1]
I &2 [drivers 1269 microseconds_convert_to ticks
HE oo 1270 0x000036kb9 0xl2 Code Gb microseconds _pit.o [1]

| [dspi 1271 microseconds delay 0x000036ch Ox2e Code Gb microseconds pit.o [1]

i CMflash 1272 microseconds_get_clock 0x00003729 0x8 Code Gb microseconds pit.o [1]

i Clopio | 1273 microseconds_get_ticks 0x000036ab Oxe Code Gb microseconds pit.o [1]

Il 0 .gzp 1274 microseconds_init 0x00003629 0x74 Code Gb microseconds_pit.o [1]

I 1eC = 1275 microseconds shutdown 0x0000369d Oxe Code Gb microseconds pit.o [1]

] Ip_uart 1276 SR 0x000022df Oxlbe Gb mmcau_ses_functiona.o [1]

I [microsecands 1277 nmcau_aes_encrypt 0x0000212f Ox1b0 mmcau_aes_functions.o [

i = Cammcau 1278 jnmcau aes init 0x00002059 0xdé mmcau aes functions.o [

(1 I—E src 1279 normal _mem fill 0x00007339 0xlé Code Gb normal memory.o [1]

f | mmcau_aes_functions.c 1280 normal_mem init 0x00007245 0x8 Code Gb normal memory.o [1] i

L mrmcauh 1281 normal_mem read 0x0000724d 0xl2 Code Gb normal memory.o [1] |_|
Clpott ' 1282 normal mem write 0x000072ef Oxda Code Gb normal memory.o [1]

|| m,__‘?___: &7 1283 out 0x00003ckE 0xl8 Code Lc =xprintftiny.o [3] |

i - 1284 pattern fill 0x00000471 Code Gb pattern fill.o [1]

i Owverview | flashloader_loader II tawer_boatloader flashloader | < = | ol

|| Debuglog Buid | X

H C:\Users\ 64741\ Data'\Projects\mcu-boot\targets\MKS0F2561 5\iar\tower_bootloader\debug Errors 0, Warnings 0

-—

Figure 10-3. Driver added to KBOF256F project
2. Change the compile optimization level to low.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
120 NXP Semiconductors

Chapter 10 Creating a custom flash-resident bootloader

-
Options for node "tower_bootloader” g

| Categon: [Factom Settings]

General Options [bulti-file: Carmpilation

Static Analysis Digcard Unused Publics
Runtime Checking

| Language 1 I Language 2 | Code | Optimizations |Dutput | List I Flotalik
] Aszembler

L Output Converter
Custom Build
Build Actions

N Linker

Debugger

I Simulator

Enabled transformations:

[[]Common subexpression elimination
[[] Loop unroling

[E7] Function inlining

[[]Code mation

[C] Type-based alias analysis

Angel [] Static clustering

CMSIS DAP No size constraints [[] Instruction scheduling

GDE Server - [[] Veectorization

TAR. ROM-monitor
I4jet/TTAGjet
J-Link/J-Trace

TI Stellaris
Macraigor

PE micro

ROI

ST-LINK
Third-Party Driver
TI XD5

[Ok][Cancel]

Figure 10-4. Compile optimization level
3. Compile the project and view the map file while generating the binary file for the
entire project. The start address and offset of mmcau_aes_init, mmcau_aes_encrypt, and
mmcau_aes_decrypt A€ shown.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 121

How to generate MMCAU functions in binary image

. b
| (=]
& bootloader - IAR Embedded Workbench IDE - . | — pr— l = g
File Edit View Project Tools Window Help
: = % ooA
DS @ & BR[| o m 4N E P e P AR BIURS(S D
Workspace x mmcau_aes_functions.st tower_bootloader.map | +x
[DBbUQ i 1266 mem_is_block reserved 00000763 Oxda Code Gb memory.c [1] —"
Fil e BE, 1267 mem_read 0x00007541 0x30 Code Gb memory.c [1]
LES S| 1268 mem write 0x00007571 0x56 Code Gb memory.o [1]
I &2 [drivers 1269 microseconds_convert_to ticks
HE oo 1270 0x000036kb9 0xl2 Code Gb microseconds _pit.o [1]
| [jdgpi 1271 microseconds delay 0x000036ch Ox2e Code Gb microseconds pit.o [1]
(| Cflash 1272 microseconds_get_clock 0x00003729 Oxg Code Gb microseconds_pit.o [1]
i Clopio | 1273 microseconds_get_ticks 0x000036ab Oxe Code Gb microseconds pit.o [1]
| 0 .gzp 1274 microseconds_init 0x00003629 0x74 Code Gb microseconds_pit.o [1]
\ 1eC = 1275 microseconds shutdown 0x0000369d Oxe Code Gb microseconds pit.o [1]
] Ip_uart 1276 SR 0x000022df Oxlbe Code Gb mmcau aes functions.o [1]
|| [microsecands m 1277 nmcau_aes_encrypt 0x0000212f Ox1b0 mmcau_aes_functions.o [1]
rmcal jrmcau aes init 0x0000205 0x: mmcau aes functions.o
[1278 ini 0x00002059 0xdé functi
I—E[jgrc 1279 normal _mem fill 0x00007339 0xlé Code Gb normal memory.o [1]
| mmcau aes functions.c 1280 normal_mem init 0x00007245 0x8 Code Gb normal memory.o [1]
L mmcauh - T 1281 normal mem read 0x000072dd 0x12 Code Gb normal memory.o [1] [
Clpott ' 1282 normal mem write 0x000072ef Oxda Code Gb normal memory.o [1]
m,__‘?___: &7 1283 out 0x00003ckE 0xl8 Code Lc =xprintftiny.o [3]
. 1284 pattern fill 0x00000471 Code Gb pattern fill.o [1] |
Owerview | flashloader_loader II tawer_boatloader flashloader | < = | | A
'. X Debuglog Build x
H C:\Users\ 64741\ Data'\Projects\mcu-boot\targets\MKS0F2561 5\iar\tower_bootloader\debug Errors 0, Warnings 0
-—

