NXP Semiconductors
User's Guide

Document Number: MCUXSDKGSUG
Rev. 8, 05/2018

Getting Started with MCUXpresso

SDK

1 Overview

The MCUXpresso Software Development Kit (SDK) provides
comprehensive software support for Kinetis and LPC
Microcontrollers. The MCUXpresso SDK includes a flexible
set of peripheral drivers designed to speed up and simplify
development of embedded applications. Along with the
peripheral drivers, the MCUXpresso SDK provides an
extensive and rich set of example applications covering
everything from basic peripheral use case examples to full
demo applications. The MCUXpresso SDK contains
FreeRTOS, a USB host and device stack, and various other
middleware to support rapid development.

For supported toolchain versions, see the MCUXpresso SDK
Release Notes (document MCUXSDKRN).

For the latest version of this and other MCUXpresso SDK
documents, see the MCUXpresso SDK homepage
MCUXpresso-SDK: Software Development Kit for
MCUXpresso.

10
11

12

Contents

OVEIVIEW.....oooiieieeeeeeeeeiiiee eeeeeeeeeeins

MCUXpresso SDK board support
fOldersS....oveeieieieiieeeecce

Run a demo using MCUXpresso IDE...

Run a demo application using IAR.......

Run a demo using Keil® MDK/

HUVISION. ..ttt
Run a demo using Arm® GCC.............
MCUXpresso Config Tools..................

MCUXpresso IDE New Project

WiZArd. ..o

Appendix A - How to determine COM

Appendix C - Updating debugger

§ 18001002) TN

Revision hiStory......c..cccccevveveecie e

h
P

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

A ————
MCUXpresso SDK board support folders

Application Code

Stacks and Middleware
(Connectivity, Security, Board Support
DMA, Filesystem, etc,)

Peripheral Drivers

CMSIS-CORE and CMSIS-DSP
(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSP Library)

Microcontroller Hardware

Figure 1. MCUXpresso SDK layers

2 MCUXpresso SDK board support folders

MCUXpresso SDK board support provides example applications for NXP development and evaluation boards for Arm®
Cortex®-M cores, including Freedom, Tower System, and LPCXpresso boards. Board support packages are found inside of
the top level boards folder, and each supported board has its own folder (an MCUXpresso SDK package can support multiple
boards). Within each <board_name> folder, there are various sub-folders to classify the type of examples they contain. These
include (but are not limited to):

* cmsis_driver_examples: Simple applications intended to concisely illustrate how to use CMSIS drivers.

* demo_apps: Full-featured applications intended to highlight key functionality and use cases of the target MCU. These
applications typically use multiple MCU peripherals and may leverage stacks and middleware.

 driver_examples: Simple applications intended to concisely illustrate how to use the MCUXpresso SDK’s peripheral
drivers for a single use case. These applications typically only use a single peripheral, but there are cases where
multiple are used (for example, SPI conversion using DMA).

* emwin_examples: Applications that use the emWin GUI widgets.

* rtos_examples: Basic FreeRTOS™ OS examples showcasing the use of various RTOS objects (semaphores, queues,
and so on) and interfacing with the MCUXpresso SDK’s RTOS drivers

* usb_examples: Applications that use the USB host/device/OTG stack.

2.1 Example application structure

This section describes how the various types of example applications interact with the other components in the MCUXpresso
SDK. To get a comprehensive understanding of all MCUXpresso SDK components and folder structure, see the
MCUXpresso SDK API Reference Manual document (MCUXSDKAPIRM).

Each <board_name> folder in the boards directory contains a comprehensive set of examples that are relevant to that specific
piece of hardware. Although we use the hello_world example (part of the demo_apps folder), the same general rules apply to
any type of example in the <board_name> folder.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018

2 NXP Semiconductors

MCUXpresso SDK board support folders

In the hello_world application folder you see the following contents:

armgcc
iar Toolchain folders: project and linkerfiles
mdk
board.c _

Board macro definitions (LEDs, buttons, etc)
board.h

clock_config.c

]—— Application-specific clock configuration

clock_config.h

. example.xml = Projectdescription file for PG

. demo_name.bin — Pre-compiled application

demo_name.c = Application main source file

demo_name.xml = project definition file for MCUXpresso IDE and PG

pin_mux.c
}— Application-specific pin mux

pin_mux.h
readme.txt ——p Descriptionand instructions forrunning

Figure 2. Application folder structure

All files in the application folder are specific to that example, so it is easy to copy and paste an existing example to start
developing a custom application based on a project provided in the MCUXpresso SDK.

2.2 Locating example application source files

When opening an example application in any of the supported IDEs (except MCUXpresso IDE), a variety of source files are
referenced. The MCUXpresso SDK devices folder is the central component to all example applications. It means the
examples reference the same source files and, if one of these files is modified, it could potentially impact the behavior of

other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file and a few other things.
devices/<device_name>/cmsis_drivers: All the CMSIS drivers for your specific MCU.
devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU.
devices/<device_name>/<tool_name>: Toolchain-specific startup code. Vector table definitions are here.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018

NXP Semiconductors 3

A ————
Run a demo using MCUXpresso IDE

* devices/<device_name>/utilities: Items such as the debug console that are used by many of the example applications.
* devices/<devices_name>/project template

For examples containing middleware/stacks or an RTOS, there are references to the appropriate source code. Middleware
source files are located in the middleware folder and RTOSes are in the rfos folder. Again, the core files of each of these are
shared, so modifying them could have potential impacts on other projects that depend on them.

3 Run a demo using MCUXpresso IDE

NOTE
Ensure that the MCUXpresso IDE toolchain is included when generating the
MCUXpresso SDK Package.

This section describes the steps required to configure MCUXpresso IDE v10.2.0 to build, run, and debug example
applications. The hello_world demo application targeted for the FRDM-K64F Freedom hardware platform is used as an
example, though these steps can be applied to any example application in the MCUXpresso SDK.

3.1 Select the workspace location

Every time MCUXpresso IDE launches, it prompts the user to select a workspace location. MCUXpresso IDE is built on top
of Eclipse, which uses workspace to store information about its current configuration, and in some use cases, source files for
the projects in the workspace. The location of the workspace can be anywhere, but it is recommended that the workspace be
outside of the MCUXpresso SDK tree.

3.2 Build an example application

To build an example application, follow these steps.

1. Drag and drop the SDK zip file into the “Installed SDKs” view to install an SDK. In the window that appears, click the
“OK” button and wait until the import has finished.

[Installed SDKs 52 [Properties &) Console |®) Problems [] Memory 2 Instruction”

'V Installed SDKs

To install an 50K, simply drag and drop an SDK (zip file/folder) into the 'Installed SDKs' view.

Mame Wersion Location

Figure 3. Install an SDK
2. On the Quickstart Panel, click “Import SDK example(s)...”.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018

4 NXP Semiconductors

Run a demo using MCUXpresso IDE

¥ Quickstart Panel ®- Global Variables = Variables ® Breakpoints £ Outline Sl

A MCUXpresso IDE - Quickstart Panel

— Mo project selected

~ Create or import a project

L Import SDK example(s)...

) Import project{s) from file system.

- Build your project
L
g
J.
~ Debug your project BE-E-H~

~ Miscellaneous

& Quick Settings>>

" Build all projects [1

Figure 4. Import an SDK example

3. In the window that appears, expand the “K6x” folder and select “MK64FN1MOxxx12” . Then, select “frdmk64f” and
click the “Next” button.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018

NXP Semiconductors 5

Run a demo using MCUXpresso IDE

. G L
x d e .
® Importing project(s) for device: MK64FN1MOxxx12 using board: FRDM-K64F
. Board and/or Device selection page
- SDK MCUs Available boards P %
MCUs from installed SDKs Please select an available board for your project.
NXP MEGAFNTM oot 2 |—Supper‘tecl boards for device: MKG64FN 1MOox12
~ Kbx
MKBAFN1MDwooc1 2

TEAT

P =)
frdmkB4f mult2b

frdmkGaf

frdmk64f om13588

PTG s

e g

frdmké4f agm4

Selected Device: MK64FN1MOxxx12 using board: FRDM-K64F

SDKs for selected MCU
Target Core: cortex-md Name SDK Ve... Manifes.. Location
Description: #SDK_2x_FRDM-K6 2.3.1 320 L. <Default Location>\SD}
K64_120: Kinetis ® K64-120 MHz, 256KB SRAM
@

Figure 5. Select FRDM-K64F board
4. Expand the “demo_apps” folder and select “hello_world”. Then, click the "Next” button.

Cancel

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018

NXP Semiconductors

SDK Import Wiza
X po

Run a demo using MCUXpresso IDE

—Er_)?-ll

(1, The source from the SDK will be copied inte the workspace.

If you want to use linked files, please unzip the 'SDE_2.x_FROM-KB4F' SDE.

MO =

. Import projects

Project name prefix frdmkGaf &z

Use default location

Project Type

@ C Project C++ Project C Static Library

Examples

Project name suffix:

Location: | C:\Users\b59906%\Documents\MCUXpressolDE_10.0.0_299_beta\workspacehfrdmbbdf_

C++ Static Library

»

Browse...
Project Options

Copy sources

ta| £ M %| BB

cmsis_driver_examples

wifi_gca
wolfss]
adcl6_low_power

(]
]
(]
]
(]
]
]
a
]

I A 00 A i 00D DO DOD DOD

OWer_imanager

p
power_mode_switch
rtc_func

m

»

Version

m

4 (L

®

T

Mext = |

Finish || Cancel

Figure 6. Select "hello_world"

5. Ensure the option “Redlib: Use floating point version of printf” is selected if the cases' print floating point numbers are
on the terminal for demo applications such as adc_basic, adc_burst, adc_dma, and adc_interrupt. Otherwise, it is not

necessary to select this option. Then, click the “Finish” button.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018

NXP Semiconductors

Run a demo using MCUXpresso IDE

B0 SDK Import Wizard W

ESSEN=x

Moo=

Set library type (and hosting variant) Redlib (semihost-nf) -

. Advanced Settings

+ C/C++ Library Settings

[]iRedlib: Use floating point version of printf MewlibMNano: Use floating point version of printf

edlib: Use character rather than string based printf MewlibMano: Use floating point version of scanf
Redirect SDK "PRINTF" to C library "printf”
["] Redirect printf/scanf to ITM
["] Redirect printf/scanf to UART

+ Memory Configuration

Mermory details

Type Marne Alias Location Size Driver

Flash PROGRAM_FLASH Flash Oedd 0100000 FTFE_4K.cfx
RAM SRAM_UPPER RAM 020000000 030000 -

- Edit...
RAM SRAM_LOWER RAM2 O 0000 010000
RAM FLEX_RAM RAM3 014000000 01000

+ Hardware settings

Set Floating Point type ’pr; (Hard4ABI) v]

+ MCU C Compiler

Language standard [Compilerdefault v]

@ o

Figure 7. Select "User floating print version of printf"

3.3 Run an example application

For more information on debug probe support in the MCUXpresso IDE v10.2.0, visit community.nxp.com.
To download and run the application, perform these steps:

1. Reference the table in Appendix B to determine the debug interface that comes loaded on your specific hardware
platform. For LPCXpresso boards, install the DFU jumper for the debug probe, then connect the debug probe USB
connector.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018

8 NXP Semiconductors

https://community.nxp.com/message/630901

4
Run a demo using MCUXpresso IDE

* For boards with a P&E Micro interface, visit www.pemicro.com/support/downloads_find.cfm and download and
install the P&E Micro Hardware Interface Drivers package.

