
22 February 2018 DocID029934 Rev 1 1/33
33

UM2356
User Manual

VL53L1X API User Manual

Introduction
VL53L1X is a long-distance ranging time-of-flight sensor.

The purpose of this User Manual is to describe the set of functions to call in order to get
ranging data using the VL53L1X driver

Figure 1. VL53L1X ranging sensor module

References
1. VL53L1X Datasheet (DocID029632)

www.st.com

http://www.st.com

Contents UM2356

2/33 DocID029934 Rev 1

Contents

1 VL53L1X System overview . 3

2 Ranging API functions description . 4
2.1 Autonomous Ranging description . 4

2.2 Timing considerations . 4

2.3 API functions call flow . 5
2.3.1 Calibration flow . 5

2.3.2 Ranging flow . 6

2.4 Mandatory ranging functions . 7
2.4.1 Data init . 7

2.4.2 Static Init . 7

2.4.3 Start a measurement . 7

2.4.4 Waiting for a result: polling or interrupt . 7

2.4.5 Get measurement . 7

2.4.6 Clear source of interrupt . 7

2.4.7 Stop a measurements . 8

2.5 Optional driver functions . 9
2.5.1 Wait for boot . 9

2.5.2 Timing Budget and Inter-measurement period . 9

2.5.3 Distance mode . 10

2.5.4 Limit checks setting . 11

2.5.5 Thresholds . 13

2.5.6 Region of Interest (ROI) setting . 15

2.5.7 Spad array coordinates versus scene . 16

2.5.8 Optical center coordinates . 17

2.5.9 VDDIO configuration . 18

2.6 RangingMeasurementData structure . 19

3 Calibration functions . 20
3.1 RefSPAD calibration . 21

3.1.1 RefSPAD calibration function . 21

3.1.2 RefSPAD calibration procedure . 21

3.1.3 Getting RefSPAD calibration results . 21

3.1.4 Setting RefSPAD calibration data . 22

DocID029934 Rev 1 3/33

UM2356 Contents

33

3.2 Offset calibration . 23
3.2.1 Offset calibration function . 23

3.2.2 Offset calibration procedure . 23

3.2.3 Getting offset calibration results . 23

3.2.4 Setting offset calibration data . 23

3.3 Crosstalk calibration . 25
3.3.1 Cross talk calibration function . 25

3.3.2 Cross talk calibration procedure . 25

3.3.3 Xtalk Calibration distance characterization . 25

3.3.4 Getting Cross talk calibration results . 26

3.3.5 Setting Cross talk calibration data . 26

3.3.6 Enable/Disable cross talk compensation . 26

4 Driver errors and warnings . 28

5 Acronyms and abbreviations . 30

6 Revision history . 31

VL53L1X System overview UM2356

4/33 DocID029934 Rev 1

1 VL53L1X System overview

VL53L1X system is composed of the VL53L1X module and a driver running on the host.

Figure 2. VL53L1X System

ST delivers a software driver, referred to as “Driver” in this document.

This document describes the driver functions accessible to the Host, to control the device
and get the ranging data.

The driver is an implementation of a set of functions required to use the VL53L1X device. It
does minimal assumptions on the OS integration and services. As such, sequencing of
actions, execution/threading model, platform adaptation, and device structure allocation are
not part of the driver implementation but are left open to the integrator.

The sequencing of the function calls must follow a set of rules, defined in this document.

DocID029934 Rev 1 5/33

UM2356 Ranging API functions description

33

2 Ranging API functions description

This section give a functional description of the ranging and describes the API call flow that
should be followed to perform a ranging measurement using the VL53L1X.

2.1 Autonomous Ranging description
The sensor performs the ranging continuously and autonomously with a programmable
inter-measurement period.

Ranging is done without involvement from the host allowing the host to be in a low-power
state. Host is only waken up upon measurement interrupts when a ranging is available.

It is possible to set a threshold of distance and/or signal detection criteria, then an interrupt
is raised when the criteria is met.

2.2 Timing considerations
Timing budget is defined as the programmed time needed by the sensor to perform and
report a ranging measurement data. During this time, the VCSEL is pulsed. An interrupt is
raised or the date ready register is updated at the end of the timing budget.
Inter-measurement period is defined as the programmed time between two consecutive
measurements.
Figure 3: VL53L1X Autonomous Ranging sequence and timings shows the timing budget
and inter-measurement period.

Host can change the default timing budget and inter-measurement period by using a
dedicated driver function described in Chapter 2.5.2: Timing Budget and Inter-measurement
period on page 10.