Figure 10-5. Start address MMCAU
4. Open the list file to see the MMCAU algorithm length - 1212 = 0x4BC.

P ™
Z bootloader - IAR Embedded Workbench IDE . — [EEREER
File Edit View Project Tools Window Help

! = < nom
D@ || R0 o m e ePr @B YRS N
Workspace ¥ tower_bootloader. map mmcau_ses_functions.|st 0 ~x
[Debug '] 936 4 27DataTable?_§& T'
) 937 4 7?7?DataTablel 7
i B e —
Files S 938 4 77DataTable2 &
& (I microseconds 939 4 27DataTableZ 3

I & [0 mmcau 940 446 mmcau aes_decrypt

I & [Jsrc 941 432 mmcau aes_ encrypt

| L3 [mmcau_ses_functions.c El g:g 214 mmcau_aes_init

i = (7 Qutput ai

ll i

mmcau_aes_unctDns._cstat... 9435 1 212 bytes in section .text

|| |— MMCEU_ functio 946

1 F— [mmcau_aes functions.o 947 1 212 bytes of CODE memory

|| — mrncad_aes_functions.phi 948

— k1 aes_security.h 9439 Errors: none
- asserth 450 Warnings: ncone
. . S 951 B
Elverviewl flashloader_lcuader” tower_bootloader flaxhlnaderl o ol 3
x|
= Debuglog Buid x
ChUsers\ad 741"\ Data'\ Projects\mcu-boot\targets\MKEOF2561 S\iar\tower_bootloader\debuc Errors 0, Warnings 0
- - - - — — - - o - -

Figure 10-6. MMCAU algorithm length
5. Extract functions from the address of mmcau_aes_init (0x2058 in this case) by the
MMCAU algorithm length (0x4BC) and save it. This is the MMCAU algorithm only.

See mmcau_function cm4.bin.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
122 NXP Semiconductors

Chapter 10 Creating a custom flash-resident bootloader

. __r--—_
=% Free Hex Editor Neo (Administrator) o m

File Edit View Select Operations Bookmarks MTFS Streams Tools History Window Help
i 'R) o K > .
G A-HEEE | [ZE 2
il || mmcau_function_cmd.bin x]
00000000 oo 01 02 03 04 05 06 O7F 08 09 0Oz Ob Oc O4d Oe O —:J
000oo0a0 l":--'-l 00 23 15 =0 50 £8 23 40 50 £B 23 50 24 0Oa 0°.#%.3Pp#EPzsD-. b
00000010 15 £4 7f 45 55 ea 14 &4 50 £8 23 50 24 02 15 £4 .0f EUé.dF=4P-. .0 c
00000020 T 05 2c 43 50 £8 23 50 54 ea 05 64 41 £8 23 40 [.,CPegPTé.dhe#l I
00000030 56 lc 04 2 e7 db 11 ek B3 00 50 £8 04 Oc df £B [..+;ﬁ.ﬁf.FE..EE
00000040 04 44 20 &0 00 20 42 e0 08 24 df £8 £fc 53 2c &0 .0 . Ba.gBeis, "
00000050 df £8 £f£8 43 df £& L& 53 Z2c 60 52 £& 20 40 d4f f£& BeeChees, "Fe fBe
0o00o00&a0 f4 53 2c 60 11 b E3 04 54 £f8 10 4c df f&8 =4 53 &5, " .f.Te.LBeas
00000070 2c 60 d4df £2 ed 43 24 &8 41 £f8 23 40 5k lc 11 eb , BEECShLe#A[. .8
[l 00000080 23 04 54 £2 10 4c df £8 cc 53 2c 60 df £8 cB 43 f.TE.LﬁEiS,‘EEEC
00aao090 24 68 41 £& 23 40 353k 1lc 11 ek B3 04 54 £E8 10 4c thie#f[..8f.Te.L
000000&a0 df £f8 b0 53 2c 60 d4df £8 kO 43 24 68 41 £& 23 40 Be®5, "Be°Cshie#f
000000k0 5b le 11 e B3 04 54 f£8 10 4e df £8 398 53 2c &0 [--Ef.Te.LB="S, ~
0000000 df £8 94 43 24 68 41 £2 23 40 5b lc 40 1c 0z 28 Be"CshRed@[.0. . {
00000040 ba db 30 bc 7O 47 30 b4 01 68 04 68 24 0z 14 £4 “ﬁkaGD'.h.h$..ﬁ
000000en T7f 44 54 ea 11 61 04 &8 24 02 14 £4 7L 04 21 43 [DTé.a.hs. .40 . 'C
000000£0 04 68 51 ea 04 &1 49 4c 21 &0 41 &2 44 &8 24 0Oa .hQé.aﬁL!‘AhDh$. -
1| 1] [¥
Ready Offset: 00000000 (07 Size: 0:000004bc (1,212): 118 KB Hex bytes, 16, Default AMSI OVR