* For the MRB-KWO01 board, visit www.nxp.com/USB2SER to download the serial driver. This board does not
support the OpenSDA. Therefore, an external debug probe (such as a J-Link) is required. The steps below
referencing the OpenSDA do not apply because there is only a single USB connector for the serial output.

* If using J-Link with either a standalone debug pod or OpenSDA, install the J-Link software (drivers and utilities)
from www.segger.com/jlink-software.html.

¢ For boards with the OSJTAG interface, install the driver from www .keil.com/download/docs/408.

2. Connect the development platform to your PC via USB cable.
3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see Appendix A). Configure the terminal with these settings:
a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable
in board.h file)
b. No parity
c. 8 data bits
d. 1 stop bit

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 9

A ————
Run a demo using MCUXpresso IDE

(=) Session | Basic options for your PuTTY session |
- Logging Specify the destination you want to connect to

Load, save or delete a stored session

Translalion Saved Sessions
Selection Debug

= Connection s E

#- SSH
Senal Close window on ext
(JAways (Never @ Onlyon clean exi
oot [b Open | [Cancel |

Figure 8. Terminal (PuTTY) configurations
4. On the Quickstart Panel, click on "Debug 'frdmk64f demo_apps_hello_world’ [Debug]”.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018

10 NXP Semiconductors

4
Run a demo using MCUXpresso IDE

Cortex
(U Quickstart Panel #=Global Vanables ==Variables ® Breakpaints E= Outline == ::IJethI;
e]
- MCUXpresso IDE - Quickstart Panel Your ir
=E! project frdmkadf_hello_world [Debug] require
L T -
= Create or import a project
RArap {1 Installed SDKs &2 Properties B Cor
B new project..
= Import SDK exarmpleds)
L \mport project(s) from file system... i Installed SDKs
+ Build your project Ta install an SDK, simply drag and drop an 5C
ey % Build Name SDK
°C) [P, [4 SDK_2.x_FRDM-K64F 230
~ Debug your project BE-E-H-
i Debug B Debug using LinkServer probes (CTRL+SHIFT+L)
B Attach to a running target using LinkServer (CTRL+ALT+L)

B Program flash using LinkSenver
* Miscellaneous B Erase flash using LinkServer

® Edit project settings

Figure 9. Debug "hello_world" case
5. The first time you debug a project, the Debug Emulator Selection Dialog is displayed, showing all supported probes
that are attached to your computer. Select the probe through which you want to debug and click the “OK” button. (For
any future debug sessions, the stored probe selection is automatically used, unless the probe cannot be found.)

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 11

A ————
Run a demo using MCUXpresso IDE

F B
. Probes discovered E@g

Connect to target: MK64FN1MOoox12
1 probe found. Select the probe to use:

Available attached probes

Marme Serial number/ID Type Manu... IDE Debug Mode

Em USBL - OpenSDA (FATI0E49 TATI0E4D USEL P&E M All-Stop

Supported Probes (tick/untick to enable/disable)
MCUXpresso IDE LinkServer (inc, CMSIS-DAP) probes
P&E Micro probes

SEGGER J-Link probes

Probe search options

-

Remermber my selection (for this Launch configuration)

@

Figure 10. Attached Probes: debug emulator selection
6. The application is downloaded to the target and automatically runs to main():

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018

12 NXP Semiconductors

4
Run a demo using MCUXpresso IDE

-
. workspace - Develop - frdmk64f_demo_apps_hello_werld/source/hello_world.c - MCUXpresso IDE E@lﬂ
m File Edit 5ource Refactor Mavigate Search Project Run Window Help
09 - (B-R-EIN IR IO bIEBRRR S LA -
A R R H- X A B MifflreGarD Quick Access :| &5 | [R] |
Bap 2p = B 3% Debug i |i# = = &
= = 4 m frdmkbdf_demo_apps_helle_world PE Debug [GDE PEMicro Interface Debugging] -
4 25 frdmkBdf demo apps_hello_w 4 2 frdmkb4f_demo_apps_hello_world.axf
X %b Binaries a f# Thread #1 <main> (Suspended : Breakpoint] E
. IEI]-' Includes = main() at hello_werld.c:58 0x7db |
. 2 CMSIS g Chnxp\MCUXpressolDE_0.0.0_291_alpha\ide\plugins\com.pemicro.debug.gdbjtag.pne_2.8.1.2
. (2 board s arm-none-eabi-gdb -
» 2 drivers d] il | L
4 [source Welcome D204 [hello_world.c &3 = 8
> g hello_world.c "
, B startup 43 Code B
- 8 utilities
[Debug
v = doc

= frdmbk6df_demo_apps_hell

= frdmbk6df_demo_apps_hell char ch;

/* Init board hardware. */ b
BOARD InitPins(};

BOARD BootClockRUN();
BOARD_InitDebugConscle();

‘| m k
LQ s W6 = 08

PRINTF("helle world.\r\n"); 3 !
. MCUXpresso IDE (| -
T while (1)
1
v Start here ch = GETCHAR(); 4
B New project.. , PUTCHAR(ch); i
. Impeort SDK example(s)... 4| 1 | 4
& Import project(s) [Pnst.. O Pro.. B cCon.. 32 [* Pro.. [] Mem.. @€ Inst.. SW.. BE3Pow.. = 8 [
% Build ‘frdmkG4f_demo_app: £ | B Eﬁ B & IJ;EI| e
& Clean ‘frdmk6df_demo_app frdmki4f_demo_apps_hello_world PE Debug [GDE PEMicro Interface Debugging] Semihosting Conscle
P&E Semihosting Console -

f:? Debug frdmki4f_demo_ap
ﬁ Terminate, Build and Debu:
B3 Edit ‘frdmbkG4f_demo_apps_

€| n 3 4

() NXP MKBAFMI MOood 2 (Frdmke..avorld)

Figure 11. Stop at main() when running debugging
7. Start the application by clicking the "Resume" button.

Project guiiee Window
Y M

Figure 12. Resume button

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 13

Run a demo using MCUXpresso IDE

The hello_world application is now running and a banner is displayed on the terminal. If this is not the case, check your
terminal settings and connections.

Figure 13. Text display of the hello_world demo

3.4 Build a multicore example application

This section describes the steps required to configure MCUXpresso IDE v10.2.0 to build, run, and debug multicore example
applications. The dual-core version of hello_world example application targeted for the LPCXpresso54114 hardware
platform is used as an example, though these steps can be applied to any multicore example application in the MCUXpresso
SDK

1. Multicore examples are imported into the workspace in a similar way as single core applications. When the SDK zip
package for LPCXpresso54114 is installed and available in the “Installed SDKs” view, click “Import SDK example(s)
...” on the Quickstart Panel. In the window that appears, expand the “LPCxx” folder and select “LPC54114J256.
Then, select “Ipcxpresso54114” and click the “Next” button.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
14 NXP Semiconductors

Run a demo using MCUXpresso IDE

@

SDK Import Wiza
X po

(1) Importing project(s) for device: LPC54114)256 using board: LPCXpresso54114

»

. Board and/or Device selection page

 SDK MCUs Available boards

MCUs from installed SDKs Please select an available board for your project. l

MxP LPC54114)256
4 LP G
PC54114)256

Supported boards for device: LPC54114)256

m

|pexpressnb 411

@ < Back Next > Finish

Figure 14. Select the LPCXpresso54114 board
2. Expand the “multicore_examples/hello_world” folder and select “cm4”. Because multicore examples are linked

together, the cmOplus counterpart project is automatically imported with the cm4 project, and there is no need to select
it explicitly. Click the “Finish” button.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018

NXP Semiconductors 15

Run a demo using MCUXpresso IDE

{1y, The source from the SDK will be copied into the workspace, @
If you want to use linked files, please unzip the 'SDK_2.x_LPCxpresso54114
. Import projects =

Project name prefi

lpcxpresso54114_ =3 Project name suffic

Use default location
Location: | ChUsers\prnml0l\Documents\MCUXpressolDE_10.0,0_304_beta\workspacellpoxpresso54114

Project Type Project Options

C Project C++ Project C Static Library C++ Static Library Copy source

m

Examples &

type to filter

Mame Yer

cmsis_driver_examples

demo_apps

driver_examples
multicore_examples
erpe_matriz_multiphy
erpc_matrix multiply rtos

[E]§3] [000 00D 0oo (Doo

[[ooofjoe ooo

helle_waorld

= cmlplus
cmd : The following linked examples will be automatically imported: crm0plus;

= rpmsg_lite_pingpong

= rpmsg_lite_pingpong_rtos
rtos_examples

usb_examples

A3~ - =
000 00t [(3 [

W

@ Noc>

Figure 15. Select the hello_world multicore example
3. Now, two projects should be imported into the workspace. To start building the multicore application, highlight the
Ipcxpresso54114_multicore_examples_hello_world_cm4 project (multicore master project) in the Project Explorer,
then choose the appropriate build target, "Debug" or "Release", by clicking the downward facing arrow next to the
hammer icon, as shown below. For this example, select the "Debug" target.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
16 NXP Semiconductors

4
Run a demo using MCUXpresso IDE

. workspace - Develop - Welcome page - MCUXpresso ID_
File Edit Mavigate Search Project Run FreeRTOS Window Help
=R dFNEIR -RE, c2 -SRI NS
v 1 Debug (Debug build)
2 Release (Releaze build)

[Project Explorer 52 bol Viewer

=§

s =5 lpcxpresso54114_multicore_examples_hello_werld_cmOplus
= lpcxpresso5d114_multicore_examples_hello_world_cmd

Figure 16. Selection of the build target in MCUXpresso IDE

The project starts building after the build target is selected. Because of the project reference settings in multicore projects,
triggering the build of the primary core application (cm4) causes the referenced auxiliary core application (cmOplus) to build
as well.

NOTE
When the 'Release’ build is requested, it is necessary to change the build configuration of
both the primary and auxiliary core application projects first. To do this, select both
projects in the Project Explorer view by clicking to select the first project, then using
shift-click or control-click to select the second project. Right click in the Project Explorer
view to display the context-sensitive menu and select 'Build Configurations->Set Active-
>Release'. This also possible to do using the menu item 'Project->Build Configuration-
>Set Active->Release'. After switching to the 'Release' build configuration, the build of
the multicore example can be started by triggering the primary core application (cm4)
build.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 17

Run a demo using MCUXpresso IDE

I worspace - Devclop Vo pege " WEU s D

File Edit MNavigate Search Project Run FreeRTOS Window Help

N e | B~ &~ miw|m B SR b EaR S LI FE-0Q
[7 Project Explorer 32 |2, Peripherals+ [l Registers .1 Symbol Viewer = O @ Welcome 22
=E - S file///C:frxp/MCUXpressol

=3 Ipexpresso54114_multicore_examples_hello_world_cmOplus
=3 Ipcxpresso54114_multicore_examples_hello_world_cmd

MNew 3

Go Into

Copy Ctrl+C
Paste Ctrl+V
Delete Delete

Source »
Move...

Rename... F2

Import...

EE

Export...

