openocd/src/flash/nor/nrf5.c

1076 lines
31 KiB
C
Raw Normal View History

/***************************************************************************
* Copyright (C) 2013 Synapse Product Development *
* Andrey Smirnov <andrew.smironv@gmail.com> *
* Angus Gratton <gus@projectgus.com> *
* Erdem U. Altunyurt <spamjunkeater@gmail.com> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <target/algorithm.h>
#include <target/armv7m.h>
#include <helper/types.h>
#include <helper/time_support.h>
enum {
NRF5_FLASH_BASE = 0x00000000,
};
enum nrf5_ficr_registers {
NRF5_FICR_BASE = 0x10000000, /* Factory Information Configuration Registers */
#define NRF5_FICR_REG(offset) (NRF5_FICR_BASE + offset)
NRF5_FICR_CODEPAGESIZE = NRF5_FICR_REG(0x010),
NRF5_FICR_CODESIZE = NRF5_FICR_REG(0x014),
NRF5_FICR_CLENR0 = NRF5_FICR_REG(0x028),
NRF5_FICR_PPFC = NRF5_FICR_REG(0x02C),
NRF5_FICR_NUMRAMBLOCK = NRF5_FICR_REG(0x034),
NRF5_FICR_SIZERAMBLOCK0 = NRF5_FICR_REG(0x038),
NRF5_FICR_SIZERAMBLOCK1 = NRF5_FICR_REG(0x03C),
NRF5_FICR_SIZERAMBLOCK2 = NRF5_FICR_REG(0x040),
NRF5_FICR_SIZERAMBLOCK3 = NRF5_FICR_REG(0x044),
NRF5_FICR_CONFIGID = NRF5_FICR_REG(0x05C),
NRF5_FICR_DEVICEID0 = NRF5_FICR_REG(0x060),
NRF5_FICR_DEVICEID1 = NRF5_FICR_REG(0x064),
NRF5_FICR_ER0 = NRF5_FICR_REG(0x080),
NRF5_FICR_ER1 = NRF5_FICR_REG(0x084),
NRF5_FICR_ER2 = NRF5_FICR_REG(0x088),
NRF5_FICR_ER3 = NRF5_FICR_REG(0x08C),
NRF5_FICR_IR0 = NRF5_FICR_REG(0x090),
NRF5_FICR_IR1 = NRF5_FICR_REG(0x094),
NRF5_FICR_IR2 = NRF5_FICR_REG(0x098),
NRF5_FICR_IR3 = NRF5_FICR_REG(0x09C),
NRF5_FICR_DEVICEADDRTYPE = NRF5_FICR_REG(0x0A0),
NRF5_FICR_DEVICEADDR0 = NRF5_FICR_REG(0x0A4),
NRF5_FICR_DEVICEADDR1 = NRF5_FICR_REG(0x0A8),
NRF5_FICR_OVERRIDEN = NRF5_FICR_REG(0x0AC),
NRF5_FICR_NRF_1MBIT0 = NRF5_FICR_REG(0x0B0),
NRF5_FICR_NRF_1MBIT1 = NRF5_FICR_REG(0x0B4),
NRF5_FICR_NRF_1MBIT2 = NRF5_FICR_REG(0x0B8),
NRF5_FICR_NRF_1MBIT3 = NRF5_FICR_REG(0x0BC),
NRF5_FICR_NRF_1MBIT4 = NRF5_FICR_REG(0x0C0),
NRF5_FICR_BLE_1MBIT0 = NRF5_FICR_REG(0x0EC),
NRF5_FICR_BLE_1MBIT1 = NRF5_FICR_REG(0x0F0),
NRF5_FICR_BLE_1MBIT2 = NRF5_FICR_REG(0x0F4),
NRF5_FICR_BLE_1MBIT3 = NRF5_FICR_REG(0x0F8),
NRF5_FICR_BLE_1MBIT4 = NRF5_FICR_REG(0x0FC),
};
enum nrf5_uicr_registers {
NRF5_UICR_BASE = 0x10001000, /* User Information
* Configuration Regsters */
NRF5_UICR_SIZE = 0x100,
#define NRF5_UICR_REG(offset) (NRF5_UICR_BASE + offset)
NRF5_UICR_CLENR0 = NRF5_UICR_REG(0x000),
NRF5_UICR_RBPCONF = NRF5_UICR_REG(0x004),
NRF5_UICR_XTALFREQ = NRF5_UICR_REG(0x008),
NRF5_UICR_FWID = NRF5_UICR_REG(0x010),
};
enum nrf5_nvmc_registers {
NRF5_NVMC_BASE = 0x4001E000, /* Non-Volatile Memory
* Controller Registers */
#define NRF5_NVMC_REG(offset) (NRF5_NVMC_BASE + offset)
NRF5_NVMC_READY = NRF5_NVMC_REG(0x400),
NRF5_NVMC_CONFIG = NRF5_NVMC_REG(0x504),
NRF5_NVMC_ERASEPAGE = NRF5_NVMC_REG(0x508),
NRF5_NVMC_ERASEALL = NRF5_NVMC_REG(0x50C),
NRF5_NVMC_ERASEUICR = NRF5_NVMC_REG(0x514),
};
enum nrf5_nvmc_config_bits {
NRF5_NVMC_CONFIG_REN = 0x00,
NRF5_NVMC_CONFIG_WEN = 0x01,
NRF5_NVMC_CONFIG_EEN = 0x02,
};
struct nrf5_info {
uint32_t code_page_size;
uint32_t refcount;
struct nrf5_bank {
struct nrf5_info *chip;
bool probed;
} bank[2];
struct target *target;
};
struct nrf5_device_spec {
uint16_t hwid;