Figure 10-7. mmcau_function_cm4.bin

6. Add the MMCAU algorithm to the Bootloader Configuration Area (BCA).

The MMCAU algorithm can be loaded to any accesible memory, such as RAM or
flash. However, you need to update the BCA in order to have a pointer to an
MMCAu set-up structure. See aeas_security.h for the structure definition.

uint32 t
uint32 t

aes init

uint32 t
uint32 t
uint32 t

tag;
length;

} mmcau function info t;

The location offset of the MMCAU algorithm is x020. The BCA start is 0x3CO0, and

the mmcau_function_info address is 0x3EQ. For decryption to work properly, the

aes_init start;
aes_encrypt_start;
aes _decrypt start;

//

'kcau!

0x

// number of bytes to copy, copied from the start of

mmcau_function_info Must contain valid values for all the fields in this structure. This
structure size is 20 bytes (0x14 bytes).

* Tag

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

123

How to generate MMCAU functions in binary image

The tag field must equal 'kcau'

Length

It is the total length of all MMCAU AES algorithms. See mmcau_aes_functions.1st.
It is 1212 bytes (0x4BC).

aes_init start

Memory location of the aes_init function, the address where
mmcau_function_cm4.bin 1S t0 be loaded. This function size is 0xD®6.

aes_encrypt start
Memory location of the aes_encrypt function. This function size is 0x1BO.
aes decrypt start
Memory location of the aes_decrypt function. This function size is Ox1BE.

The figure below contains information for each function.

F -
& bootloader - AR Embedded Workbench IDE I — = | B S
Eile Edit View Project Tools Window Help
= nog
DEEHE S | F72 YR E B ®P | B
i
Works x tower_bootloader.map |513r1JJ|:|_MKBUF256.s | mmcau_zes_ functions.c | mmeau.h fl =x
E] i 12786 Tmcau_aes decrypt 0x000022df Oxlbe Code Gk mmcau_aes functions.o [1] T‘ I
" —| 1277 mmcau_aes encrypt Ox0000212f Oxlb0 Code Gb mmcoau aes functions.o [1]
-7 1278 mmcau ages_init 0x00002059 0xdé Code Gb mmcau aes functions.o [1] i
1k 4 | 1 b
; Debug Log Build b 4 i
! Ready Errors 0, Warnings
L (I

Figure 10-8. Map file
7. Example - Add the MMCAU algorithm after the BCA.
* BCA 0x30 ~ Ox3DF
* MMCAU setup in BCA - 0x3EQ, which shows the start of mmcau_function_info
* Tag in mmcau_function info (OX410 ~ 0X413)

The values of 0x410 ~ 0x4"3 are 'kcau'
Length in mmcau_function_into (OX414 ~ OX417)
The value 1s 0x000004BC

® aes_init_ start in mmcau_function into (OX418 ~ 0X41b)
The value is 0x00000424 (0x410 + 0x14 (mmcau_function info Structure size))
® aes_encrypt_start in mmcau_function info (0X41C ~ OX41ﬂ

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
124 NXP Semiconductors

Chapter 10 Creating a custom flash-resident bootloader

The value is 0x000004fa (0x424 + 0xd6 (mmcau_aes_init function size))

® aes_decrypt_start n mmcau_function info (0X420 ~ OX423)

The value is 0x000006aa (0x4fa + 0x1b0 (mmcau_aes_encrypt function size))
e The MMCAU algorithm starts from flash address 0x424

File

Edit

QARG e D =)

T —
Free Hex Editor Meo (Administrator)