Host can decide to change timing budget to improve ranging accuracy or max distance
limits.

Figure 3. VL53L1X Autonomous Ranging sequence and timings

Ranging API functions description UM2356

6/33 DocID029934 Rev 1

2.3 API functions call flow
The VL53L1X driver is used in two use cases:
 Calibration flow used for device calibration.
 Ranging flow used at user applications level.

2.3.1 Calibration flow
Calibration flow is described in Figure 4: VL53L1X Calibration flow on page 6.

All API functions for calibration are described in Chapter 3: Calibration functions on page 21

Figure 4. VL53L1X Calibration flow

DocID029934 Rev 1 7/33

UM2356 Ranging API functions description

33

2.3.2 Ranging flow
Ranging flow is described in Figure 5: VL53L1X Ranging flow on page 7

Figure 5. VL53L1X Ranging flow

Ranging API functions description UM2356

8/33 DocID029934 Rev 1

2.4 Mandatory ranging functions
The following section shows the API functions required to perform the system initialization,
before starting a measurement.

2.4.1 Data init
VL53L1_DataInit() function is called one time, and it performs the device initialization.

To be called once and only once after device is brought out of reset.

2.4.2 Static Init
VL53L1_StaticInit() function allows to load device settings specific for a given use
case.

2.4.3 Start a measurement
VL53L1_StartMeasurement() function must be called to start a measurement.

2.4.4 Waiting for a result: polling or interrupt
There are 3 ways to know that a ranging data is available:
1. The host can call a polling function to wait until a ranging data is available,

The function VL53L1_WaitMeasurementDataReady() is polling on the device interrupt
status until a ranging data is ready.

This function is blocking any other operation on the Host as long as it is not completed,
because an internal polling is performed.
2. The host can poll on a function to ask if a the ranging data is available,

Host can poll on the function VL53L1_GetMeasurementDataReady() to know if a new
ranging data is ready.

This function is not blocking. It is the preferred and recommended method if the sensor is
used in polling mode.
3. The host can wait for a physical interrupt.

An alternative and preferred way to get the ranging status is to use the physical interrupt
output: By default, GPIO1 is pulled down when a new ranging data is ready.

This pin is an output pin only, there is no input interrupt pin on this device.

2.4.5 Get measurement
Vl53L1_GetRangingMeasurementData() can be used to get a ranging data.

When calling this function to get the device ranging results, a structure called
VL53L1_RangingMeasurementData_t is returned.

This structure is described in Chapter 2.6: RangingMeasurementData structure.

2.4.6 Clear source of interrupt
Interrupt must be cleared by calling driver function, after reading ranging data,
VL53L1_ClearInterruptAndStartMeasurement().

DocID029934 Rev 1 9/33

UM2356 Ranging API functions description

33

In order to get consistent results, it is mandatory to call this function after getting the ranging
measurement.

If this function is not called, the next ranging will be started anyway and the results will be
updated. But the data ready status flag will not be updated, and the physical interrupt pin will
not be cleared.

2.4.7 Stop a measurements
Host can decide to stop the measurement by calling VL53L1_StopMeasurement()
function.

If the stop request occurs during a range measurement, then the measurement is aborted
immediately.

Ranging API functions description UM2356

10/33 DocID029934 Rev 1

2.5 Optional driver functions

2.5.1 Wait for boot
VL53L1_WaitDeviceBooted() function allows to ensure that the device is booted and
ready.

This function is optional. It is a blocking function because there is an internal polling. This
function should not be blocking for more than 4ms, assuming 400kHz I2C and 2ms latency
per transaction.

2.5.2 Timing Budget and Inter-measurement period
Timing budget is the time required by the sensor to perform one range measurement.

VL53L1_SetMeasurementTimingBudgetMicroSeconds() is the function to be used.

The minimum and maximum timing budgets are [20ms, 1000ms]

Example of use:

status = VL53L1_SetMeasurementTimingBudgetMicroSeconds(&VL53L1Dev,
66000); sets the timing budget to 66ms.

The function VL53L1_GetMeasurementTimingBudgetMicroSeconds() allows to get
the programmed timing budget.

Inter-measurement period is the delay between two ranging operations.

An inter-measurement period can be programmable. When a ranging completes, the device
waits for the end of the programmed inter-measurement period before resuming the next
ranging. In the inter-measurement period, the sensor is in a low-power state.

VL53L1_SetInterMeasurementPeriodMilliSeconds() is the function to be used.

Example of use:

status = VL53L1_SetInterMeasurementPeriodMilliSeconds(&VL53L1Dev,
1000); sets the inter-measurement period to 1s.