const char *part;
const char *variant;
const char *build_code;
unsigned int flash_size_kb;
};
#define NRF5_DEVICE_DEF(id, pt, var, bcode, fsize) \
{ \
.hwid = (id), \
.part = pt, \
.variant = var, \
.build_code = bcode, \
.flash_size_kb = (fsize), \
}
/* The known devices table below is derived from the "nRF5x series
* compatibility matrix" documents, which can be found in the "DocLib" of
* nordic:
*
* https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51422_ic_revision_overview
* https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51822_ic_revision_overview
* https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51824_ic_revision_overview
* https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52810/latest/COMP/nrf52810/nRF52810_ic_revision_overview
* https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52832/latest/COMP/nrf52832/ic_revision_overview
* https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52840/latest/COMP/nrf52840/nRF52840_ic_revision_overview
*
* Up to date with Matrix v2.0, plus some additional HWIDs.
*
* The additional HWIDs apply where the build code in the matrix is
* shown as Gx0, Bx0, etc. In these cases the HWID in the matrix is
* for x==0, x!=0 means different (unspecified) HWIDs.
*/
static const struct nrf5_device_spec nrf5_known_devices_table[] = {
/* nRF51822 Devices (IC rev 1). */
NRF5_DEVICE_DEF(0x001D, "51822", "QFAA", "CA/C0", 256),
NRF5_DEVICE_DEF(0x0026, "51822", "QFAB", "AA", 128),
NRF5_DEVICE_DEF(0x0027, "51822", "QFAB", "A0", 128),
NRF5_DEVICE_DEF(0x0020, "51822", "CEAA", "BA", 256),
NRF5_DEVICE_DEF(0x002F, "51822", "CEAA", "B0", 256),
/* Some early nRF51-DK (PCA10028) & nRF51-Dongle (PCA10031) boards
with built-in jlink seem to use engineering samples not listed
in the nRF51 Series Compatibility Matrix V1.0. */
NRF5_DEVICE_DEF(0x0071, "51822", "QFAC", "AB", 256),
/* nRF51822 Devices (IC rev 2). */
NRF5_DEVICE_DEF(0x002A, "51822", "QFAA", "FA0", 256),
NRF5_DEVICE_DEF(0x0044, "51822", "QFAA", "GC0", 256),
NRF5_DEVICE_DEF(0x003C, "51822", "QFAA", "G0", 256),
NRF5_DEVICE_DEF(0x0057, "51822", "QFAA", "G2", 256),
NRF5_DEVICE_DEF(0x0058, "51822", "QFAA", "G3", 256),
NRF5_DEVICE_DEF(0x004C, "51822", "QFAB", "B0", 128),
NRF5_DEVICE_DEF(0x0040, "51822", "CEAA", "CA0", 256),
NRF5_DEVICE_DEF(0x0047, "51822", "CEAA", "DA0", 256),
NRF5_DEVICE_DEF(0x004D, "51822", "CEAA", "D00", 256),
/* nRF51822 Devices (IC rev 3). */
NRF5_DEVICE_DEF(0x0072, "51822", "QFAA", "H0", 256),
NRF5_DEVICE_DEF(0x00D1, "51822", "QFAA", "H2", 256),
NRF5_DEVICE_DEF(0x007B, "51822", "QFAB", "C0", 128),
NRF5_DEVICE_DEF(0x0083, "51822", "QFAC", "A0", 256),
NRF5_DEVICE_DEF(0x0084, "51822", "QFAC", "A1", 256),
NRF5_DEVICE_DEF(0x007D, "51822", "CDAB", "A0", 128),
NRF5_DEVICE_DEF(0x0079, "51822", "CEAA", "E0", 256),
NRF5_DEVICE_DEF(0x0087, "51822", "CFAC", "A0", 256),
NRF5_DEVICE_DEF(0x008F, "51822", "QFAA", "H1", 256),
/* nRF51422 Devices (IC rev 1). */
NRF5_DEVICE_DEF(0x001E, "51422", "QFAA", "CA", 256),
NRF5_DEVICE_DEF(0x0024, "51422", "QFAA", "C0", 256),
NRF5_DEVICE_DEF(0x0031, "51422", "CEAA", "A0A", 256),
/* nRF51422 Devices (IC rev 2). */
NRF5_DEVICE_DEF(0x002D, "51422", "QFAA", "DAA", 256),
NRF5_DEVICE_DEF(0x002E, "51422", "QFAA", "E0", 256),