Build Project
Clean Project
Refresh F5
Close Project

Close Unrelated Projects

Build Cenfiguraticns 4 Set Active 3 1 Debug (Debug build)
Build Targets 3 Manage... v | 2 Release (Release build)

Index ' Build Al

Run As 3 Clean All
Debug As » Build Selected...
Profile As 4 [

Figure 17. Switching multicore projects into the Release build configuration

3.5 Run a multicore example application

The primary core debugger handles flashing of both the primary and the auxiliary core applications into the SoC flash
memory. To download and run the multicore application, switch to the primary core application project and perform all steps
as described in Section 7.3, "Run an example application”. These steps are common for both single core applications and the
primary side of dual-core applications, ensuring both sides of the multicore application are properly loaded and started.
However, there is one additional dialogue that is specific to multicore examples, and requires selecting the target core. See
the following figures as reference.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
18 NXP Semiconductors

Run a demo using MCUXpresso IDE

U Quickstart Pa... ©=Global Varia.. =Variables % Breakpoints g= Qutline = 0 Furt
P Installed SDKs Properties & Console &
5 MCUXpresso IDE - Quickstart Panel
IDE

Project: lpcxpresso54114_hello_world_cm4 [Debug] CDT Build Console [Ipcxpresso54114_hello_ worl

~ Create or import a project Raml_50: 6500 B

rpmsg_sh_mem: @ GB

. B new project... RamX_32: @ GB
B |mport SDK example(s).. Finished building target: lpcxpres:

¥ Import project(s from file system.. make --no-print-directory post-buil

~ Build your project Performing post-build steps
_ arm-none-eabi-size "lpcxpresso54114
4 Build text data bss dec
¢ Clean 22224 4 8548 30776
~ Debug your project BH~EH-H-~
3 Debug = Debug using LinkServer probes (CTRL+SHIFT+L) S .2
3 B Attach to a running target using LinkServer (CTRL+ALT+L)
‘ ® Program flash using LinkServer
~ Micrallananne @ Erase flash using LinkServer

Figure 18. Debug "Ipcxpresso54114_multicore_examples_hello_world_cm4" case

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 19

A ————
Run a demo using MCUXpresso IDE

-
8 Probes discovered El@lg

Connect to target: LPC54114J256

(1, Thefollowing probes have been disabled in the preferences:
P&E Micro probes SEGGER J-Link probes

Available attached probes

Mame Serial number/1I0D Type Manufa.. IDE Debug Mode
i LPC-LINK2 CMSIS-DAP V5134 AD00000002 LinkServe MNXP Semi Mon-Stop

Supported Probes (tick/untick to enable/disable)
MCUXpresso IDE LinkServer (inc, CMSIS-DAP) probes
[7] P&E Micro probes

[] SEGGER J-Link probes

Probe search options

Remember my selection (for this Launch configuration)

@

Figure 19. Attached Probes: debug emulator selection

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018

20

NXP Semiconductors

4
Run a demo using MCUXpresso IDE

F. Eg ™
SWD Configuration

(v 2 available SWD Devices detected.
Target 'Cortex-M4' has been selected, but it may be incompatible!

R Name TAP Id

0 Cortex-hd
1 Cortex-MO+

Details

0:x2bal1477 APID:24770011
0:2ball477 APID:24770011

Figure 20. Target core selection dialog

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors

21

Run a demo using MCUXpresso IDE

. workspace - Develop - Ipcipresso54114_multicore_examples_hello_world_cmd/source/hello_world_corel.c - MCUXpresso [D-
File Edit 5Source Refactor MNavigate Search Project Run FreeRTOS Window Help

Tl | ® -]/~ E@in|m eSSkl @RS A 0G|
o | 3% Debug i1
|-—I>:l 4 . lpcxpresso54114_multicore_examples_hello_world_cmd Debug [C/C++ (MXP Semiconductors) MCU Application]
IE._"-&. 4 L':E Ipcxpresso54114_multicore_examples_hello_world_crmd.axf [LPC54114J256 (cortex-m0plus)]

a4 % Thread £1 1 (Stopped) (Suspended : Breakpoint)
= main() at hello_world_corel.c:85 0x98a

)
1

==

101
oo

by | arm-none-eabi-gdb (7.12.0.20161204)
=3
0 @ hello_world_corel.c &2
()= 68 {
()= 69 uint32_t corel_image size;
78 #if defined(_ CC_ARM)
8g 71 corel_image size = (uint32_t)&Image$$CORE1_REGIONESLength;
o= 72 #elif defined(_ ICCARM_)
== 73 #pragma section = "_ sec_core”
74 corel_image size = (uint32_t)_ section_end("__ sec_core™) - (uint32_t)&corel_image start;
75 #endif
76 return corel_image size;
77}
73 #endif
792 f*]

Ba
81 ¥/

2= int main(wvoid)

83 {

84 /* Define the init structure for the switches*/

a5 | gpio_pin_config t sw_config = {kGPIO DigitalInput, @};

86

87 /* Init board hardware.*/

88 /* attach 12 MHz clock to FLEXCOMMB (debug console) */

89 CLOCK_AttachClk(kFROIZM to FLEXCOMME);

ELS

91 BOARD _InitPins_CoreB();

92 BOARD BootClockFROHF4EM();

93 BOARD InitDebugConsole();

94

95 /* Init switches */

o5 GPIO PinInit(BOARD SW1 GPIO, BOARD SW1 GPIO PORT, BOARD SW1 GPIO PIN, &sw config);
a7 GPIO PinInit{BOARD SW2_GPIO, BOARD_SW2 GPIO _PORT, BOARD_SW2 GPIO PIN, &sw_config);
ag

Figure 21. Stop the primary core application at main() when running debugging

@brief Main function

After clicking the "Resume All Debug sessions" button, the hello_world multicore application runs and a banner is displayed
on the terminal. If this is not the case, check your terminal settings and connections.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
22 NXP Semiconductors

4
Run a demo using MCUXpresso IDE

COM17:115200baud - Tera Term ¥

File Edit Setup Contrel Window EanjiCode Help
Starting Secondary core.

Hello World from the Primary Core!

Press the SW1 button to Stop Secondary core.
Press the 5W2 button to Start Secondary core.

Figure 22. Hello World from the primary core message

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has been released from the reset and
running correctly. It is also possible to debug both sides of the multicore application in parallel. After creating the debug
session for the primary core, perform same steps also for the auxiliary core application. Highlight the
Ipcxpresso54114_multicore_examples_hello_world_cmOplus project (multicore slave project) in the Project Explorer. On the
Quickstart Panel, click “Debug ‘Ipcxpresso54114_multicore_examples_hello_world_cmOplus’ [Debug]” to launch the
second debug session.

) Quickstart Pa... ®=Global Varia.. ®=Variables % Breakpoints g= Outline = g Fur
~ Installed SDKs [Properties &2 Consols
5 MCUXpresso IDE - Quickstart Panel Broperty
IBE Project: Ipcxpresso54114_hello_world_cmOplus [Debug]
~ Create or import a project
B new project...
.]
[Import SDK example(s)...
2 Import project(s) from file system..
~ Build your project
A Build
¢ Clean
~ Debug your project B~-EHH~
3 Debug X Debug using LinkServer probes (CTRL+SHIFT+L)
¥ B Attach to a running target using LinkServer (CTRL+ALT+L)
) M Program flash using LinkServer
~ Micrallanannc B Erase flash using LinkServer

Figure 23. Debug "Ipcxpresso54114_multicore_examples_hello_world_cmOplus" case

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 23

A ————
Run a demo using MCUXpresso IDE

. workspace - Develop - Ipoxpresso54114_multicore_examples_hello_world_cmd/source/hello_werld_corel.c - MﬂJXprﬁsoID-
Eile Edit 5Source Refactor Mavigate Search Project Bun FreeRTOS Window Help

- IS~ KR-Bin | PI BN |7 B RIS L L -0
& Uﬁis: Debug &3
rlp:‘ 4 . Ipcxpresso54114_multicore_examples_helle_world_cmd Debug [CFC++ (NXP Semiconductors) MCU Application]
% 4 Lﬁ? Ipcxpresso54114_multicore_examples_hello_world_crmd.axf [LPC54114)256 (cortex-mOplus)]

4 f® Thread #1 1 (Stopped) (Suspended : Breakpoint)

: = main() at hello_world_corel.c:85 0:98a

p| arm-none-eabi-gdb (712.0.20161204)

P . Ipcxpresso54114_multicore_sxamples_hello_world_cm0plus Debug [C/C++ (NXP Semiconductors) MCU Application]

o
1

==

1
o

= 4 E Ipcxpresso54114_multicore_sxamples_hello_world_crnDplus.asf [LPC54114)256 (cortex-m0plus)]
) 4 ¥ Thread #1 1 (Stopped) (Suspended : Signal : SIGSTOP:Stopped (signal))
o= = Oilec
= <signal handler called=> () at DxffFFFFfa
LA = 0
®s p| arm-none-eabi-gdb (7.12.0.20161204)
o=

@ hello_world_corel.c 2

68 {

69 uint32 t corel_image size;

7@ #if defined(_ CC_ARM)

71 corel _image _size = (uwint32_t)&Image$$COREL_REGIONS$ELength;

72 #elit defined(_ ICCARM)
#pragma section = "__sec_core"

74 corel_image size = (uint32_t)_ section_end("_ sec_core") - (uint32_t)&corel_image start;
75 #endif

76 return corel_image size;

77 }

78 #endif

708 /*!

88 ¥ {ibrief Main function

81 */

2= int main(void)

83 |

34 /* Define the init structure for the switches®/

85 | gpio_pin_config t sw_config = {kGPIO DigitolInput, @};
86

87 /* Init board hardware.*/

85 J/* attach 12 MHz clock to FLEXCOMM@ (debug console) */
8o CLOCK_AttachClk(kFROI12M to FLEXCOMME) ;

9

BOARD_InitPins_Core@();
BOARD_BootClockFROHFAM();
BOARD InitDebugConscle();

1=}

K=}
it pa =

1=}

95 f* Init switches */
96 GPTO_PinInit(BOARD SW1_GPIO, BOARD SW1 GPIO PORT, BOARD SW1_GPIO PIN, &sw_config);
a7 GPIO PinInit{BOARD SW2 GPIO, BOARD SW2 GPTIO PORT, BOARD SW2 GPIO PIN, &sw config);

Figure 24. Two opened debug sessions

Now, the two debug sessions should be opened, and the debug controls can be used for both debug sessions depending on the
debug session selection. Keep the primary core debug session selected and clicking the "Resume" button. The hello_world
multicore application then starts running. The primary core application starts the auxiliary core application during runtime,
and the auxiliary core application stops at the beginning of the main() function. The debug session of the auxiliary core
application is highlighted. After clicking the “Resume” button, it is applied to the auxiliary core debug session. Therefore, the
auxiliary core application continues its execution.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
24 NXP Semiconductors

4
Run a demo using MCUXpresso IDE

. waorkspace - Develop - Ip@rmﬂlld_muﬁme_nplﬂ_hdh_mﬂ_cnﬂbw_

File Edit 5Source Refactor MNavigate Search Project Run FreeRTOS Window Help

N mifh | B~ R~ i mw NS bl En2RE LA -0 Q|
| 45 Debug 2 [Step Return All Debug sessions]
=
4 Ipcxpresse54114_multicore_examples_hello_world_cméd Debug [C/C++ (MXP Semiconductors) MCU Application]
[[_.I pexp P 9 PR
IE._"-&. 4 Ipcxpresso54114_multicore_examples_hello_world_crmd.axf [LPC54114J256 (cortex-m0plus)]

& Thread #1 1 (Stopped) (Running]
s arm-none-eabi-gdb (7.12.0.20161204)
;t; 4 . lpcxpresso54114_multicore_examples_hello_world_cm0plus Debug [C/C++ (NXP Semiconductors) MCU Application]
—_— 4 EE‘ Ipcxpresso54114_multicore_examples_hello_world_cm0plus.axf [LPC54114)256 (cortex-m0plus)]
= a % Thread #1 1 (Stopped) (Suspended : Breakpoint)
|= main() at hello_world_corel ;71 0x200103846

o
09- s | arm-none-eabi-gdb (7.12.0.20161204)
(%)=
9
=
(==
.| hello_world_corel.c | fsl_mailbox.h @ helle_world_corel.c &2
68 1
&1 }
62
632 /*!
64 * (@brief Main function