The function VL53L1_GetInterMeasurementPeriodMilliSeconds() allows to get
the programmed inter-measurement period.

Note: If the inter-measurement period is shorter than the timing budget, once the device
completed the ranging, the next ranging starts immediately.

Note: The timing budget and inter-measurement period should not be called when the sensor is
ranging. User has to stop the ranging, change these parameters and re-start ranging.

DocID029934 Rev 1 11/33

UM2356 Ranging API functions description

33

2.5.3 Distance mode
A function is provided to optimize the internal settings and tunings to get the best ranging
performances depending on the ranging distance required by the application and the
ambient light conditions.

The benefit of changing the distance mode is detailed in Table 1: Distance modes

The function to be use is VL53L1_SetDistanceMode().

User can call VL53L1_GetDistanceMode() to get the programmed distance mode.

Table 1. Distance modes

Possible Distance mode Maximum
distance Benefit / comments

Short up to 1.3m Better Ambient immunity

Medium up to 3 m

Long (default) up to 4 m Maximum distance

Ranging API functions description UM2356

12/33 DocID029934 Rev 1

2.5.4 Limit checks setting
Driver uses 2 parameters to qualify the ranging measurement: signal and sigma.

If signal or sigma are outside the limits, the ranging is flagged as invalid (RangeStatus is
different than zero)

Applicable limits are:
 Sigma: VL53L1_CHECKENABLE_SIGMA_FINAL_RANGE

Sigma is expressed in mm and is the estimation of the standard deviation of the
measurement.
 Signal: VL53L1_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE
Signal rate measurement, expressed in MCPS, represents the amplitude of the signal
reflected from the target and detected by the device.

Table 2 gives the default limit states and values.

If user disables the limit checks, ranging values will no more be filtered and possible wrong
measurement will be returned by the sensor. In this case, RangeStatus 1 and 2 will never be
reported.

Changing limits default settings should be done with care, as the side effects can be
important.

The limits change effects on standard deviation and max ranging distance are described in
Table 3.

Use VL53L1_SetLimitCheckEnable() and VL53L1_GetLimitCheckEnable() to
enable/disable a limit.

The limit value is set using VL53L1_SetLimitCheckValue() and
VL53L1_GetLimitCheckValue().

Table 2. Default limit states and values
Limit ID Default limit state Default limit value Associated RangeStatus

Sigma Enabled 15mm 1

Signal Enabled 1Mcps 2

Table 3. Signal and Sigma limits change effects

Limit ID Action
Effect on

standard deviation
Effect on

max ranging distance

Sigma
Increase limit - +

Decrease limit + -

Signal
Increase limit + -

Decrease limit - +

DocID029934 Rev 1 13/33

UM2356 Ranging API functions description

33

Example of use to enable signal check and set the limit to 0.4MCps:
Status = VL53L1_SetLimitCheckEnable(&VL53L1Dev,
VL53L1_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE, 1);
Status = VL53L1_SetLimitCheckValue(&VL53L1Dev,
VL53L1_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE, 0.40*65536);

Ranging API functions description UM2356

14/33 DocID029934 Rev 1

2.5.5 Thresholds
The device can be configured to operate in distance or/and signal threshold detection mode.
The ranging data is reported to the host when the pre-configured criteria is matched.

Detection mode

Detection mode allows to select the filtering conditions:
 0: No filter (default value, standard ranging mode),
 1: Filter on distance criteria only,

Distance detection mode, based on thresholds:

Distance detection mode (through CrossMode parameter) defines the distance criteria:
 0: Below a certain distance, "Threshold low"

– If object distance > Distance Low or no object found: no report
– If object distance < Distance Low and object found: report

 1: Beyond a certain distance, "Threshold high"
– If object distance < Distance High or no object found: no report
– If object distance > Distance High and object found: report

 2: Out of a distance range (min/max), "out of Window"
– Distance Low < detected distance < Distance High: no report
– Distance Low > detected distance > Distance High: report

 3: Within a distance range (min/max), "inside Window"
– Distance Low > detected distance > Distance High: no report
– Distance Low < detected distance < Distance High: report

Distance Low is the minimum configured distance in millimeter.

Distance High is the maximum configured distance in millimeter.

No Target

This is an alternate detection mode. In the standard use case If no target is detected no
ranging is reported. Using no target detection mode (setting IntrNoTarget to 1) allows to
generate an interrupt when no target is present.

API function

VL53L1_SetThresholdConfig() is the function to be used.