NRF5_DEVICE_DEF(0x0061, "51422", "QFAB", "A00", 128),
NRF5_DEVICE_DEF(0x0050, "51422", "CEAA", "B0", 256),
/* nRF51422 Devices (IC rev 3). */
NRF5_DEVICE_DEF(0x0073, "51422", "QFAA", "F0", 256),
NRF5_DEVICE_DEF(0x007C, "51422", "QFAB", "B0", 128),
NRF5_DEVICE_DEF(0x0085, "51422", "QFAC", "A0", 256),
NRF5_DEVICE_DEF(0x0086, "51422", "QFAC", "A1", 256),
NRF5_DEVICE_DEF(0x007E, "51422", "CDAB", "A0", 128),
NRF5_DEVICE_DEF(0x007A, "51422", "CEAA", "C0", 256),
NRF5_DEVICE_DEF(0x0088, "51422", "CFAC", "A0", 256),
/* nRF52810 Devices */
NRF5_DEVICE_DEF(0x0142, "52810", "QFAA", "B0", 192),
NRF5_DEVICE_DEF(0x0143, "52810", "QCAA", "C0", 192),
/* nRF52832 Devices */
NRF5_DEVICE_DEF(0x00C7, "52832", "QFAA", "B0", 512),
NRF5_DEVICE_DEF(0x0139, "52832", "QFAA", "E0", 512),
NRF5_DEVICE_DEF(0x00E3, "52832", "CIAA", "B0", 512),
/* nRF52840 Devices */
NRF5_DEVICE_DEF(0x0150, "52840", "QIAA", "C0", 1024),
};
static int nrf5_bank_is_probed(struct flash_bank *bank)
{
struct nrf5_bank *nbank = bank->driver_priv;
assert(nbank != NULL);
return nbank->probed;
}
static int nrf5_probe(struct flash_bank *bank);
static int nrf5_get_probed_chip_if_halted(struct flash_bank *bank, struct nrf5_info **chip)
{
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
struct nrf5_bank *nbank = bank->driver_priv;
*chip = nbank->chip;
int probed = nrf5_bank_is_probed(bank);
if (probed < 0)
return probed;
else if (!probed)
return nrf5_probe(bank);
else
return ERROR_OK;
}
static int nrf5_wait_for_nvmc(struct nrf5_info *chip)
{
uint32_t ready;
int res;
int timeout_ms = 340;
int64_t ts_start = timeval_ms();
do {
res = target_read_u32(chip->target, NRF5_NVMC_READY, &ready);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read NVMC_READY register");
return res;
}
if (ready == 0x00000001)
return ERROR_OK;
keep_alive();
} while ((timeval_ms()-ts_start) < timeout_ms);
LOG_DEBUG("Timed out waiting for NVMC_READY");
return ERROR_FLASH_BUSY;
}
static int nrf5_nvmc_erase_enable(struct nrf5_info *chip)
{
int res;
res = target_write_u32(chip->target,
NRF5_NVMC_CONFIG,
NRF5_NVMC_CONFIG_EEN);
if (res != ERROR_OK) {
LOG_ERROR("Failed to enable erase operation");
return res;
}
/*
According to NVMC examples in Nordic SDK busy status must be
checked after writing to NVMC_CONFIG
*/
res = nrf5_wait_for_nvmc(chip);
if (res != ERROR_OK)
LOG_ERROR("Erase enable did not complete");
return res;
}
static int nrf5_nvmc_write_enable(struct nrf5_info *chip)
{
int res;
res = target_write_u32(chip->target,
NRF5_NVMC_CONFIG,
NRF5_NVMC_CONFIG_WEN);
if (res != ERROR_OK) {
LOG_ERROR("Failed to enable write operation");
return res;
}
/*
According to NVMC examples in Nordic SDK busy status must be
checked after writing to NVMC_CONFIG
*/
res = nrf5_wait_for_nvmc(chip);
if (res != ERROR_OK)
LOG_ERROR("Write enable did not complete");
return res;
}
static int nrf5_nvmc_read_only(struct nrf5_info *chip)
{
int res;
res = target_write_u32(chip->target,
NRF5_NVMC_CONFIG,
NRF5_NVMC_CONFIG_REN);
if (res != ERROR_OK) {
LOG_ERROR("Failed to enable read-only operation");
return res;
}
/*
According to NVMC examples in Nordic SDK busy status must be
checked after writing to NVMC_CONFIG
*/
res = nrf5_wait_for_nvmc(chip);
if (res != ERROR_OK)