m@ﬂ

View

Select Operations

Bookmarks MNTFS Streams

Tools

History Window Help

ol || beca_mmcau_KB&0.bin H] I_II:}u::a_rnrr'n::aI.J_Ijl‘.'l.l:}ir'l] I_ItDWEF_bDDHDEdEF.biFI]
aooooosa0 o0 01 02 03 04 05 046 O7F 08 09 0Oa 0k Oc Od Oe O —
po000o00 | 6b 63 66 67 £f £f ff £f £f £ff ff £f f£f £f ff £f kcEQUViTvVVETVTY
pooooolo | £fF £F 10 27 ff £ff ff £ff ff £ff ff ff ff £ff ff £f §¥. TVVVETVETY
pooooo2o0 | 1o 04 00 00 2 £f £ff ff £f ff £ff ff £ff ff £ff ff £Ff 00 UVETVEY
00000030 | £f £f £f £f f£f £f ff £f £f £f £f ff f£f £f £f £f GiVToivevivivVey
po000040 | £f £f £f £f £f £ff ff £f £f £ff ff £ff fe £f ff £f GUTTVVTVVVEVRVET
aooooasa0 gb |63 61 75 bc 04 00 00 24 04 00 00 £a 04 00 EIEII i =
oooo00en ga O 00 00| 30 B4 00 23 15 =0 50 £28 23 40 50 f8 » 0°.#4.8Pp2(Fe
oooooo7o 23 50 2d 0a 15 £4 7L 45 S5 ea 14 64 50 £82 23 50 #P-. .0 EUé.dFesP |
aoooooen 2d 02 15 £4 7L 05 2c 43 S0 £8 23 50 54 ea 05 64 —..0 .,CPefPTE.d
aoooooan 41 f8 23 40 5b lc 04 2 e7 db 11 ek 83 00 350 f£B H.E#@[..ﬁ;ff.éf-P:a
000000a0 04 Oc 4df £2 04 44 20 &0 00 20 42 0 02 24 df f8 ..Bz.0 . Ba.tBo
0o00000k0 fo 53 2c 60 d4df £&2 £8 43 df £8 £8 53 2c 60 52 f8 iS5, "BesCBess, "Re
aooo00co 20 40 d4f £2 £4 53 2c &0 11 e 23 04 54 £8 10 4c RRe6S, " .Ef.TB.L
aooooodo df £f8 e4 53 2c 60 df f= ed 43 24 68 41 £8 23 40 BEEs, "BeaCshhedd
oooo00en Sk 1c 11 b 83 04 54 £B 10 4c 4f £2 ecc 53 2c &0 [..Ef.TE.LE.EiS,‘
Oooo000£a0 df £8 cB8 43 24 68 41 £B 23 40 5b lc 11 & 83 04 EEEC$hAE#@[--Ef.
1| 1] [¥
Ready Offset: 000000050 (80) Size: 000000520 (1,312): 1.28 KB Hex bytes, 16, Default ANSI OVR
= = =
Figure 10-9. MMCAU algorithm after BCA
MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 125

How to generate MMCAU functions in binary image

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
126 NXP Semiconductors

Chapter 11
Bootloader Reliable Update

11.1 Introduction

Reliable update is an optional but important feature of MCU bootloader. During a
firmware update, an unexpected loss of power or device disconnect from the host can
happen. This may result in a corrupted image or non-responsive devices. The reliable
update feature is designed to solve this problem.

11.2 Functional description

The reliable update works by dividing the device memory into two regions: the main
application region and backup application region. Only the backup application region is
allowed to be updated by the host. Once the backup region is updated with the new
firmware image, the reliable update process needs to be initiated . The MCU bootloader
here checks the validity and integrity of the new application image in the backup
region,and copies the new image to the main application region.

11.2.1 Bootloader workflow with reliable update

There are two methods to initiate reliable update process. The first method is to reset the
device to enter the bootloader startup process, causing MCU bootloader to detect the
presence of a valid image in the backup region, and kicking off the reliable update
process. The second method is by issuing a reliable-update command from host using
BLHOST.exe while the bootloader is running on the device.

Using the first method, the reliable update process starts before all interfaces are
configured. The figure below shows the call to reliable update process during startup flow
of the MCU bootloader.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 127

Functional description

Enter Bootloader

Init hardware

|

Init flash driver

I

Load user-config
data

Configure clocks
Init microseconds
driver,memory &

property interface

Init
UARTn,CANN,SPI
nl2Cn, USB

Is BootPin
asserted?

Is user
application
valid?

Yes

Disable Timeout

Use the enabledPeripherals field
in user config data to enable(or
not) UARTnN (or CANn or SPIn or

Shutdown all

12Cn or USB)

Yes

Is
direct boot
valid?

No
v

Enable Timeout
Check and enable
Timeout value

Jump to user

peripherals

application

Yes

IS
Timeout Check
Enabled and
Has Timeout
Occurred?,

Has
USB entered
Interrupt state?

No

Ping packet received on

Was a
Ping packet
received on
SPIn?

Was a
Ping packet
received on
12Cn?

No

Was a
Ping packet
received on
UARTN?

detection

A

Shutdown unused
Peipherals

A

.

Enter Bootloader
State machine

Figure 11-1. Bootloader workflow with reliable update

The second method occurs while the bootloader state machine is running. The reliable
update process is triggered when the host sends the reliable update bootloader command.

11.2.2 Reliable update implementation types

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

128

NXP Semiconductors

4
Chapter 11 Bootloader Reliable Update

There are two kinds of reliable update implementations. They can be classified as either
the software version or hardware version. The main differences between software and
hardware implementation are listed below:

Table 11-1. Software and hardware implementation

ltem Software implementation Hardware implementation
Applicable device All Kinetis devices Devices with flash swap support
Device memory distribution Bootloader + main application + backup |Main bootloader + main application +
application backup bootloader + backup application
Backup application address Flexible Fixed
The ability to keep two applications No Yes

The most obvious difference is that the software implementation copies the backup
application to the main application region, while hardware implementation swaps two
half flash blocks to make the backup application become the main application. The
detailed differences will be reflected in Section 12.2.3, “Reliable update flow”.

See Section 12.3, “Configuration macros” on how to enable different implementations of
the reliable update.

11.2.3 Reliable update flow

This chapter describes in detail both the software and hardware implementation of the
reliable update process.

11.2.3.1 Software implementation

For software implementation, the backup application address is not fixed. Therefore, the
application address must be specified. There are two ways for the bootloader to receive
the backup application address. If the reliable update process is issued by the host, the
bootloader receives the specified application address from the host itself. Otherwise, the
bootloader uses the predefined application address.