The VL53L1_DetectionConfig_t structure contains all parameters to be set.

Example of use:

detectionConfig.DetectionMode = 1;

detectionConfig.Distance.CrossMode = 3;

detectionConfig.IntrNoTarget = 0;

DocID029934 Rev 1 15/33

UM2356 Ranging API functions description

33

detectionConfig.Distance.High = 1000;

detectionConfig.Distance.Low = 100;

status = VL53L1_SetThresholdConfig(&VL53L1Dev, &detectionConfig);

to program the device to report ranging only when an object is detected within 10 cm and
1m (in this example).

The function VL53L1_GetThresholdConfig() allows to get the programmed report
threshold configuration.

Ranging API functions description UM2356

16/33 DocID029934 Rev 1

2.5.6 Region of Interest (ROI) setting
The receiving SPAD array of the sensor is including 16x16 SPADs which cover the full field
of view (FoV). It is possible to program a smaller ROI, with a smaller number of SPAD, in
order to reduce the FoV.

To set a Region Of Interest (ROI) different than the default 16x16 one, user can call
VL53L1_SetUserROI() function

ROI is a square or rectangle defined by 2 corners: Top Left and Bottom Right.

4 coordinates are used to localize these 2 corners on the full SPAD array:
 TopLeftX
 TopLeftY
 BotRightX
 BotRightY

These coordinates are part of a structure of type VL53L1_UserRoi_t.

User has to define the ROI coordinates values in the structure, and call the driver function to
apply the ROI change.

Minimum ROI size is 4x4.

DocID029934 Rev 1 17/33

UM2356 Ranging API functions description

33

An example of ROI setting is given in Figure 6: VL53L1X ROI setting example

Figure 6. VL53L1X ROI setting example

VL53L1_UserRoi_t structure contains the coordinate of a ROI:
 TopLeftX: 8 bit integer that gives the top Left x coordinate [0;15]
 TopLeftY: 8 bit integer that gives the top Left y coordinate [0;15]
 BotRightX: 8 bit integer that gives the bottom Right x coordinate [0;15]
 BotRightY: 8 bit integer that gives the bottom Right x coordinate [0;15]

Example of use to set one ROI (based on Figure 6: VL53L1X ROI setting example):
VL53L1_UserRoi_t roiConfig;
roiConfig.TopLeftX = 9;
roiConfig.TopLeftY = 13;
roiConfig.BotRightX = 14;
roiConfig.BotRightY = 10;
status = VL53L1_SetUserROI(&VL53L1Dev, &roiConfig);

2.5.7 Spad array coordinates versus scene
Figure 7: VL53L1X coordinates vs Scene shows the coordinates of an object in the spad
array compared to the location in the field of view.

Ranging API functions description UM2356

18/33 DocID029934 Rev 1

Figure 7. VL53L1X coordinates vs Scene

2.5.8 Optical center coordinates
Due to assembly tolerances, the optical center of the device can vary. The optical center of
the device is measured for each part. The optical center coordinates are stored in the device
NVM.

User has access to the optical center coordinates by calling
VL53L1_GetCalibrationData(). The returned structure VL53L1_CalibrationData_t
contains another structure of type VL53L1_optical_centre_t which contains the 2
coordinates (expressed in SPAD number):
 x_centre
 y_centre

Host can use these two coordinates to better align the ROI to the optical center.

DocID029934 Rev 1 19/33

UM2356 Ranging API functions description

33

2.5.9 VDDIO configuration
As described in the datasheet, user can select 2 modes for VDDIO value: 1V8 or 2V8
modes.

The selection of the mode is done directly in the code though a compilation key called
USE_I2C_2V8k.

If this compilation key is defined, the system will go in 2V8 mode, otherwise, it will be kept in
the default 1V8 mode.

Ranging API functions description UM2356

20/33 DocID029934 Rev 1

2.6 RangingMeasurementData structure
VL53L1_RangingMeasurementData_t structure is composed of:
 TimeStamp; Not implemented, please ignore it.
 StreamCount; this 8 bit integer gives a counter incremented at each range. The value

is first starting at 0, incrementing to 255, and then incrementing from 128 to 255.
 RangingQualityLevel: Not implemented, please ignore it.
 SignalRateRtnMegaCps: this value is the return signal rate in MegaCountPer Second

(MCPS), this is a 16.16 fix point value.To obtain real value it should be divided by
65536.

 AmbientRateRtnMegaCps: this value is the return ambient rate (in MCPS), this is a
16.16 fix point value, which is effectively a measure of the infrared light. To obtain real
value it should be divided by 65536.