65 */

66= int main(wvoid)

67 {

68 uint32_t startupData, i;

69

78 /* Define the init structure for the output LED pin*/
71 gpioc_pin config t led config = {

72 RGPIC DigitalOutput, @,

73 b

74

75 /* Initialize MCMGR before calling its API */

76 MCMGR_Tnit();

77

78 /* Get the startup data */

79 MCMGR_GetStartupData(kMCHMGR_Corel, &startupData);
8a

81 /* Make a noticable delay after the reset */

82 /* Use startup parameter from the master core... */
83 for (1 = 8; i <« startupData; i++)

84 delay();

as

Figure 25. Auxiliary core application stops at the main function

At this point, it is possible to suspend and resume individual cores independently. It is also possible to make synchronous
suspension and resumption of both cores. This is done either by selecting both opened debug sessions (multiple selection)
and clicking the “Suspend” / "Resume” control button, or just using the “Suspend All Debug sessions” and the “Resume All
Debug sessions” buttons.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 25

Run a demo using MCUXpresso IDE

- workspace - Develop - | 54114 multicore_exa :_hello_world_ lusy’

File Edit Source Refactor Mavigate Search Project Bun FreeRTOS Window Help

Tl | B~ R~ w:w Mo p|SE | blEBRRR S LI HFE-0
5’ A5 Debug 2

r[\:‘ 4 . |pcxpresso54114_multicore_examples_hello_world_cmd Debug [C/C++ (MXP Semiconductors) MCU Application]

?,5 4 Ipoxpresseid4114_multicore_examples_helle_world_cmd.axf [LPC54114J256 (cortex-m0plus)]

| Thread #1 1 (Stopped) (Running] |
p| arm-none-eabi-gdb (7.12.0.20161204)

o=
==
—=

{ 4 . Ipcxpresso54114_multicore_examples_hello_world_cmOplus Debug [C/C++ (NXP Semiconductors) MCU Application]
— 4 Ipcxpresso5d114_multicore_examples_hello_world_cm0plus.axf [LPC54114)256 (cortex-miplus)]
= |8 Thread #1 1 (Stopped) (Running] |
0) p| arm-none-eabi-gdb (7.12.0.20161204)
b=
(%)=
)
O
o=
| hello_world_corel.c | fzl_mailbox.h @ hello_world_corel.c &2 [c | 0x180

-u v

59 __asm("NOP"); /* delay */

&8 1

61 }

B2

635 /*!

64 * (ibrief Main function

65 */

66= int main(void)
68 uint32_t startupData, 1i;

78 /* Define the init structure for the output LED pin*/
71 gpio_pin_config t led_config = {

72 RGPIQ DigitaolOutput, 8,

73 s

75 /* Initialize MCMGR before calling its API */
76 MCMGR_Init();

78 /* Get the startup data */
79 MCMGR_GetStartuplata(kMCMER_Corel, &startupData);

81 /* Make a noticable delay after the reset */

82 /* Use startup parameter from the master core... */
83 for (1 = @; 1 < startupData; i++)

84 delay();

Figure 26. Synchronous suspension/resumption of both cores using the multiple
selection of debug sessions and “Suspend”/”’Resume” controls

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
26 NXP Semiconductors

Run a demo application using IAR

. workspace - Develop - Ipoxpresso34114 multicore_examples_hello_world_cmOplus/source
Eile Edit Source Refactor Mavigate Search Project Bun FreeRTOS Window Help

Am i | B~ K~ miw| e albifEa2RSLLHE-0-
5’ %5 Debug 2

r[\:‘ 4 . Ipcxpressesd114_multicore_examples_hello_world_cmd Debug [C/C++ (NXP Semiconductors) MCU Application]

?ﬁ 4 E;} Ipcxpresso54114_multicore_examples_hello_world_cmd,axf [LPC54114)256 (cortex-m0plus)]

4 f# Thread #1 1 (Stopped) (Suspended : Signal : SIGINT:Interrupt)

GPIO_ReadPinlnput() at fsl_gpio.h:146 0:85¢

main() at hello_world_corel.c:134 0xall

g arm-none-eabi-gdb (7.12.,0.20161204)

= a . lpcxpresso54114_multicore_sxamples_hello_world_cmlplus Debug [C/C++ (MXP Semiconductors) MCU Application]

o=
==
==
==

B

0 4 E Ipcxpresso54114_multicore_sxamples_hello_world_cmlplus.axf [LPC54114)256 (cortex-m0plus]]
- 4 o Thread #11 (Stopped) (Suspended : Signal : SIGINT:Interrupt)
= delay() at hello_world_corel.c:59 0x20010824
x)= = main() at hello_world_corel .99 0x200108a0
% p| arm-none-eabi-gdb (7.12.0.20161204)
Oz
O-—
hello_world_corel.c h| fsl_mailbox.h hello_world_corel.c &3 0,190
-y L
59 __asm{"NOP"}; /* delay */
6@ 1
61 1}
B2
B3= ¥ 1
64 ¥ (@brief Main function
B5 *;
5= int main(void)
67 {
68 uint32_t startupData, i;
69
78 /* Define the init structure for the output LED pin*/
71 gpio_pin_config_t led_config = {
72 kGPIO DigitalOutput, @,
73 T
74
75 /* Initialize MCMGR before calling its API */
76 MCMGR_Init();
77
78 /* Get the startup data */
79 MCMGER_GetStartupData(kMCHGR_Corel, &startupData);
Fits
81 /* Make a ngticable delay after the reset */
32 /* Use startup parameter from the master core... */
e for (i = B; i < startupData; i++)
84 delay();
ac

Figure 27. Synchronous suspension/resumption of both cores using the “Suspend All
Debug sessions” and the “Resume All Debug sessions” controls

4 Run a demo application using IAR

This section describes the steps required to build, run, and debug example applications provided in the MCUXpresso SDK.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 27

Run a demo application using IAR

NOTE
IAR Embedded Workbench for Arm version 8.11.3 is used as an example to show below
steps, and the TAR toolchain should correspond to the latest supported version, as
described in the MCUXpresso SDK Release Notes (document MCUXSDKRN).

4.1 Build an example application

The following steps guide you through opening the hello_world example application. These steps may change slightly for
other example applications as some of these applications may have additional layers of folders in their path.

1. If not already done, open the desired demo application workspace. Most example application workspace files can be
located using the following path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/iar
Using the FRDM-K64F Freedom hardware platform as an example, the hello_world workspace is located in
<install_dir>/boards/frdmk64f/demo_apps/hello_world/iar/hello_world.eww

2. Select the desired build target from the drop-down. For this example, select the “hello_world — Debug” target.

F elease

= (P hello_world - Deb... v
(Jbhoard

[Jdoc

[drivers

|] source

[startup

CJutilities

—3 (] Output

Figure 28. Demo build target selection

3. To build the demo application, click the “Make” button, highlighted in red below.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
28 NXP Semiconductors

4
Run a demo application using IAR

5= < 0 > [q [

< Q >

’Debug

Files = B
=R hello_world - Debug
M board

B doc

B drivers

M source

B startup

B utilities

B Output

<

Figure 29. Build the demo application

4. The build completes without errors.

4.2 Run an example application

To download and run the application, perform these steps:

1. Reference the table in Appendix B to determine the debug interface that comes loaded on your specific hardware
platform.
* For boards with CMSIS-DAP/mbed/DAPLink interfaces, visit developer.mbed.org/handbook/Windows-serial-
configuration and follow the instructions to install the Windows® operating system serial driver. If running on
Linux® OS, this step is not required.
* The user should install LPCScrypt or MCUXpresso IDE to ensure LPC board drivers are installed.
* For boards with P&E Micro interfaces, visit www.pemicro.com/support/downloads_find.cfm and download the
P&E Micro Hardware Interface Drivers package.
2. Connect the development platform to your PC via USB cable.
3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug COM port (to
determine the COM port number, see Appendix A). Configure the terminal with these settings:
a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable
in board.h file)
b. No parity
c. 8 data bits
d. 1 stop bit

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 29

http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
http://www.pemicro.com/support/downloads_find.cfm

Run a demo application using IAR

-
-

Category:

- Session Basic options for your PuTTY session |

5 T'"' L.ng;g'rng Specify the destination you warnt to connect to

vl Senal ine Speed
- Keyboard o
- Bel COM16 115200

i - Features nection type:

= Window ("VRaw () Telnet () Rlogin () SSH | @ Seral
ﬁppea. Load, save or delete a stored session
L. Behaviour
L Translation Saved Sessions
- Selection Debug

- Default

& Conection e
e =
- Rlogin
[#-SSH
- Sl Close window on exit:

() Aways (Never @ Onlyon clean exit
[Mot |[Heo | [Open || Cancel |
Figure 30. Terminal (PuTTY) configuration
4. InIAR, click the "Download and Debug" button to download the application to the target.
{Q >K»x=2< P >0 AW = > _ ' m en

Al

Figure 31. Download and Debug button

5. The application is then downloaded to the target and automatically runs to the main() function.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018

30

NXP Semiconductors

4
Run a demo application using IAR

OO0 R = LE0 OC »<$Q>82< B >0 BO@=6GCcO NIyl r03~_mdh
Woarkspace ¥ 3 X | hello_world.c X
‘Debug v| main()
41
Files £ . a2 B e E
B @ hello_world - Debug v 43 T * Prototypes
B board B L r i i iR R AR AR R R R R R R R R R R R R AR AR AR AR F R R R R AR R R R R R AR AR AR F R F AR AR FF R R R R AR RRAF AR /
i doc 45
i drivers a6 e R
M source 47 Code
-startup a8 oo /
W utilities L8 ,,_r“ o Mein Fiamend
-Output 50 * gbrief Main function
51 4
g 52 |int mainfvoid)
53 {
54 char ch;
S
56 /* Init board hardware. */
57 /* attach 12 MHz clock to FLEXCOMMO (debug conscle) *#/
58 CLOCE_AttachClk (BORRD _DEBUG UART CLE ATTACH):
59
&0 BORRD InitPins({);
6l BOAED BootClockFROHF48M():
62 BORRD InitDebugConsole();

Figure 32. Stop at main() when running debugging

6. Run the code by clicking the "Go" button to start the application.

Q "3&(-.;)__..-5@&0;('\1#*5*1* q - _ L

L L

Figure 33. Go button
7. The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your
terminal settings and connections.

Figure 34. Text display of the hello_world demo

4.3 Build a multicore example application

This section describes the particular steps that need to be done in order to build and run a dual-core application. The demo
applications workspace files are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/iar

Begin with a simple dual-core version of the Hello World application. The multicore Hello World IAR workspaces are
located in this folder:

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 31

A ————
Run a demo using Keil® MDK/uVision

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cmOplus/iar/hello_world_cmOplus.eww
<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/iar/hello_world_cm4.eww
Build both applications separately by clicking the “Make” button. It is requested to build the application for the auxiliary core

(cmOplus) first, because the primary core application project (cm4) needs to know the auxiliary core application binary when
running the linker. It is not possible to finish the primary core linker when the auxiliary core application binary is not ready.

4.4 Run a multicore example application

The primary core debugger handles flashing of both the primary and the auxiliary core applications into the SoC flash
memory. To download and run the multicore application, switch to the primary core application project and perform steps 1 —
4 as described in Section 3.2, "Run an example application”. These steps are common for both single core and dual-core
applications in IAR.