After the reliable update process starts, the first thing for the bootloader is to check the
backup application region . This is to determine if the reliable update feature is active by
checking:

1. If the application pointer in the backup application is valid.
2. If the Bootloader Configuration Area is enabled.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 129

A
Functional description

If above conditions are not met, the bootloader exits the reliable update process
immediately. Else, the bootloader continues to validate the integrity of the backup
application by checking: the following

1. Is crcStartAddress is equal to the start address of the vector table of the application.

2. Is crcByteCount (considered as the size of backup application) is less than or equal to
the maximum allowed backup application size.

3. Is the calculated CRC checksum is equal to the checksum provided in backup
application, given that the above conditions are met.

If the backup application is determined to be valid, the remaining process is described in
the following figure.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
130 NXP Semiconductors

Start reliable
update process

Get backup application

Yesy address from host

No

¥
Get default backup Erase Main application
application address region

Reliable update

Is
Backup
application
Valid?

Yes
Yes

No No
h 4 L
Update status Update status
To To
Inactive BackupApplicationInvalid

Exit reliable

update process

Chapter 11 Bootloader Reliable Update

Copy backup
application to
Erase Y e 5 — i A
Main application
2
ucceaded region
No
———No- Copy
ucceeded?
Yes

Is
application
Valid?

4——No

Yes

Y

Erase backup
application

Update status
to
Fail

Update status
to
Success

Figure 11-2. Reliable update software implementation workflow

NOTE

Not all details are shown in the above figure.

Once the main application region is updated, the bootloader must erase the backup
application region before exiting the reliable update process. This prevents the bootloader
to update the main application image on subsequent boots.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

131

Functional description

11.2.3.2 Hardware implementation

For the hardware implementation, the backup application address is fixed and predefined
in the bootloader, but a swap indicator address is required to swap the flash system. There
are two ways for the bootloader to get the swap indicator address. If the reliable update
process is issued by the host, the bootloader receives the specified swap indicator address
from the host itself. Otherwise, the bootloader tries to receive the swap indicator address
from the IFR, if the swap system is in the ready state.

The top level behavior of the reliable update process depends on how the bootloader gets
the swap indicator address:

* If the reliable update process is issued by the host, the bootloader does the same thing
as software implementation until the validity of the backup application is verified.

* If the reliable update process is from the bootloader startup sequence, the bootloader
first checks the main application. If the main application is valid, then the bootloader
exits the reliable update process immediately, and jumps to the main application.
Otherwise, the bootloader receives the swap indicator address from IFR, then
continues to validate the integrity of the backup application as the software
implementation.

NOTE
It is expected that the user erases the main application region
when reliable update process is intended with the next startup
sequence. Otherwise, the reliable update process assumes no
update is required, exits the process, and boots the image from
the main application region

If the backup application is valid, see the remaining operations in the following figure.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
132 NXP Semiconductors

Start reliable
updale process

Yes

Get Swap indicator
address from host

Chapter 11 Bootloader Reliable Update

Is Is
o Is
Gel Swap indicator ' Backup Y Backup ¥ Erase backup
Mo address from IFR Rehﬂew:gdate Yoo application o8 bootloader #5* bootloader region
Valid? rvalid?
No No
Is L 4 h 4
Main Update status To Update status To Erase
application Inactive BackupApplicationlnvalid ucceeded
nvalid?, [
Mo Yes
 J
Copy bootlvader to
Update status To BEEILID bootloader
No SwapSystemMotReady reglon
l h ¥ b4
» - Is
Update status To .| Exitreliable Update status to et o o Con
StillinMainApplication | update process SwaplndicatorAddrassinvalid Sw:rﬂ:;d‘::tcr 35 ucceepé;ed"
F 'y
Yes
Swap flash system using
swap indicator address
Update status to o
Success ‘_‘r’as
No
Swap
Update status to ucoeeded
Fail
o
Update status to P v

BackupBootloaderNotReady [

Figure 11-3. Reliable update hardware implementation workflow

NOTE

Not all details are shown in the above figure.

Once the flash system is swapped (upper flash block becomes lower flash block), the
bootloader naturally treats the backup application as the main application. In the
hardware implementation, after the swap, it is not necessary to erase the image from the

backup region.

11.3 Configuration macros

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

133

A
Get property

The configuration macros defined in bootloader_config.h are used to enable the reliable
update feature. For MCU bootloader v2.0.0, the feature is only enabled in the K65
Freedom and Tower flash target builds. All code added for this feature should be enabled
only if the macros are defined. Currently, these macros are defined as:

e BLL FEATURE RELIABLE UPDATE — Used to enable or disable the reliable
update feature.

 BL FEATURE_HARDWARE _SWAP_UPDATE — Used to switch to the hardware
or software implementation of reliable update.

* BL_BACKUP_APP_START - Used to define the start address of the backup
application if the reliable update feature is enabled.

11.4 Get property

A property has been added to get the state of reliable update. To implement this, a
property member called reliableUpdateStatus has been added to propertyStore.
Additionally, eight new status codes have been defined for the reliable update status. See
the following table for details.