 EffectiveSpadRtnCount : 16 bit integer that returns the effective SPAD count for the
current ranging. To obtain real value it should be divided by 256.

 SigmaMilliMeter : this 16.16 fix point value is an estimation of the standard deviation
of the current ranging, expressed in millimeter. To obtain real value it should be divided
by 65536.

 RangeMilliMeter; is a 16 bit integer giving the range distance in millimeter.
 RangeFractionalPart: Not implemented, please ignore it.
 RangeStatus: this is a 8 bit integer giving the range status for the current

measurement. Value = 0 means ranging is valid (refer to Table 4: Range Status).

Table 4. Range Status
 value RangeStatus String Comment

0 VL53L1_RANGESTATUS_RANGE_VALID Ranging measurement is valid.

1 VL53L1_RANGESTATUS_SIGMA_FAIL Raised if Sigma estimator check is above the internal
defined threshold.

2 VL53L1_RANGESTATUS_SIGNAL_FAIL Raised if Signal value is below the internal defined
threshold.

4 VL53L1_RANGESTATUS_OUTOFBOUNDS_FAIL Raised when phase is out of bounds.

5 VL53L1_RANGESTATUS_HARDWARE_FAIL Raised in case of HW or VCSEL failure.

7 VL53L1_RANGESTATUS_WRAP_TARGET_FAIL Wrapped target, not matching phases.

8 VL53L1_RANGESTATUS_PROCESSING_FAIL Internal algorithm underflow or overflow

14 VL53L1_RANGESTATUS_RANGE_INVALID The reported range is invalid.

DocID029934 Rev 1 21/33

UM2356 Calibration functions

33

3 Calibration functions

In order to get benefit of full performance of the device, VL53L1X driver includes calibration
functions to be run once at customer production line.

Calibration procedures have to be run to compensate the part to part parameters and the
presence of the cover glass that may affect the device performances.

Calibration data stored in the host have to be loaded in VL53L1X at each startup using a
dedicated driver function.

3 calibrations are needed : RefSPAD, offset and crosstalk.

The order the calibration functions are called does matter : RefSPAD first, offset second and
crosstalk third.

The 3 calibration functions can be done sequentially one after other, or individually. When
run individually, the previous step data have to be loaded before running current calibration.

Calibration functions UM2356

22/33 DocID029934 Rev 1

3.1 RefSPAD calibration
The number of SPAD is calibrated during Final Module Test at ST. This part to part value is
stored into NVM and automatically loaded in the device during boot.

This calibration allows to adjust the number of SPAD to optimize the device dynamic.

However, adding a cover glass on top of the module may affect this calibration. We
recommend that the customer performs again this calibration in the final product application.

The same algorithm running at FMT is applied when this function is called: the algorithm
searches through the 3 possible types of SPAD: 1 (non attenuated SPAD), 2 (SPAD
attenuated by a factor 5) and 3 (SPAD attenuated by a factor 10).

The number and type of SPAD is selected to avoid internal signal saturation.

3.1.1 RefSPAD calibration function

A dedicated function is available for this operation :
VL53L1_PerformRefSpadManagement(&VL53L1Dev)

Note: This function must be called first in the calibration procedure.

3.1.2 RefSPAD calibration procedure
User has to ensure that there is no target closer than 5 cm from the sensor during the
calibration.

It is preferred to perform this calibration in the low IR light condition (indoor).

Time to perform this calibration is only few milliseconds.

The VL53L1_PerformRefSpadManagement function has to be called after
VL53L1_DataInit() and VL53L1_StaticInit() functions are called. Refer to
Figure 4: VL53L1X Calibration flow on page 6

When the calibration function is called, the RefSPAD calibration is performed and the
RefSPAD new parameters are applied at the end.

3.1.3 Getting RefSPAD calibration results
The function VL53L1_GetCalibrationData() allows to get all calibration data. The
returned structure VL53L1_CalibrationData_t contains in addition a child substructure called
VL53L1_customer_nvm_managed_t which contains the 8 RefSPAD calibration parameters:

 ref_spad_man__num_requested_ref_spads : this value is between 5 and 44. It gives
the number of SPAD selected.

 ref_spad_man__ref_location : this value can be 1 (non attenuated SPAD), 2 (SPAD
attenuated by a factor 5) or 3 (SPAD attenuated by a factor 10)

 6 additional parameters gives the good spad maps for the location selected.