LOG_ERROR("Read only enable did not complete");
return res;
}
static int nrf5_nvmc_generic_erase(struct nrf5_info *chip,
uint32_t erase_register, uint32_t erase_value)
{
int res;
res = nrf5_nvmc_erase_enable(chip);
if (res != ERROR_OK)
goto error;
res = target_write_u32(chip->target,
erase_register,
erase_value);
if (res != ERROR_OK)
goto set_read_only;
res = nrf5_wait_for_nvmc(chip);
if (res != ERROR_OK)
goto set_read_only;
return nrf5_nvmc_read_only(chip);
set_read_only:
nrf5_nvmc_read_only(chip);
error:
LOG_ERROR("Failed to erase reg: 0x%08"PRIx32" val: 0x%08"PRIx32,
erase_register, erase_value);
return ERROR_FAIL;
}
static int nrf5_protect_check(struct flash_bank *bank)
{
int res;
uint32_t clenr0;
/* UICR cannot be write protected so just return early */
if (bank->base == NRF5_UICR_BASE)
return ERROR_OK;
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
assert(chip != NULL);
res = target_read_u32(chip->target, NRF5_FICR_CLENR0,
&clenr0);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code region 0 size[FICR]");
return res;
}
if (clenr0 == 0xFFFFFFFF) {
res = target_read_u32(chip->target, NRF5_UICR_CLENR0,
&clenr0);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code region 0 size[UICR]");
return res;
}
}
for (int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_protected =
clenr0 != 0xFFFFFFFF && bank->sectors[i].offset < clenr0;
return ERROR_OK;
}
static int nrf5_protect(struct flash_bank *bank, int set, int first, int last)
{
int res;
uint32_t clenr0, ppfc;
struct nrf5_info *chip;
/* UICR cannot be write protected so just bail out early */
if (bank->base == NRF5_UICR_BASE)
return ERROR_FAIL;
res = nrf5_get_probed_chip_if_halted(bank, &chip);
if (res != ERROR_OK)
return res;
if (first != 0) {
LOG_ERROR("Code region 0 must start at the begining of the bank");
return ERROR_FAIL;
}
res = target_read_u32(chip->target, NRF5_FICR_PPFC,
&ppfc);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read PPFC register");
return res;
}
if ((ppfc & 0xFF) == 0x00) {
LOG_ERROR("Code region 0 size was pre-programmed at the factory, can't change flash protection settings");
return ERROR_FAIL;
}
res = target_read_u32(chip->target, NRF5_UICR_CLENR0,
&clenr0);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code region 0 size[UICR]");
return res;
}
if (clenr0 == 0xFFFFFFFF) {
res = target_write_u32(chip->target, NRF5_UICR_CLENR0,
clenr0);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't write code region 0 size[UICR]");
return res;
}
} else {
LOG_ERROR("You need to perform chip erase before changing the protection settings");
}
nrf5_protect_check(bank);
return ERROR_OK;
}
static int nrf5_probe(struct flash_bank *bank)
{
uint32_t hwid;
int res;
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
res = target_read_u32(chip->target, NRF5_FICR_CONFIGID, &hwid);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read CONFIGID register");
return res;
}
hwid &= 0xFFFF; /* HWID is stored in the lower two
* bytes of the CONFIGID register */
const struct nrf5_device_spec *spec = NULL;
for (size_t i = 0; i < ARRAY_SIZE(nrf5_known_devices_table); i++) {
if (hwid == nrf5_known_devices_table[i].hwid) {
spec = &nrf5_known_devices_table[i];
break;
}
}