After clicking the “Download and Debug" button, the auxiliary core project is opened in the separate EWARM instance. Both
the primary and auxiliary image are loaded into the device flash memory, and the primary core application is executed. It
stops at the default C language entry point in the main() function.

Run both cores by clicking the "Start all cores" button to start the multicore application.

.o~ LN ~]+

Figure 35. Start all cores button

During the primary core code execution, the auxiliary core code is re-allocated from the flash memory to the RAM, and the
auxiliary core is released from the reset. The hello_world multicore application is now running and a banner is displayed on
the terminal. If this is not true, check your terminal settings and connections.

L COMZ28:115200baud - Tera Term

File Edit Setup Control Window KanjiCode Help

Copy Secondary core image to address: 0x20010000, size: 3778
Starting Secondary core.

Hello World from the Primary Core!

Press the SW1 button to Stop Secondary core.
Press the SW2 button to Start Secondary core.

Figure 36. Hello World from primary core message

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has been released from the reset and
is running correctly. When both cores are running, use the "Stop all cores" and "Start all cores" control buttons to stop or run
both cores simultaneously.

ko v LW~ o o

Figure 37. "Stop all cores" and "Start all cores" control buttons

5 Run a demo using Keil® MDK/pVision

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
32 NXP Semiconductors

4
Run a demo using Keil® MDK/pVision

This section describes the steps required to build, run, and debug example applications provided in the MCUXpresso SDK.
The hello_world demo application targeted for the FRDM-K64F Freedom hardware platform is used as an example, although
these steps can be applied to any demo or example application in the MCUXpresso SDK.

5.1 Install CMSIS device pack

After the MDK tools are installed, Cortex® Microcontroller Software Interface Standard (CMSIS) device packs must be
installed to fully support the device from a debug perspective. These packs include things such as memory map information,
register definitions and flash programming algorithms. Follow these steps to install the appropriate CMSIS pack.

1. Open the MDK IDE, which is called puVision. In the IDE, select the “Pack Installer” icon.

kA uVision

File Edit WView Project Flash Debug Peripherals Tools 5V Window
S A | | | &
| :_.._| _,.\. B .:.. oy @

il

Figure 38. Launch the Pack installer
2. After the installation finishes, close the Pack Installer window and return to the uVision IDE.

5.2 Build an example application

* Open the desired example application workspace in: <install_dir>/boards/<board_name>/<example_type>/
<application_name>/mdk

The workspace file is named <demo_name>.uvmpw, so for this specific example, the actual path is:

<install_dir>/boards/frdmk64f/demo_apps/hello_world/mdk/hello_world.uvmpw
e To build the demo project, select the "Rebuild" button, highlighted in red.

] [hdef = | 'ﬂ! hello_world Debug R4 it:\!

Figure 39. Build the demo

* The build completes without errors.

5.3 Run an example application

To download and run the application, perform these steps:

1. Reference the table in Appendix B to determine the debug interface that comes loaded on your specific hardware
platform.

* For boards with the CMSIS-DAP/mbed/DAPLink interface, visit mbed Windows serial configuration and follow
the instructions to install the Windows operating system serial driver. If running on Linux OS, this step is not
required.

* The user should install LPCScrypt or MCUXpresso IDE to ensure LPC board drivers are installed.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 33

https://developer.mbed.org/handbook/Windows-serial-configuration

A ————
Run a demo using Keil® MDK/pVision

* For boards with a P&E Micro interface, visit www.pemicro.com/support/downloads_find.cfm and download and
install the P&E Micro Hardware Interface Drivers package.
* If using J-Link either a standalone debug pod or OpenSDA, install the J-Link software (drivers and utilities) from
www.segger.com/jlink-software.html.
¢ For boards with the OSJTAG interface, install the driver from www.keil.com/download/docs/408.
2. Connect the development platform to your PC via USB cable between the OpenSDA USB connector (may be named
OSJTAG on some boards) and the PC USB connector.
3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see Appendix A). Configure the terminal with these settings:
a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable

in board.h file)
b. No parity
c. 8 data bits
d. 1 stop bit
2 PuTTY Configuration
Category:
[=- Session Basic options for your PuTTY session |
E Lpgging Specify the destination you wart to connect to
= Terminal -
Senal line Speed
- Keyboard —_
- Bel COM16 115200
- Features onnechon type:
=- Window (CJRaw () Telnet () Rlogin () SSH | @ Seral
:::EH@W Load, save or delete a stored session
: aviour
- Translation Saved Sessions
- Selection Debug
- Colours
Defaul Settin
& Connection T
o
roxy
Tene
Rlogin
#-SSH
Serial Close window on exit:
() Aways () Never @ Only on clean exit
[ot |[Ho | [_Open][Cence

Figure 40. Terminal (PuTTY) configurations

4. In pVision, after the application is properly built, click the "Download" button to download the application to the

target.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018

34

NXP Semiconductors

http://www.pemicro.com/support/downloads_find.cfm
http://www.keil.com/download/docs/408.asp

Run a demo using Keil® MDK/pVision

Project

B

SREL WorkSpace
%8 Project: hello_world

Figure 41. Download button

B e |E hello_world Debug

-
EAN

5. After clicking the “Download” button, the application downloads to the target and should be running. To debug the

application, click the “Start/Stop Debug Session” button, highlighted in red.

I_’Iﬁlﬂﬁ|!- _'_]Bl_-ﬁ r|@ IFH,F’LW(EEE N

B

HBolwero » OREEDIE)2-0-3- 8- -

Registers o [Disassembly

Regater [m = 0x00003802 4770 BX ir

= m 57: BOARD InitPins():

| 0x00003804 FTFDFACé BL.W BO'ARD_Inir.Pins (0x00000D94)

(00003805
(20000040
(00000000

58: BOARD BootClockRUN();
0x00003808 F7FDFABA BL.W

BOARD_ BootClockRUN (Ox00000D20)

(x0D0037D1 ii BOARD InitDebugConsole():
(=00003A3D 4 Q
(x00003A30
) neto wonac (| SoipMISFIZS
52 int main(vaoid)
53 B¢
E4 char ch;
29
56 f/* Init board hardware. */
57 BOARD InitPins():
58 Bﬁm_BDDtClDCkRUN £y
59 BOARD InitDebugConsole():
60
61 PRINTF("hello world.\r\n");
62
63 While (1)

Figure 42. Stop at main() when run debugging

6. Run the code by clicking the “Run” button to start the application.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018

NXP Semiconductors

35

Run a demo using Keil® MDK/pVision

2 | |:L| NIRRT §
Registers n

(=ll Run (F5)

Register Start code execution

Figure 43. Go button

The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your
terminal settings and connections.

Figure 44. Text display of the hello_world demo

5.4 Build a multicore example application

This section describes the particular steps that need to be done in order to build and run a dual-core application. The demo
applications workspace files are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/mdk

Begin with a simple dual-core version of the Hello World application. The multicore Hello World Keil MSDK/uVision®
workspaces are located in this folder:
<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cmOplus/mdk/hello_world_cmOplus.uvmpw
<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/mdk/hello_world_cm4.uvmpw

Build both applications separately by clicking the “Rebuild” button. Build the application for the auxiliary core (cmOplus)

first, because the primary core application project (cm4) needs to know the auxiliary core application binary when running
the linker. It is not possible to finish the primary core linker when the auxiliary core application binary is not ready.

5.5 Run a multicore example application

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
36 NXP Semiconductors

Run a demo using Keil® MDK/pVision

The primary core debugger handles flashing of both the primary and the auxiliary core applications into the SoC flash
memory. To download and run the multicore application, switch to the primary core application project and perform steps 1 —
5 as described in Section 4.3, "Run an example application”. These steps are common for both single core and dual-core
applications in pVision.

Both the primary and the auxiliary image is loaded into the device flash memory. After clicking the “Run" button, the
primary core application is executed. During the primary core code execution, the auxiliary core code is re-allocated from the
flash memory to the RAM, and the auxiliary core is released from the reset. The hello_world multicore application is now
running and a banner is displayed on the terminal. If this is not true, check your terminal settings and connections.

Eile Edit Setup Control Window KanjiCode Help

Copy Secondary core image to address: 0x200100080, size: 3778 -
Starting Secondary core. [

Hello World from the Primary Core!

Press the SW1 button to Stop Secondary core.
Press the SW2 button to Start Secondary core.

Figure 45. Hello World from primary core message

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has been released from the reset and
is running correctly.

Attach the running application of the auxiliary core by opening the auxiliary core project in the second uVision instance, and
clicking the “Start/Stop Debug Session” button. After doing this, the second debug session is opened and the auxiliary core
application can be debugged.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 37

A ————
Run a demo using Arm® GCC

File Edit View Project Flash Debug Peripherals Tools SWVCS Window Help

NSdad| » o@| | | | = = i 0| o] & o (@)
B o v o > | [ORBEGE-[O)2-2-2- @ %
Registers o @ Disassembly
Register | Value | 51: for (1 = 0; 1 < 1000000; ++i)
52: {
= Core
=0 BO000A7DA 0xZ0010B5& 9000 5TR r0, [sp, #0x00]
R GeD00F4240 0x20010B5C E003 B 0x20010B66
R2 20000000 :i ~ _esm("NOB"); /* delay */
R3 00000000) :
H——— 0x20010BSE BFOO NOP
H“ ﬂx S 51+ Far 4 = MO« 4 = 1000000 +249%
R5 00000001 « [
R& c20010C0C o
R7 FFFFFFFF _] hello_world_corel.c
R GFFFFFFFF T T T T T T T
R9 O<FFFFFFFF 39 | * Prototypes
R1D OeFFFFFFFF A | e m kb R Rk R R e R o R o e B
R11 eFFFFFFFF .
R12 (<FFFFFFFF B[] /R
R13(5P) bc200267F0 43 * Code
R14 (LR} Lc20010B85F A
R15 (PC) 20010B6E a5 g/#!
*wPSR 01000000 46 # @brief Function to create delay for Led blink.
+ Banked a7 L o=y
- System 48 void delay (void)
=l Intemal 45 O¢
Mode Thread 50 volatile uwint32 € i = 0;
Privilege Privileged B 51 || for (i = 0; i < 1000000; ++i)
Stacl MSP 52 4 f
53 __asm("HOE"); /% delay */
54 [}-
55 |}
56 L

Figure 46. Debugging the auxiliary core application

6 Run a demo using Arm® GCC

This section describes the steps to configure the command line Arm® GCC tools to build, run, and debug demo applications
and necessary driver libraries provided in the MCUXpresso SDK. The hello_world demo application is targeted for the
FRDM-K64F Freedom hardware platform is used as an example, though these steps can be applied to any board, demo or
example application in the MCUXpresso SDK.

NOTE
ARMGCC version 5.2.2015q4 is used as an example in this document, the latest GCC
version for this package is as described in the MCUXpresso SDK Release Notes
(document MCUXSDKRN).

6.1 Set up toolchain

This section contains the steps to install the necessary components required to build and run a MCUXpresso SDK demo
application with the Arm GCC toolchain, as supported by the MCUXpresso SDK. There are many ways to use Arm GCC
tools, but this example focuses on a Windows operating system environment.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
38 NXP Semiconductors

Run a demo using Arm® GCC

6.1.1 Install GCC Arm Embedded tool chain

Download and run the installer from launchpad.net/gcc-arm-embedded. This is the actual toolset (in other words, compiler,
linker, and so on). The GCC toolchain should correspond to the latest supported version, as described in the MCUXpresso
SDK Release Notes. (document MCUXSDKRN).