After the factory calibration, these calibration data have to be stored in the host memory to
be loaded at each device start up to avoid re-performing the calibration. Either the user

DocID029934 Rev 1 23/33

UM2356 Calibration functions

33

store the entire structure VL53L1_CalibrationData_t or decide to store only the 8
parameters to save memory space.

3.1.4 Setting RefSPAD calibration data
At each start up, after a hard reset, the user can load the RefSPAD calibration data from the
host memory. The VL53L1_SetCalibrationData() has to be called after
VL53L1_DataInit() and VL53L1_StaticInit() functions are called. Refer to
Figure 5: VL53L1X Ranging flow on page 7

If the user has optimized the calibration data storage during the calibration, it is recommend
to get the entire calibration structure by callingVL53L1_GetCalibrationData(), modify
the 8 parameters described in the previous section and call
VL53L1_SetCalibrationData()

Calibration functions UM2356

24/33 DocID029934 Rev 1

3.2 Offset calibration
Soldering the device on the customer board or adding a cover glass can introduce an offset
in the ranging distance. This part to part offset has to be measured and compensated during
the offset calibration.

3.2.1 Offset calibration function
A dedicated function is available for this operation:
VL53L1_PerformOffsetSimpleCalibration(&VL53L1Dev,
CalDistanceMilliMeter)

The argument of the function is the offset calibration distance in millimeters.

Note: Offset calibration has to be performed before the crosstalk calibration and after RefSPAD
optimization is done (calibration done or RefSPAD parameters loaded)

3.2.2 Offset calibration procedure
Customer has to use a calibrated chart, placed at a given distance
(CalDistanceMilliMeter) to perform the offset calibration.

Detail of the recommended setup is given in Table 5: Offset calibration setup.

When the calibration function is called, the offset calibration is performed and the offset
correction is applied at the end.

3.2.3 Getting offset calibration results
The function VL53L1_GetCalibrationData() allows to get all calibration data. The
returned structure VL53L1_CalibrationData_t contains in addition a child substructure called
VL53L1_customer_nvm_managed_t which contains the main offset calibration result:
 algo__part_to_part_range_offset_mm

3.2.4 Setting offset calibration data
Customer can load the offset calibration data after VL53L1_DataInit() and
VL53L1_StaticInit() functions are called, by using
VL53L1_SetCalibrationData()

Table 5. Offset calibration setup

Chart Chart Distance
(CalDistanceMilliMeter) Ambient conditions

Grey target (17% reflectance at 940nm) Recommended value: 140mm Dark (no IR contribution)

DocID029934 Rev 1 25/33

UM2356 Calibration functions

33

Better is to call VL53L1_GetCalibrationData() , modify the parameter described in
previous sections (algo__part_to_part_range_offset_mm) and call
VL53L1_SetCalibrationData()

Calibration functions UM2356

26/33 DocID029934 Rev 1

3.3 Crosstalk calibration
Crosstalk (xtalk) is defined as the amount of return signal received on sensing array which is
due to VCSEL light reflection inside the protective window (cover glass) added on top of the
module for aesthetic and protective reasons.

Depending on the cover glass quality, the amount of the return signal can be consequent
and affects the sensor performances. VL53L1X has a built-in correction that allows to
compensate this crosstalk phenomenon.

Crosstalk calibration is used to estimate the amount of the correction needed to
compensate the effect of a cover glass added on top of the module.

3.3.1 Cross talk calibration function
A dedicated function is available for this operation :
VL53L1_PerformSingleTargetXTalkCalibration(&VL53L1Dev,
XtalkCalDistance);

One argument of the function is the xtalk calibration distance in millimeters.

Note: This function must be called in third position in the calibration flow, after the offset
compensation is done (calibration done or offset parameters loaded).

3.3.2 Cross talk calibration procedure
Cross talk calibration should be conducted in a dark environment, with no IR contribution.

When the calibration function is called, the crosstalk calibration is performed and the
crosstalk correction is applied at the end.

3.3.3 Xtalk Calibration distance characterization
Xtalk calibration distance needs to be characterized by the user, as it depends on the
system environment, mainly the cover glass material and optical properties, and the air gap
value (distance between the sensor and the cover glass).

Figure 8: VL53L1X Xtalk calibration distance definition shows the xtalk effect on the ranging
curve: from a given distance, the effect of the xtalk is predominant, and the sensor starts to
under-range.

Table 6. Xtalk calibration setup

Chart
Chart Distance

(XtalkCalDistance)
Ambient conditions

Grey target (17% reflectance at 940nm) As defined in
Chapter 3.3.3

Dark (no IR
contribution)

DocID029934 Rev 1 27/33

UM2356 Calibration functions

33

Figure 8. VL53L1X Xtalk calibration distance definition

The xtalk calibration distance corresponds to the maximum ranging distance achievable
reported by the sensor when the cover glass is present. Refer to Figure 8: VL53L1X Xtalk
calibration distance definition.