if (!chip->bank[0].probed && !chip->bank[1].probed) {
if (spec)
LOG_INFO("nRF%s-%s(build code: %s) %ukB Flash",
spec->part, spec->variant, spec->build_code,
spec->flash_size_kb);
else
LOG_WARNING("Unknown device (HWID 0x%08" PRIx32 ")", hwid);
}
if (bank->base == NRF5_FLASH_BASE) {
/* The value stored in NRF5_FICR_CODEPAGESIZE is the number of bytes in one page of FLASH. */
res = target_read_u32(chip->target, NRF5_FICR_CODEPAGESIZE,
&chip->code_page_size);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code page size");
return res;
}
/* Note the register name is misleading,
* NRF5_FICR_CODESIZE is the number of pages in flash memory, not the number of bytes! */
uint32_t num_sectors;
res = target_read_u32(chip->target, NRF5_FICR_CODESIZE, &num_sectors);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code memory size");
return res;
}
bank->num_sectors = num_sectors;
bank->size = num_sectors * chip->code_page_size;
if (spec && bank->size / 1024 != spec->flash_size_kb)
LOG_WARNING("Chip's reported Flash capacity does not match expected one");
bank->sectors = calloc(bank->num_sectors,
sizeof((bank->sectors)[0]));
if (!bank->sectors)
return ERROR_FLASH_BANK_NOT_PROBED;
/* Fill out the sector information: all NRF5 sectors are the same size and
* there is always a fixed number of them. */
for (int i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].size = chip->code_page_size;
bank->sectors[i].offset = i * chip->code_page_size;
/* mark as unknown */
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = -1;
}
nrf5_protect_check(bank);
chip->bank[0].probed = true;
} else {
bank->size = NRF5_UICR_SIZE;
bank->num_sectors = 1;
bank->sectors = calloc(bank->num_sectors,
sizeof((bank->sectors)[0]));
if (!bank->sectors)
return ERROR_FLASH_BANK_NOT_PROBED;
bank->sectors[0].size = bank->size;
bank->sectors[0].offset = 0;
bank->sectors[0].is_erased = 0;
bank->sectors[0].is_protected = 0;
chip->bank[1].probed = true;
}
return ERROR_OK;
}
static int nrf5_auto_probe(struct flash_bank *bank)
{
int probed = nrf5_bank_is_probed(bank);
if (probed < 0)
return probed;
else if (probed)
return ERROR_OK;
else
return nrf5_probe(bank);
}
static int nrf5_erase_all(struct nrf5_info *chip)
{
LOG_DEBUG("Erasing all non-volatile memory");
return nrf5_nvmc_generic_erase(chip,
NRF5_NVMC_ERASEALL,
0x00000001);
}
static int nrf5_erase_page(struct flash_bank *bank,
struct nrf5_info *chip,
struct flash_sector *sector)
{
int res;
LOG_DEBUG("Erasing page at 0x%"PRIx32, sector->offset);
if (sector->is_protected) {
LOG_ERROR("Cannot erase protected sector at 0x%" PRIx32, sector->offset);
return ERROR_FAIL;
}
if (bank->base == NRF5_UICR_BASE) {
uint32_t ppfc;
res = target_read_u32(chip->target, NRF5_FICR_PPFC,
&ppfc);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read PPFC register");
return res;
}
if ((ppfc & 0xFF) == 0xFF) {
/* We can't erase the UICR. Double-check to
see if it's already erased before complaining. */
default_flash_blank_check(bank);
if (sector->is_erased == 1)
return ERROR_OK;
LOG_ERROR("The chip was not pre-programmed with SoftDevice stack and UICR cannot be erased separately. Please issue mass erase before trying to write to this region");
return ERROR_FAIL;
}
res = nrf5_nvmc_generic_erase(chip,