6.1.2 Install MinGW (only required on Windows OS)

The Minimalist GNU for Windows (MinGW) development tools provide a set of tools that are not dependent on third party
C-Runtime DLLs (such as Cygwin). The build environment used by the MCUXpresso SDK does not utilize the MinGW

build tools, but does leverage the base install of both MinGW and MSYS. MSYS provides a basic shell with a Unix-like
interface and tools.

1. Download the latest MinGW mingw-get-setup installer from sourceforge.net/projects/mingw/files/Installer/.
2. Run the installer. The recommended installation path is C:\MinGW, however, you may install to any location.

NOTE
The installation path cannot contain any spaces.

3. Ensure that the “mingw32-base” and “msys-base” are selected under Basic Setup.

B MinGW Installation Manager
Installation Package Settings

Basic Setup

Package Class Installed Version Repository Version Description
All Packages
I:‘ mingw-developer-tool... bin 2013072300 An MSYS Installation for MinGW Developers (meta)
E mingw32-base bin 2013072200 & Basic MinGW Installation
D mingw32-gcc-ada bin 4.8.1-4 The GNU Ada Compiler
|:| mingw32-gcc-fortran bin 4.8.1-4 The GNU FORTRAN Compiler
[] mingw32-gcc-g++ bin 4.8.1-4 The GNU C++ Compiler
D mingw32-gcc-objc bin 4.8.1-4 The GMU Objective-C Compiler
msys-base bin 2013072300 A Basic MSYS Installation (meta)

Figure 47. Setup MinGW and MSYS

4. Click “Apply Changes” in the “Installation” menu and follow the remaining instructions to complete the installation.

2 MinGW Installation Manager
Installation | Package Settings
Update Catalogue Fackage
Mark All Upgrades |:] mingw-developer-tool...
I Apply Changes E] mingw32-base
] mingw32-gec-ada
Quit Alt+F4 D mingw32-gcc-fortran
] mingw32-gec-g++
[[] mingw32-gee-akie
msys-base

Figure 48. Complete MinGW and MSYS installation
5. Add the appropriate item to the Windows operating system path environment variable. It can be found under Control

Panel -> System and Security -> System -> Advanced System Settings in the "Environment Variables..." section. The
path is:

<mingw_install_dir>\bin

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 39

https://launchpad.net/gcc-arm-embedded
http://sourceforge.net/projects/mingw/files/Installer/

A ————
Run a demo using Arm® GCC

Assuming the default installation path, C:\MinGW, an example is shown below. If the path is not set correctly, the
toolchain does not work.

NOTE
If you have "C:\MinGW\msys\x.x\bin" in your PATH variable (as required by
KSDK 1.0.0), remove it to ensure that the new GCC build system works correctly.

Systemn Properties | 22 |
Computer Name | Hardware | Advanced | System Protection | Remote
o~ -
Environment Vanables | &3 |
Edit Systermn Yanable 3
Variable name: Path
Variable value: agram Files (x8&8)\CMake\bin; C: \MinGW ibin
| QK | | Cancel |

System variables

Variable Value m
(0 Windows_MNT M
Path C:'Program Files (x8a)\Parallels\Parallel. ..
PATHEXT JCOM; EXE;.BAT;.CMD; . VBS;.VBE;.15;....
PEROCESSOR_A.., AMD&4 %
| Mew.. || GEdt. || Delete
| Ok, | | Cancel

Figure 49. Add Path to systems environment

6.1.3 Add a new system environment variable for ARMGCC_DIR

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
40 NXP Semiconductors

4
Run a demo using Arm® GCC

Create a new sysfem environment variable and name it ARMGCC_DIR. The value of this variable should point to the Arm
GCC Embedded tool chain installation path. For this example, the path is:

C:\Program Files (x86 \GNU Tools ARM Embedded\5.2 20154

Reference the installation folder of the GNU Arm GCC Embedded tools for the exact path name of your installation.

Environment Vanables

=l

Variable name:

Variable walue:

Mew Systern Vanable

ARMGCC_DIR.

C:'\Program Files (x86)\GMU Tools ARM Emb

&

QK | | Cancel
System variables

Variable Value _
Qs Windows_MNT W

Path C:\Program Files (x8a)\Parallels\Farallel. ..

PATHEXT JCOM; EXE; . BAT;.CMD; . VBS; VBE;. 15;....
PROCESSOR_A.,, AMDe4 il

| New.. || Edit. || Delete
| OK | | Cancel

Figure 50. Add ARMGCC_DIR system variable

6.1.4 Install CMake

1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.
2. Install CMake, ensuring that the option "Add CMake to system PATH" is selected when installing. The user chooses to
select whether it is installed into the PATH for all users or just the current user. In this example, it is installed for all

users.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018

NXP Semiconductors

41

http://www.cmake.org/cmake/resources/software.html

Run a demo using Arm® GCC

A Make30.2 Setup (=] = =]

Install Options
Choose options for instaling CMake 3.0.2

By default CMake does not add its directory to the system PATH.

Do not add CMake to the system PATH
@ Add CMake to the system PATH for all users
Add CMake to the system FATH Tor current user

[| Create CMake Desktop Icon

| <Back || mext> | | cancel |

Figure 51. Install CMake
3. Follow the remaining instructions of the installer.
4. You may need to reboot your system for the PATH changes to take effect.
5. Make sure "sh.exe" is not in the Environment Variable PATH. This is a limitation of mingw32-make.

6.2 Build an example application

To build an example application, follow these steps.

1. Open a GCC Arm Embedded tool chain command window. To launch the window, from the Windows operating
system Start menu, go to “Programs -> GNU Tools ARM Embedded <version>" and select “GCC Command Prompt”.

. GNU Tools for ARM Embedded Process
. Documentation

-I-'-Ia‘

7 GCC Command Prompt
{9 Uninstall GNU Tools for ARM Embec

Figure 52. Launch command prompt

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
42 NXP Semiconductors

Run a demo using Arm® GCC

2. Change the directory to the example application project directory, which has a path similar to the following:
<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc
For this example, the exact path is: <install_dir>/examples/frdmk64f/demo_apps/hello_world/armgcc
NOTE

To change directories, use the 'cd' command.
3. Type “build_debug.bat” on the command line or double click on the "build_debug.bat" file in Windows Explorer to
perform the build. The output is shown in this figure:
[&1
[921

L1881 Linking ¢ executable debugshello world.e lf
(180] Built target hello wowrld.elf

» DE_2 . 8_FRDM-E64Fshoardssfrdrnké4f ~demo_apps “he llo_worldsarmgcc >IF ™' == "
3
key Lo cont lnwe

Figure 53. hello_world demo build successful

6.3 Run an example application

This section describes steps to run a demo application using J-Link GDB Server application. To perform this exercise, two
things must be done:

* Make sure that either:

* The OpenSDA interface on your board is programmed with the J-Link OpenSDA firmware. To determine if your
board supports OpenSDA, see Appendix B. For instructions on reprogramming the OpenSDA interface, see
Appendix C. If your board does not support OpenSDA, a standalone J-Link pod is required.

* You have a standalone J-Link pod that is connected to the debug interface of your board. Note that some
hardware platforms require hardware modification in order to function correctly with an external debug interface.

After the J-Link interface is configured and connected, follow these steps to download and run the demo applications:

1. Connect the development platform to your PC via USB cable between the OpenSDA USB connector (may be named
OSJTAG for some boards) and the PC USB connector. If using a standalone J-Link debug pod, also connect it to the
SWD/JITAG connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see Appendix A). Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable
in board.h file)

b. No parity

c. 8 data bits

d. 1 stop bit

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 43

Run a demo using Arm® GCC

Category:

[=- Session

.- Logging
= Terminal

- Keyboard

. Ball

" Features
=~ Window

- Appearance

- Behaviour

- Tranglation

o Selection
. ‘- Colours
= Connection

— Data

.- Proxy

- Telnet

Rlogin
#- S5H
- Seral

- F S|

Basic options for your PuT TY session
Specify the destination you want to connect to
Senal line Speed
COM16 115200
nechon type:
“)Raw () Telnet () Rlogin () SSH | @ Sedal
Load, save or delete a stored session
Saved Sessions
Debug

Defaut % '
' CLALIC

i

Close window on exit:

) Aways

toout ||

Heip

N

@ Only on clean exit

| Open

[Canes

Figure 54. Terminal (PuTTY) configurations

GDB Server”.

Modify the settings as shown below. The target device selection chosen for this example is the MK64FN1MOxxx12.

After it is connected, the screen should resemble this figure:

Open the J-Link GDB Server application. Assuming the J-Link software is installed, the application can be launched by
going to the Windows operating system Start menu and selecting ‘“Programs -> SEGGER -> J-Link <version> J-Link

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018

44

NXP Semiconductors

4
Run a demo using Arm® GCC

!

B SEGGER J-Link GDE Server V5.001 (o] @ [=]
File Help
v Localhaost only
GDE IWailhg for connechion l Iritial ST speed | 1000 kHz [T Stayontop
[v Show log window
JLink [Connected Current SWD speed [1000 kHz [Benerals gie
CPU [MKBAFNTMDnex1 2 330V Lile ercien v | Verly downioad
[T Init regs on start
Lo ot M
Target interface speed: 1000kH= -
Target endian: little

Connecting to J-Link...

J=Link 1= connected.

Firmware: J-Link OpenSDA 2 compiled Apr 24 2014 14:44:11
Hardwar=: V1.00

SoH: 621000000

Checking target wvoltage. ..

Target woltage: 3 .30 ¥

Li=tening on TCP-IF port 2331

Connecting to target.. Connected to target

Vaiting for GDB connection. .

m

'] b

:U Bytes downloaded 1 JTAG device

Figure 55. SEGGER J-Link GDB Server screen after successful connection

6. If not already running, open a GCC Arm Embedded tool chain command window. To launch the window, from the
Windows operating system Start menu, go to “Programs -> GNU Tools Arm Embedded <version>" and select “GCC
Command Prompt”.

GMNU Teoeols for ARM Embedded Process
3 Documentatinn_

2| GCC Command Prompt
{9 Uninstall GNU Tools for ARM Embec

Figure 56. Launch command prompt
7. Change to the directory that contains the example application output. The output can be found in using one of these
paths, depending on the build target selected:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/debug
<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/release
For this example, the path is:
<install_dir>/boards/frdmk64f/demo_apps/hello_world/armgcc/debug

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 45

A ————
Run a demo using Arm® GCC

8. Run the command “arm-none-eabi-gdb.exe <application_name>.elf”. For this example, it is “arm-none-eabi-gdb.exe
hello_world.elf”.

El Administrator GCC Command Prompt - arm-none-eabi-gdb hello_world elf (=]

_FRDM-Kb6 4Fbho avrds>f rdmkéb4f sdemo_appsshe Llo_worldsarmgecsde bug rarm
tﬂh hello_world.e
Tools for ARH E :111*'1 Froc sorsy 7.8.0.28158684-cvs
2814 Free Soft wndati Inc.
GMU GPL wers ~ ttp: Sgnu_orgslicensesSgpl._ html >
free software: you : tn : and redistribute it.
: NO 'FFIHFHHI'f Tu the l"JlTI:'II permitted by law. Tvpe "show copewing''

target=arm-none—eabhi.

(III-' manua l

to search for commands related to “word"..
I'lurl hello_world.elF .. . done.

Figure 57. Run arm-none-eabi-gdb

9. Run these commands:
a. "target remote localhost:2331"
b. "monitor reset"
¢. "monitor halt"
d. "load"
e. "monitor reset"

10. The application is now downloaded and halted at the reset vector. Execute the “monitor go” command to start the demo
application.