This ranging distance is one argument of the xtalk calibration driver function.

The ranging curve with xtalk corrected is the ranging results when xtalk compensation is
applied (when xtalk calibration is completed or after xtalk calibration data are loaded).

3.3.4 Getting Cross talk calibration results
The function VL53L1_GetCalibrationData() allows to get all calibration data. The
returned structure VL53L1_CalibrationData_t contains in addition a child substructure called
VL53L1_customer_nvm_managed_t which contains the xtalk calibration result:
 algo__crosstalk_compensation_plane_offset_kcps

3.3.5 Setting Cross talk calibration data
Customer can load the cross talk calibration data after VL53L1_DataInit() and
VL53L1_StaticInit() functions are called, by using
VL53L1_SetCalibrationData()

It is recommended to call VL53L1_GetCalibrationData(), modify the
algo__crosstalk_compensation_plane_offset_kcps parameter in the
VL53L1_customer_nvm_managed_t substructure then call
VL53L1_SetCalibrationData() to apply the xtalk compensation.

3.3.6 Enable/Disable cross talk compensation
The function to call to enable or disable the cross talk compensation is:
VL53L1_SetXTalkCompensationEnable().

VL53L1_SetXTalkCompensationEnable(&VL53L1Dev, 0); // disable the crosstalk
compensation.

Calibration functions UM2356

28/33 DocID029934 Rev 1

V53L1_SetXTalkCompensationEnable(&VL53L1Dev, 1); // enable the crosstalk
compensation.

Note: This function does not perform any xtalk calibration or data loading, it just enables the xtalk
compensation. It has to be called before starting ranging, with the optional function calls.

DocID029934 Rev 1 29/33

UM2356 Driver errors and warnings

33

4 Driver errors and warnings

Driver error is reported when any driver function is called. Possible values for driver errors
are described in Table 7.

Please note that warning are there to inform user that some parameters are not optimized.
The warnings are not blocking for the Host.

Table 7. Bare driver errors and warnings description
 Error
value API error string Occurrence

0 VL53L1_ERROR_NONE No error

-1 VL53L1_ERROR_CALIBRATION_WARNING Invalid calibration data

-4 VL53L1_ERROR_INVALID_PARAMS Invalid parameter is set in a function

-5 VL53L1_ERROR_NOT_SUPPORTED Requested parameter is not supported in the
programmed configuration

-6 VL53L1_ERROR_RANGE_ERROR Interrupt status is incorrect

-7 VL53L1_ERROR_TIME_OUT Ranging is aborted due to timeout

-8 VL53L1_ERROR_MODE_NOT_SUPPORTED Requested mode is not supported

-10 VL53L1_ERROR_CALIBRATION_WARNING Supplied buffer is larger than I2C supports

-14 VL53L1_ERROR_INVALID_COMMAND Command is invalid in current mode

-16 VL53L1_ERROR_REF_SPAD_INIT An error occurred during Reference SPADs
calibration

-22 VL53L1_ERROR_XTALK_EXTRACTION_FAIL

Thrown when xtalk calibration function has no
successful samples to compute the xtalk. In this
case there is not enough information to generate
new xtalk parm info. The function will exit and
leave the current xtalk parameters unaltered

-23 VL53L1_ERROR_XTALK_EXTRACTION_SIGMA_
LIMIT_FAIL

Thrown when xtalk calibration function has
found that the sigma estimate is above the
maximal limit allowed. In this case the xtalk
sample is too noisy for measurement. The
function will exit and leave the current xtalk
parameters unaltered

-24 VL53L1_ERROR_OFFSET_CAL_NO_SAMPLE_F
AIL

Thrown when offset calibration function has
found no valid ranging.

-28 VL53L1_WARNING_REF_SPAD_CHAR_NOT_EN
OUGH_SPADS

Thrown if there are less than 5 good SPADs are
available. Ensure calibration setup is in line with
ST recommendations.

-29 VL53L1_WARNING_REF_SPAD_CHAR_RATE_T
OO_HIGH

Thrown if the final reference rate is greater than
the upper reference rate limit - default is 40
Mcps. Ensure calibration setup is in line with ST
recommendations.