Table 11-2. Reliable update status error codes

Status Value Description
kStatus_ReliableUpdateSuccess 10600 Reliable update operation succeeded.
kStatus_ReliableUpdateFail 10601 Reliable update operation failed.
kStatus_ReliableUpdatelnactive 10602 Reliable update feature is inactive.
kStatus_ReliableUpdateBackupApplicati | 10603 Backup application is invalid.
onlnvalid
kStatus_ReliableUpdateStilllnMainApplic | 10604 (For hardware implementation only) The
ation bootloader still jumps to the original main

application.
kStatus_ReliableUpdateSwapSystemNot | 10605 (For hardware implementation only)
Ready Failed to get the swap indicator address
from IFR due to the swap system not
being ready.
kStatus_ReliableUpdateBackupBootload | 10606 (For hardware implementation only)
erNotReady Failed in copying the main application
image to the backup application region.
kStatus_ReliableUpdateSwaplndicatorA {10607 (For hardware implementation only)
ddresslinvalid Swap indicator address is invalid for the
swap system.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
134 NXP Semiconductors

Chapter 12
Appendix A: status and error codes

Status and error codes are grouped by component. Each component that defines errors
has a group number. This expression is used to construct a status code value.

status_code = (group * 100) + code
Component group numbers are listed in this table.

Table 12-1. Component group numbers

Group Component
0 Generic errors
1 Flash driver
4 QuadSPI driver
5 OTFAD driver
100 Bootloader
101 SB loader
102 Memory interface
103 Property store
104 CRC checker
105 Packetizer
106 Reliable update

The following table lists all of the error and status codes.

Table 12-2. Status and error codes

Name Value Description

kStatus_Success

Operation succeeded without error.

kStatus_Fail

Operation failed with a generic error.

kStatus_ReadOnly

Property cannot be changed because it is read-only.

kStatus_OutOfRange

Requested value is out of range.

kStatus_InvalidArgument

The requested command's argument is undefined.

kStatus_Timeout

alh|lOWIN|=|O

A timeout occurred.

Table continues on the next page...

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

135

Table 12-2. Status and error codes (continued)

Name Value Description
kStatus_NoTransferlnProgress 6 The current transfer status is idle.
kStatus_FlashSizeError 100 Not used.
kStatus_FlashAlignmentError 101 Address or length does not meet required alignment.
kStatus_FlashAddressError 102 Address or length is outside addressable memory.
kStatus_FlashAccessError 103 The FTFA_FSTAT[ACCERR] bit is set.
kStatus_FlashProtectionViolation 104 The FTFA_FSTAT[FPVIOL] bit is set.
kStatus_FlashCommandFailure 105 The FTFA_FSTAT[MGSTATO] bit is set.
kStatus_FlashUnknownProperty 106 Unknown Flash property.
kStatus_FlashEraseKeyError 107 Error in erasing the key.
kStatus_FlashRegionOnExecuteOnly 108 The region is execute only region.
kStatus_FlashAPINotSupported 115 Unsupported Flash APl is called.
kStatus_QspiFlashSizeError 400 Error in QuadSPI flash size.
kStatus_QspiFlashAlignmentError 401 Error in QuadSPI flash alignment.
kStatus_QspiFlashAddressError 402 Error in QuadSPI flash address.
kStatus_QspiFlashCommandFailure 403 QuadSPI flash command failure.
kStatus_QspiFlashUnknownProperty 404 Unknown QuadSPI flash property.
kStatus_QspiNotConfigured 405 QuadSPI not configured.
kStatus_QspiCommandNotSupported 406 QuadSPI command not supported.
kStatus_QspiCommandTimeout 407 QuadSPI command timed out.
kStatus_QspiWriteFailure 408 QuadSPI write failure.
kStatusQspiModuleBusy 409 QuadSPI module is busy.
kStatus_OtfadSecurityViolation 500 Security violation in OTFAD module.
kStatus_OtfadLogicallyDisabled 501 OTFAD module is logically disabled.
kStatus_OtfadinvalidKey 502 The key is invalid.
kStatus_OtfadInvalidKeyBlob 503 The key blob is invalid.
kStatus_UnknownCommand 10000 The requested command value is undefined.
kStatus_SecurityViolation 10001 Command is disallowed because flash security is

enabled.
kStatus_AbortDataPhase 10002 Abort the data phase early.
kStatus_Ping 10003 Internal: Received ping during command phase.
kStatus_NoResponse 10004 There is no response for the command.
kStatus_NoResponseExpected 10005 There is no response expected for the command.
kStatusRomLdrSectionOverrun 10100 ROM SB loader section overrun.
kStatusRomLdrSignature 10101 ROM SB loader incorrect signature.
kStatusRomLdrSectionLength 10102 ROM SB loader incorrect section length.
kStatusRomLdrUnencryptedOnly 10103 ROM SB loader does not support plain text image.
kStatusRomLdrEOFReached 10104 ROM SB loader EOF reached.
kStatusRomLdrChecksum 10105 ROM SB loader checksum error.
kStatusRomLdrCrc32Error 10106 ROM SB loader CRC32 error.
kStatusRomLdrUnknownCommand 10107 ROM SB loader unknown command.

Table continues on the next page...