The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your
terminal settings and connections.

Figure 58. Text display of the hello_world demo

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
46 NXP Semiconductors

4
Run a demo using Arm® GCC

6.4 Build a multicore example application

This section describes the steps to build and run a dual-core application. The demo application build scripts are located in this
folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/armgcc

Begin with a simple dual-core version of the Hello World application. The multicore Hello World GCC build scripts are
located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cmOplus/armgcc/build_debug.bat
<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/armgcc/build_debug.bat

Build both applications separately following steps for single core examples as described in Section 6.2 "Build an example
application”.

(BN Administrater: GCC Command Prompt - build_debug.bat —| _I |
[57«1
[611
661
1]
V6]
881
85x1
281
251

[188:]1 Linking C executahle debugshello_world_cmBplus.elf
[186:+1 Built target hello_world_cmBplus.elf

c:wDEDK_2.8_LPCipressobdiidshoardsslpoxpressobdlid4multicore_examples~hello_wor
ldscmiplus~armgcc>IF "' == """ {(pause 2>
Press any key to continue . . .

Figure 59. hello_world_cmOplus example build successful

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 47

Run a demo using Arm® GCC

-

BN Administrator: GCC Command Prompt - build_debug.bat

[188:+ 1 Linking C executahle debugs~hello_world_cmd.elf
[188:+1 Built target hello_world_cmd.elf

c:=~I~5DK_2 _8_LPCHpressob4ilds~boardsslpecxpressob4ii4dwmulticore_examplesz“hello_wor
ldscmd~armgcc>IF "' == "" {pause
Press any key to continue . . .

Figure 60. hello_world_cm4 example build successful

6.5 Run a multicore example application

When running a multicore application, the same prerequisites for J-Link/J-Link OpenSDA firmware, and the serial console as
for the single core application, applies, as described in Section 6.3, "Run an example application”.

The primary core debugger handles flashing of both the primary and the auxiliary core applications into the SoC flash
memory. To download and run the multicore application, switch to the primary core application project and perform steps 1
to 10, as described in Section 6.3, "Run an example application”. These steps are common for both single core and dual-core
applications in Arm GCC.

Both the primary and the auxiliary image is loaded into the device flash memory. After execution of the “monitor go”
command, the primary core application is executed. During the primary core code execution, the auxiliary core code is re-
allocated from the flash memory to the RAM, and the auxiliary core is released from the reset. The hello_world multicore
application is now running and a banner is displayed on the terminal. If this is not true, check your terminal settings and
connections.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
48 NXP Semiconductors

4
Run a demo using Arm® GCC

+

BN Administrator: GCC Command Prompt | =N |-'EE"-]

c:wDEDK_2.0_LPCipressobdiidshoardsslpoxpressobdlid4multicore_examples~hello_wor
ldscmd~armgcc >IF " == "" {pause 2
Press any key to continue . . .

c:wDAEDK_2.8_LPCipressob4dilid-boardsslpocxpressobdlilid multicore_examples~hello_wor
ldscmd~armgcc >cd debug

c:sDSNSDK_2 . 8_LPCiApressoSdlidshoardsslpoxpressob4did4 multicore_examplesshello_wor
ldscmd~armgccsdebug >arm—none—eabi—gdb.exe hello_world_cmd.elf

GHMU gdh <GMU Tools for ARM Embedded Processors 6—2017—g2—update>r 7.12.1.201780417
—git

Copyright <C» 2817 Free Software Foundation. Inc.

Licenze GPLu3+: GHU GPL version 3 or later <http:/“gnu.org-licenses-gpl.html>
Thiz iz free software: you are free to change and redistribute it.

There iz MO WARRANTY. to the extent permitted by law. Type "“show copying®
and "show warranty' for details.

This GDB was configured as "“"——host=i68b6—wbd-—mingw3d2 ——target=arm—none—eahi®.
Type '"zhow configuration' for configuration details.

For bug reporting instructions, please see:

“http: 2w .gnu.orgszof tware/gdb-bugs s>,

Find the GDB manual and other documentation resources online at:
Chttp:/svuw._gnu.orgssof twaresgdb-documentations>.

For help,. type "help®.

Type "apropos word" to search for commandszs related to “"word'...

Reading symbols from hello_world_cmd.elf...done.

Cgdbh> target remote localhost:2331

Remote debugging using localhost:=2331

Ax00004298 in 77 2

Cgdb? monitor reset

Resetting target

Cgdbh? monitor halt

Cgdb> load

Loading section .interrupts,. size Bxed 1lma BxA

Loading section .text, size Bx3614 lma HAxed

Loading section .ARM. size Bx8 Ima Bx36f8

Loading szection .init_array,. szize Bx4d Ilma Bx3780

Loading section .fini_array,. sicse Axd Ima Bx3784

Loading section .data. size Bx68 Ilma Bx37HE8

Loading section .mBcode, size Bxif64 Ima Bx3B008A

Start address Bx1d8. load size 22224

Transfer rate: 1973 KBrsec, 3174 hytessurite.

Cgdb? monitor reset

Resetting target

Cgdbh? monitor go

Cgdb> g

A debugging session iz active.

Inferior 1 [Remote target] will be killed.

Quit anyway? (y or n? v

c:sDSSDK_2 . 8_LPCipressoS4lid4shoardsslpoxpressobd4lidsmulticore_examplesshello_wor
ldscmdsarmgccsdebug >

Figure 61. Loading and running the multicore example

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 49

A
MCUXpresso Config Tools

i COM17:115200baud - Tera Term VT [E=RE ™

File Edit Setup Control Window KanjiCode Help
Starting Secondary core. -

Hello Horld from the Primary Core!

Press the SW1 button to Stop Secondary core.
Press the SW2 button to Start Secondary core.
Secondary core 1s in startup code.

Secondary core is in exception number 3.

Figure 62. Hello World from primary core message

7 MCUXpresso Config Tools

MCUXpresso Config Tools can help configure the processor and generate initialization code for the on chip peripherals. The
tools are able to modify any existing example project, or create a new configuration for the selected board or processor. The
generated code is designed to be used with MCUXpresso SDK version 2.x.

The MCUXpresso Config Tools consist of the following:

Table 1. MCUXpresso Config Tools

Config Tool Description Image

Pins tool For configuration of pin routing and pin
electrical properties.

Clock tool For system clock configuration
Peripherals tools For configuration of other peripherals
Project Cloner Allows creation of the standalone

projects from SDK examples.

®®E®

MCUXpresso Config Tools can be accessed in the following products:

* Integrated in the MCUXpresso IDE. Config tools are integrated with the compiler and debugger, so this represents the
easiest way to begin that development.

+ Standalone version available for download from www.nxp.com. Recommended for customers using IAR Embedded
Workbench, Keil MDK pVision, or Arm GCC.

* Online version available on mcuxpresso.nxp.com. Recommended to do a quick evaluation of the processor or use the
tool without installation.

Each version of the product contains a specific “Quick Start Guide” document that can help start your work.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
50 NXP Semiconductors

https://www.nxp.com
http://mcuxpresso.nxp.com

4
MCUXpresso IDE New Project Wizard

8 MCUXpresso IDE New Project Wizard

MCUXpresso IDE features a new project wizard. The wizard provides functionality for the user to create new projects from
the installed SDKs (and from pre-installed part support), offers the flexibility to select/change many builds, includes a library,
and provides source code options. The source code is organized as software components, categorized as driver, utilities, and
middleware.

To use the wizard, start the MCUXpresso IDE. This is located in the QuickStart Panel at the bottom left of the MCUXpresso
IDE window. Select the “New project” option, shown in the below figure.

) Quickstart Panel Slobal Variables /ariables Breakpoints Outline =
g MCUXpresso IDE (Free Edition)

~ Start here

B New project...
I Import SDK example(s)...

111

® Import project(s) from file system...

= Quick Settings==

Figure 63. MCUXpresso IDE Quickstart Panel

For more details of the usage of new project wizard, see the “MCUXpresso_IDE_User_Guide.pdf” in the MCUXpresso IDE
installation folder.

9 Appendix A - How to determine COM port

This section describes the steps necessary to determine the debug COM port number of your NXP hardware development
platform. All NXP boards ship with a factory programmed, on-board debug interface, whether it’s based on OpenSDA or the
legacy P&E Micro OSJTAG interface. To determine what your specific board ships with, see Appendix B.

1. Linux: The serial port can be determined by running the following command after the USB Serial is connected to the
host:

$ dmesg | grep "ttyUSB"
[503175.307873] usb 3-12: cp210x converter now attached to ttyUSBO
[503175.309372] usb 3-12: cp2l0x converter now attached to ttyUSB1

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 51

A ————
Appendix A - How to determine COM port

There are two ports, one is Cortex-A core debug console, another is for Cortex M4.

2. Windows: To determine the COM port, open the Windows operating system Device Manager. This can be achieved by
going to the Windows operating system Start menu and typing “Device Manager” in the search bar, as shown below:

Control Panel (3)

|:é Device Manager
E_ﬁ‘u‘iewdevicer"" nk

| Device Manager
a8 Update devid| yiew and update your hardware's settings and driver s
Pictures (9)

|| Companies.inc

|| hutinc

__| PTP5ulllmageTables.inc
. VIDs_PIDs. TXT

|| SCSI_CDB_RovCpyRslts.inc
L SCSI_CDB_SPC.inc

|| hci_command_table.inc
.| RNDI5_OIDuinc

| | CDCRequests.inc

Files (1)

= dialog_settings.xml

p' See more results

| Device Manager 4 | | Shut down | »

Figure 64. Device manager
3. In the Device Manager, expand the “Ports (COM & LPT)” section to view the available ports. Depending on the NXP
board you’re using, the COM port can be named differently:
a. OpenSDA — CMSIS-DAP/mbed/DAPLink interface:

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
52 NXP Semiconductors

4
Appendix B - Default debug interfaces

477 Ports (COM &L LPT)
P ? mbed Senal Port (COM41)
Figure 65. OpenSDA — CMSIS-DAP/mbed/DAPLink interface
b. OpenSDA — P&E Micro:
4 73" Ports (COM &L LPT)
P ? Open5DA - CDC Senal Port (http://www.pemicro.com/opensda) (COM22)

Figure 66. OpenSDA - P&E Micro
c. OpenSDA - J-Link:

4 Y Ports (COM & LPT)
- .73 JLink CDC UART Port (COM12)

Figure 67. OpenSDA - J-Link
d. P&E Micro OSJTAG:

475 Ports (COM & LPT)
- LT OSBDM/OSITAG - CDC Serial Port (http://www.pemicro.com/esbdm, http://www.pemicro.com/opensda) (COM43)

Figure 68. P&E Micro OSJTAG

10 Appendix B - Default debug interfaces

The MCUXpresso SDK supports various hardware platforms that come loaded with a variety of factory programmed debug
interface configurations. The following table lists the hardware platforms supported by the MCUXpresso SDK, their default
debug interface, and any version information that helps differentiate a specific interface configuration.

NOTE
The 'OpenSDA details' column of the following table is not applicable to LPC.

Table 2. Hardware platforms supported by MCUXpresso SDK

Hardware platform Default interface OpenSDA details
FRDM-K22F CMSIS-DAP/mbed/DAPLink OpenSDA v2.1
FRDM-K28F DAPLink OpenSDA v2.1
FRDM-K32W042 CMSIS-DAP N/A

FRDM-K64F CMSIS-DAP/mbed/DAPLink OpenSDA v2.0
FRDM-K66F J-Link OpenSDA OpenSDA v2.1

FRDM-K82F CMSIS-DAP OpenSDA v2.1
FRDM-KE15Z DAPLink OpenSDA v2.1
FRDM-KL02Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL03Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL25Z P&E Micro OpenSDA OpenSDA v1.0

Table continues on the next page...