Driver errors and warnings UM2356

30/33 DocID029934 Rev 1

-30 VL53L1_WARNING_REF_SPAD_CHAR_RATE_T
OO_LOW

Thrown if the final reference rate is less than the
lower reference rate limit - default is 10 Mcps.
Ensure calibration setup is in line with ST
recommendations.

-31 VL53L1_WARNING_OFFSET_CAL_MISSING_SA
MPLES

Thrown if there is less than the requested
number of valid samples. Ensure offset
calibration setup is in line with ST
recommendations.

-32 VL53L1_WARNING_OFFSET_CAL_SIGMA_TOO
_HIGH

Thrown if the offset calibration range sigma
estimate is too high. Ensure offset calibration
setup is in line with ST recommendations.

-33 VL53L1_WARNING_OFFSET_CAL_RATE_TOO_
HIGH

Thrown when signal rate is greater than a limit.
Sensor is saturating. Ensure offset calibration
setup is in line with ST recommendations.

-34 VL53L1_WARNING_OFFSET_CAL_SPAD_COUN
T_TOO_LOW

Thrown when not enough SPADS can be used.
Ensure offset calibration setup is in line with ST
recommendations.

-41 VL53L1_ERROR_NOT_IMPLEMENTED Function called is not implemented

Table 7. Bare driver errors and warnings description (continued)
 Error
value API error string Occurrence

DocID029934 Rev 1 31/33

UM2356 Acronyms and abbreviations

33

5 Acronyms and abbreviations

Table 8. Acronyms and abbreviations
Acronym/ abbreviation Definition

I2C Inter-integrated circuit (serial bus)

NVM Non volatile memory

SPAD Single photon avalanche diode

VCSEL Vertical cavity surface emitting laser

FMT Final Module Test

API Application Programming Interface

Revision history UM2356

32/33 DocID029934 Rev 1

6 Revision history

Table 9. Document revision history
Date Revision Changes

Feb-22-2018 1 Initial release.

DocID029934 Rev 1 33/33

UM2356

33

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

	Figure 1. VL53L1X ranging sensor module
	1 VL53L1X System overview
	Figure 2. VL53L1X System

	2 Ranging API functions description
	2.1 Autonomous Ranging description
	2.2 Timing considerations
	Figure 3. VL53L1X Autonomous Ranging sequence and timings

	2.3 API functions call flow
	2.3.1 Calibration flow
	Figure 4. VL53L1X Calibration flow

	2.3.2 Ranging flow
	Figure 5. VL53L1X Ranging flow

	2.4 Mandatory ranging functions
	2.4.1 Data init
	2.4.2 Static Init
	2.4.3 Start a measurement
	2.4.4 Waiting for a result: polling or interrupt
	2.4.5 Get measurement
	2.4.6 Clear source of interrupt
	2.4.7 Stop a measurements

	2.5 Optional driver functions
	2.5.1 Wait for boot
	2.5.2 Timing Budget and Inter-measurement period
	2.5.3 Distance mode
	Table 1. Distance modes

	2.5.4 Limit checks setting
	Table 2. Default limit states and values
	Table 3. Signal and Sigma limits change effects

	2.5.5 Thresholds
	2.5.6 Region of Interest (ROI) setting
	Figure 6. VL53L1X ROI setting example

	2.5.7 Spad array coordinates versus scene
	Figure 7. VL53L1X coordinates vs Scene

	2.5.8 Optical center coordinates
	2.5.9 VDDIO configuration

	2.6 RangingMeasurementData structure
	Table 4. Range Status

	3 Calibration functions
	3.1 RefSPAD calibration
	3.1.1 RefSPAD calibration function
	3.1.2 RefSPAD calibration procedure
	3.1.3 Getting RefSPAD calibration results
	3.1.4 Setting RefSPAD calibration data

	3.2 Offset calibration
	3.2.1 Offset calibration function
	3.2.2 Offset calibration procedure
	Table 5. Offset calibration setup

	3.2.3 Getting offset calibration results
	3.2.4 Setting offset calibration data

	3.3 Crosstalk calibration
	3.3.1 Cross talk calibration function
	3.3.2 Cross talk calibration procedure
	Table 6. Xtalk calibration setup

	3.3.3 Xtalk Calibration distance characterization
	Figure 8. VL53L1X Xtalk calibration distance definition

	3.3.4 Getting Cross talk calibration results
	3.3.5 Setting Cross talk calibration data
	3.3.6 Enable/Disable cross talk compensation

	4 Driver errors and warnings
	Table 7. Bare driver errors and warnings description

	5 Acronyms and abbreviations
	Table 8. Acronyms and abbreviations

	6 Revision history
	Table 9. Document revision history