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

136 NXP Semiconductors

Chapter 12 Appendix A: status and error codes

Table 12-2. Status and error codes (continued)

ddresslinvalid

Name Value Description
kStatusRomLdrldNotFound 10108 ROM SB loader ID not found.
kStatusRomLdrDataUnderrun 10109 ROM SB loader data underrun.
kStatusRomLdrdJumpReturned 10110 ROM SB loader return from jump command occurred.
kStatusRomLdrCallFailed 10111 ROM SB loader call command failed.
kStatusRomLdrKeyNotFound 10112 ROM SB loader key not found.
kStatusRomLdrSecureOnly 10113 ROM SB loader security state is secured only.
kStatusRomLdrResetReturned 10114 ROM SB loader return from reset occurred.
kStatusMemoryRangelnvalid 10200 Memory range conflicts with a protected region.
kStatusMemoryReadFailed 10201 Failed to read from memory range.
kStatusMemoryWriteFailed 10202 Failed to write to memory range.
kStatus_UnknownProperty 10300 The requested property value is undefined.
kStatus_ReadOnlyProperty 10301 The requested property value cannot be written.
kStatus_InvalidPropertyValue 10302 The specified property value is invalid.
kStatus_AppCrcCheckPassed 10400 CRC check passed.
kStatus_AppCrcCheckFailed 10401 CRC check failed.
kStatus_AppCrcChecklnactive 10402 CRC checker is not enabled.
kStatus_AppCrcChecklinvalid 10403 Invalid CRC checker due to blank part of BCA not

present.
kStatus_AppCrcCheckOutOfRange 10404 CRC check is valid but addresses are out of range.
kStatus_NoPingResponse 10500 Packetizer did not receive any response for the ping
packet.
kStatus_InvalidPacketType 10501 Packet type is invalid.
kStatus_InvalidCRC 10502 Invalid CRC in the packet.
kStatus_NoCommandResponse 10503 No response received for the command.
kStatus_ReliableUpdateSuccess 10600 Reliable update process completed successfully.
kStatus_ReliableUpdateFail 10601 Reliable update process failed.
kStatus_ReliableUpdatelnacive 10602 Reliable update feature is inactive.
kStatus_ReliableUpdateBackupApplicati | 10603 Backup application image is invalid.
onlnvalid
kStatus_ReliableUpdateStilllnMainApplic | 10604 Next boot will still be with Main Application image.
ation
kStatus_ReliableUpdateSwapSystemNo 10605 Cannot swap flash by default because swap system is not
tReady ready.
kStatus_ReliableUpdateBackupBootload | 10606 Cannot swap flash because there is no valid backup
erNotReady bootloader image.
kStatus_ReliableUpdateSwaplIndicatorA |10607 Cannot swap flash because provided swap indicator is

invalid.

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

NXP Semiconductors

137

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
138 NXP Semiconductors

Chapter 13
Appendix B: GetProperty and SetProperty

commands

Properties are the defined units of data that can be accessed with the GetProperty or
SetProperty commands. Properties may be read-only or read-write. All read-write
properties are 32-bit integers, so that they can easily be carried in a command parameter.
Not all properties are available on all platforms. If a property is not available,
GetProperty and SetProperty return kStatus_UnknownProperty.

The tag values shown in the table below are used with the GetProperty and SetProperty

commands to query information about the bootloader.

Table 13-1. Tag values GetProperty and SetProperty

Name Writable Tag value Size Description
CurrentVersion no 0x01 4 The current bootloader
version.
AvailablePeripherals no 0x02 4 The set of peripherals
supported on this chip.
FlashStartAddress no 0x03 4 Start address of
program flash.
FlashSizelnBytes no 0x04 4 Program flash size in
bytes.
FlashSectorSize no 0x05 4 The size of one sector
of program flash in
bytes. This is the
minimum erase size.
FlashBlockCount no 0x06 4 Number of blocks in
the flash array.
AvailableCommands no 0x07 4 The set of commands
supported by the
bootloader.
CRCCheckStatus no 0x08 4 The status of the
application CRC check.
Reserved n/a 0x09 n/a

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018

Table continues on the next page...

NXP Semiconductors

139

Table 13-1. Tag values GetProperty and SetProperty (continued)

Name Writable Tag value Size Description

VerifyWrites yes 0x0a 4 Controls whether the
bootloader verifies
writes to flash. The
VerifyWrites feature is
enabled by default.

0 - No verification is
done.

1 - Enable verification.

MaxPacketSize no 0x0b 4 Maximum supported
packet size for the
currently active
peripheral interface.

ReservedRegions no 0x0c n List of memory regions
reserved by the
bootloader. Returned
as value pairs (<start-
address-of-
region>,<end-address-
of-region>).
¢ |f HasDataPhase
flag is not set,
then the
Response packet
parameter count
indicates number
of pairs.
¢ |If HasDataPhase
flag is set, then
the second
parameter is the
number of bytes

in the data

phase.
RAMStartAddress no 0x0e 4 Start address of RAM.
RAMSizelnBytes no 0xOf 4 RAM size in bytes.
SystemDeviceld no 0x10 4 Value of the Kinetis

System Device
Identification register.

FlashSecurityState no 0x11 4 Indicates whether
Flash security is
enabled.

0 - Flash security is
disabled.

1 - Flash security is
enabled.

UniqueDeviceld no 0x12 n Unique device
identification, value of
Kinetis Unique
Identification registers

Table continues on the next page...

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
140 NXP Semiconductors

4
Chapter 13 Appendix B: GetProperty and SetProperty commands

Table 13-1. Tag values GetProperty and SetProperty (continued)

Name Writable Tag value Size Description

(16 for K series
devices, 12 for KL
series devices)

FlashFacSupport no 0x13 4 FAC (Flash Access
Control) support flag

0 - FAC not supported
1 - FAC supported

FlashAccessSegmentSi [no 0x14 4 The size of 1 segment
ze of flash in bytes.
FlashAccessSegmentC |no 0x15 4 FAC segment count
ount (The count of flash

access segments
within the flash model.)