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 53

Appendix B - Default debug interfaces

Table 2. Hardware platforms supported by MCUXpresso SDK (continued)

FRDM-KL26Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL27Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL28Z P&E Micro OpenSDA OpenSDA v2.1
FRDM-KL43Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL46Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KL81Z CMSIS-DAP OpenSDA v2.0
FRDM-KL82Z CMSIS-DAP OpenSDA v2.0
FRDM-KV10Z CMSIS-DAP OpenSDA v2.1
FRDM-KV11Z P&E Micro OpenSDA OpenSDA v1.0
FRDM-KV31F P&E Micro OpenSDA OpenSDA v1.0
FRDM-KW24 CMSIS-DAP/mbed/DAPLink OpenSDA v2.1
FRDM-KW36 DAPLink OpenSDA v2.2
FRDM-KW41Z CMSIS-DAP/DAPLink OpenSDA v2.1 or greater
Hexiwear CMSIS-DAP/mbed/DAPLink OpenSDA v2.0
MAPS-KS22 J-Link OpenSDA OpenSDA v2.0
TWR-K21D50M P&E Micro OSJTAG N/AOpenSDA v2.0
TWR-K21F120M P&E Micro OSJTAG N/A

TWR-K22F120M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-K24F120M

CMSIS-DAP/mbed

OpenSDA v2.1

TWR-K60D100M

P&E Micro OSJTAG

N/A

TWR-K64D120M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-K65D180M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-K65D180M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-KV10Z32

P&E Micro OpenSDA

OpenSDA v1.0

TWR-K80F150M CMSIS-DAP OpenSDA v2.1
TWR-K81F150M CMSIS-DAP OpenSDA v2.1
TWR-KE18F DAPLink OpenSDA v2.1

TWR-KL28Z72M

P&E Micro OpenSDA

OpenSDA v2.1

TWR-KL43Z48M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-KL81Z72M

CMSIS-DAP

OpenSDA v2.0

TWR-KL82Z72M

CMSIS-DAP

OpenSDA v2.0

TWR-KM34Z275M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-KV10Z32

P&E Micro OpenSDA

OpenSDA v1.0

TWR-KV11Z75M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-KV31F120M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-KV46F150M

P&E Micro OpenSDA

OpenSDA v1.0

TWR-KV58F220M

CMSIS-DAP

OpenSDA v2.1

TWR-KW24D512

P&E Micro OpenSDA

OpenSDA v1.0

USB-KW24D512

N/A External probe

N/A

USB-KW41Z

CMSIS-DAP\DAPLink

OpenSDA v2.1 or greater

Table continues on the next page...

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018

54

NXP Semiconductors

Appendix C - Updating debugger firmware
Table 2. Hardware platforms supported by MCUXpresso SDK (continued)

USB-KW41Z CMSIS-DAP\DAPLink OpenSDA v2.1 or greater
USB-KW41Z CMSIS-DAP\DAPLink OpenSDA v2.1 or greater
LPC54018 loT Module N/A N/A

LPCXpresso54018 CMSIS-DAP N/A

LPCXpresso54102 CMSIS-DAP N/A

LPCXpresso54114 CMSIS-DAP N/A

LPCXpresso51U68 CMSIS-DAP N/A

LPCXpresso54608 CMSIS-DAP N/A

LPCXpresso54618 CMSIS-DAP N/A

LPCXpresso54628 CMSIS-DAP N/A

HVP-KE18F DAPLink OpenSDA v2.2
HVP-KV46F150M P&E Micro OpenSDA OpenSDA v1
HVP-KV11Z75M CMSIS-DAP OpenSDA v2.1
HVP-KV58F CMSIS-DAP OpenSDA v2.1
HVP-KV31F120M P&E Micro OpenSDA OpenSDA v1

11 Appendix C - Updating debugger firmware

11.1 Updating OpenSDA firmware

Any NXP hardware platform that comes with an OpenSDA-compatible debug interface has the ability to update the
OpenSDA firmware. This typically means switching from the default application (either CMSIS-DAP/mbed/DAPLink or
P&E Micro) to a SEGGER J-Link. This section contains the steps to switch the OpenSDA firmware to a J-Link interface.
However, the steps can be applied to also restoring the original image. For reference, OpenSDA firmware files can be found
at the links below:

e J-Link: Download appropriate image from www.segger.com/opensda.html. Chose the appropriate J-Link binary based
on the table in Appendix B. Any OpenSDA v1.0 interface should use the standard OpenSDA download (in other
words, the one with no version). For OpenSDA 2.0 or 2.1, select the corresponding binary.

o CMSIS-DAP/mbed/DAPLink: DAPLink OpenSDA firmware is available at www.nxp.com/opensda.

* P&E Micro: Downloading P&E Micro OpenSDA firmware images requires registration with P&E Micro
(Www.pemicro.com).

These steps show how to update the OpenSDA firmware on your board for Windows operating system and Linux OS users:.

1. Unplug the board's USB cable.
2. Press the board's "Reset" button. While still holding the button, plug the board back in to the USB cable.
3. When the board re-enumerates, it shows up as a disk drive called "MAINTENANCE".

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
NXP Semiconductors 55

http://www.segger.com/opensda.html
http://www.nxp.com/opensda
http://www.pemicro.com/opensda/index.cfm

A ————
Appendix C - Updating debugger firmware

1M Computer
%ﬂ Primary (C:)
e MAINTENANCE (E:)

Figure 69. MAINTENANCE drive

4. Drag the new firmware image onto the MAINTENANCE drive in Windows operating system Explorer, similar to how
you would drag and drop a file onto a normal USB flash drive.

NOTE
If for any reason the firmware update fails, the board can always re-enter
maintenance mode by holding down the "Reset" button and power cycling.

These steps show how to update the OpenSDA firmware on your board for Mac OS users.

1. Unplug the board's USB cable.

2. Press the board's "Reset" button. While still holding the button, plug the board back in to the USB cable.

3. For boards with OpenSDA v2.0 or v2.1, it shows up as a disk drive called "BOOTLOADER" in Finder. Boards with
OpenSDA v1.0 may or may not show up depending on the bootloader version. If you see the drive in Finder, proceed to
the next step. If you do not see the drive in Finder, use a PC with Windows OS 7 or an earlier version to either update
the OpenSDA firmware, or update the OpenSDA bootloader to version 1.11 or later. The bootloader update instructions
and image can be obtained from P&E Microcomputer website.

4. For OpenSDA v2.1 and OpenSDA v1.0 (with bootloader 1.11 or later) users, drag the new firmware image onto the
BOOTLOADER drive in Finder, similar to how you would drag and drop the file onto a normal USB Flash drive.

5. For OpenSDA v2.0 users, type these commands in a Terminal window:

> sudo mount -u -w -o sync /Volumes/BOOTLOADER
> cp -X <path to update file> /Volumes/BOOTLOADER

NOTE
If for any reason the firmware update fails, the board can always re-enter
bootloader mode by holding down the "Reset" button and power cycling.

11.2 Updating LPCXpresso board firmware

The LPCXpresso hardware platform comes with a CMSIS-DAP-compatible debug interface (known as Link2). This
firmware in this debug interface may be updated using the host computer utility called LPCScrypt. This typically used when
switching between the default debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this firmware with new
releases of these. This section contains the steps to re-program the debug probe firmware.

NOTE
If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board
(JP5 on some boards, but consult the board user manual or schematic for specific jumper
number), Link2 debug probe boots to DFU mode, and MCUXpresso IDE automatically
downloads the CMSIS-DAP firmware to the probe before flash memory programming
(after clicking the "Debug" button). Using DFU mode ensures most up-to-date/
compatible firmware is used with MCUXpresso IDE.

NXP provides the LPCScrypt utility, which is the recommended tool for programming the latest versions of CMSIS-DAP
and J-Link firmware onto LPC-Link2 or LPCXpresso boards. The utility can be downloaded from www.nxp.com/lIpcutilities.

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018
56 NXP Semiconductors

http://www.nxp.com/lpcutilities

Revision history

These steps show how to update the debugger firmware on your board for Windows operating system. For Linux OS, follow
the instructions described in LPCScrypt user guide (www.nxp.con/Ipcutilities, select LPCScrypt, then select documentation

tab).

Nk L=

Install the LPCScript utility.

Unplug the board's USB

cable.

Make the DFU link (install the jumper labelled DFUlink).
Connect the probe to the host via USB (use Link USB connector).
Open a command shell and call the appropriate script located in the LPCScrypt installation directory (<LPCScrypt

install dir>).

a. To program CMSIS-DAP debug firmware: <LPCScrypt install dir>/scripts/program CMSIS
b. To program J-Link debug firmware: <LPCScrypt install dirs/scripts/program JLINK
Remove DFU link (remove the jumper installed in step 3).
Re-power the board by removing the USB cable and plugging it again.

12 Revision history

This table summarizes revisions to this document.

Table 3. Revision history

Revision number Date Substantive changes
8 05/2018 Updates for MCUXpresso SDK
v2.4.0
7 03/2018 Updates for MCUXpresso SDK
v2.3.1
6 11/2017 Minor updates for MCUXpresso
SDK v2.3.0
Added Chapter 8 and 9
5 06/2017 Added HVP boards to Appendix B Table
1
Removed KDS chapters
4 05/2017 Added 'LPCXpresso54618' and 'FRDM-
KW36' board to Appendix B Table 1.
Updated DAPLink OpenSDA link in
Appendix C.
03/2017 MCUXpresso SDK
08/2016 Added Chapter 8 and updated Section
5.5
1 06/2016 Added Section 5.5 related to the New
Project Wizard for KSDK 2.0.0
0 01/2016 Initial release

Getting Started with MCUXpresso SDK, Rev. 8, 05/2018

NXP Semiconductors

57

http://www.nxp.com/lpcutilities

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

arm

Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based
on the information in this document. NXP reserves the right to make changes
without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of
its products for any particular purpose, nor does NXP assume any liability arising
out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be
validated for each customer application by customer’s technical experts. NXP
does not convey any license under its patent rights nor the rights of others. NXP
sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,
Freescale, the Freescale logo, Kinetis, and Tower are trademarks of NXP B.V. All
other product or service names are the property of their respective owners. Arm,
Cortex, Keil, and pVision are registered trademarks of Arm Limited (or its
subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2018 NXP B.V.

Document Number MCUXSDKGSUG
Revision 8, 05/2018

r
4\

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Getting Started with MCUXpresso SDK User's Guide
	Overview
	MCUXpresso SDK board support folders
	Example application structure
	Locating example application source files

	Run a demo using MCUXpresso IDE
	Select the workspace location
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application

	Run a demo application using IAR
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application

	Run a demo using Keil® MDK/μVision
	Install CMSIS device pack
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application

	Run a demo using Arm® GCC
	Set up toolchain
	Install GCC Arm Embedded tool chain
	Install MinGW (only required on Windows OS)
	Add a new system environment variable for ARMGCC_DIR
	Install CMake

	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application

	MCUXpresso Config Tools
	MCUXpresso IDE New Project Wizard
	Appendix A - How to determine COM port
	Appendix B - Default debug interfaces
	Appendix C - Updating debugger firmware
	Updating OpenSDA firmware
	Updating LPCXpresso board firmware

	Revision history