FlashReadMargin yes 0x16 4 The margin level
setting for flash erase
and program verify

commands.

O=Normal

1=User

2=Factory
QspilnitStatus no ox17 4 The result of the QSPI

or OTFAD initialization

process.

405 - QSPl is not

initialized

0 - QSPI is initialized
TargetVersion no 0x18 4 Target build version

number.
ExternalMemoryAttribut |no 0x19 24 List of attributes
es supported by the

specified memory Id
(O=Internal Flash,
1=QuadSpi0). See
description for the
return value in the
section
ExternalMemoryAttribut
es Property.

Ox1a 4 Result of last Reliable
Update operation. See
Table 12-2.

ReliableUpdateStatus

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 141

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
142 NXP Semiconductors

Chapter 14
Revision history

14.1 Revision History

This table shows the revision history of the document.

Table 14-1. Revision history

Revision number Date Substantive changes
0 04/2016 Kinetis Bootloader v2.0.0 release
1 05/2018 MCU Bootloader v2.5.0 release
2 09/2018 MCU Bootloader v2.6.0 release

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
NXP Semiconductors 143

Revision History

MCU Bootloader v2.6.0 Reference Manual, Rev. 2, 08/2018
144 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to use
NXP products. There are no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits based on the information in this document. NXP reserves the right to
make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does NXP assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets
and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application
by customer’s technical experts. NXP does not convey any license under its patent rights nor the
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified
vulnerabilities. Customers are responsible for the design and operation of their applications and
products to reduce the effect of these vulnerabilities on customer's applications and products, and
NXP accepts no liability for any vulnerability that is discovered. Customers should implement
appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, 12C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure,
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS
are trademarks of NXP B.V. All other product or service names are the property of their respective
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,
CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,
ULINKpro, pVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the
Power and Power.org logos and related marks are trademarks and service marks licensed by
Power.org.

©2016-2018 NXP B.V.

Document Number MCUBOOTRM
Revision 2, 09/2018

r
4\

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	MCU Bootloader v2.6.0 Reference Manual
	Chapter 1​: Introduction
	Introduction
	Terminology
	Block diagram
	Features supported
	Components supported

	Chapter 2​: Functional description
	Introduction
	Memory map
	The MCU Bootloader Configuration Area (BCA)
	Start-up process
	Clock configuration
	Bootloader entry point
	Application integrity check
	MCU bootloader flow with integrity checker
	Bootloader initialization
	Staying in or leaving bootloader

	Chapter 3​: MCU bootloader protocol
	Introduction
	Command with no data phase
	Command with incoming data phase
	Command with outgoing data phase

	Chapter 4​: Bootloader packet types
	Introduction
	Ping packet
	Ping Response packet
	Framing packet
	CRC16 algorithm
	Command packet
	Response packet

	Chapter 5​: MCU bootloader command API
	Introduction
	GetProperty command
	SetProperty command
	FlashEraseAll command
	FlashEraseRegion command
	FlashEraseAllUnsecure command
	ReadMemory command
	WriteMemory command
	FillMemory command
	FlashSecurityDisable command
	Execute command
	Call command
	Reset command
	FlashProgramOnce command
	FlashReadOnce command
	FlashReadResource command
	Configure Memory command
	ReceiveSBFile command
	ReliableUpdate command

	Chapter 6​: Supported peripherals
	Introduction
	I2C peripheral
	Performance numbers for I2C

	SPI Peripheral
	Performance Numbers for SPI

	UART peripheral
	Performance Numbers for UART

	USB HID Peripheral
	USB peripheral
	FlexCAN Peripheral
	QuadSPI Peripheral

	Chapter 7​: Peripheral interfaces
	Introduction
	Abstract control interface
	Abstract byte interface
	Abstract packet interface
	Framing packetizer
	USB HID packetizer
	USB HID packetizer
	Command/data processor

	Chapter 8​: Memory interface
	Abstract interface
	Flash driver interface
	Low-level flash driver

	Chapter 9​: MCU bootloader porting
	Introduction
	Choosing a starting point
	Preliminary porting tasks
	Download MCUXpresso SDK
	Copy the closest match
	Provide device startup file (vector table)
	Clean up the IAR project
	Bootloader peripherals

	Primary porting tasks
	Bootloader peripherals
	Supported peripherals
	Peripheral initialization
	Clock initialization

	Bootloader configuration
	Bootloader memory map configuration

	Chapter 10​: Creating a custom flash-resident bootloader
	Introduction
	Where to start
	Flash-resident bootloader source tree
	Modifying source files
	Example
	Modifying a peripheral configuration macro
	How to generate MMCAU functions in binary image

	Chapter 11​: Bootloader Reliable Update
	Introduction
	Functional description
	Bootloader workflow with reliable update
	Reliable update implementation types
	Reliable update flow
	Software implementation
	Hardware implementation

	Configuration macros
	Get property

	Chapter 12​: Appendix A: status and error codes
	Chapter 13​: Appendix B: GetProperty and SetProperty commands
	Chapter 14​: Revision history
	Revision History