NRF5_NVMC_ERASEUICR,
0x00000001);
} else {
res = nrf5_nvmc_generic_erase(chip,
NRF5_NVMC_ERASEPAGE,
sector->offset);
}
return res;
}
static const uint8_t nrf5_flash_write_code[] = {
/* See contrib/loaders/flash/cortex-m0.S */
/* <wait_fifo>: */
0x0d, 0x68, /* ldr r5, [r1, #0] */
0x00, 0x2d, /* cmp r5, #0 */
0x0b, 0xd0, /* beq.n 1e <exit> */
0x4c, 0x68, /* ldr r4, [r1, #4] */
0xac, 0x42, /* cmp r4, r5 */
0xf9, 0xd0, /* beq.n 0 <wait_fifo> */
0x20, 0xcc, /* ldmia r4!, {r5} */
0x20, 0xc3, /* stmia r3!, {r5} */
0x94, 0x42, /* cmp r4, r2 */
0x01, 0xd3, /* bcc.n 18 <no_wrap> */
0x0c, 0x46, /* mov r4, r1 */
0x08, 0x34, /* adds r4, #8 */
/* <no_wrap>: */
0x4c, 0x60, /* str r4, [r1, #4] */
0x04, 0x38, /* subs r0, #4 */
0xf0, 0xd1, /* bne.n 0 <wait_fifo> */
/* <exit>: */
0x00, 0xbe /* bkpt 0x0000 */
};
/* Start a low level flash write for the specified region */
static int nrf5_ll_flash_write(struct nrf5_info *chip, uint32_t address, const uint8_t *buffer, uint32_t bytes)
{
struct target *target = chip->target;
uint32_t buffer_size = 8192;
struct working_area *write_algorithm;
struct working_area *source;
struct reg_param reg_params[4];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
LOG_DEBUG("Writing buffer to flash address=0x%"PRIx32" bytes=0x%"PRIx32, address, bytes);
assert(bytes % 4 == 0);
/* allocate working area with flash programming code */
if (target_alloc_working_area(target, sizeof(nrf5_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, falling back to slow memory writes");
for (; bytes > 0; bytes -= 4) {
retval = target_write_memory(target, address, 4, 1, buffer);
if (retval != ERROR_OK)
return retval;
retval = nrf5_wait_for_nvmc(chip);
if (retval != ERROR_OK)
return retval;
address += 4;
buffer += 4;
}
return ERROR_OK;
}
retval = target_write_buffer(target, write_algorithm->address,
sizeof(nrf5_flash_write_code),
nrf5_flash_write_code);
if (retval != ERROR_OK)
return retval;
/* memory buffer */
while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
buffer_size /= 2;
buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
if (buffer_size <= 256) {
/* free working area, write algorithm already allocated */
target_free_working_area(target, write_algorithm);
LOG_WARNING("No large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* byte count */
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer start */
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* buffer end */
init_reg_param(&reg_params[3], "r3", 32, PARAM_IN_OUT); /* target address */
buf_set_u32(reg_params[0].value, 0, 32, bytes);
buf_set_u32(reg_params[1].value, 0, 32, source->address);
buf_set_u32(reg_params[2].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[3].value, 0, 32, address);
retval = target_run_flash_async_algorithm(target, buffer, bytes/4, 4,
0, NULL,
4, reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
return retval;
}
static int nrf5_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct nrf5_info *chip;
int res = nrf5_get_probed_chip_if_halted(bank, &chip);
if (res != ERROR_OK)
return res;
assert(offset % 4 == 0);
assert(count % 4 == 0);
res = nrf5_nvmc_write_enable(chip);
if (res != ERROR_OK)
goto error;
res = nrf5_ll_flash_write(chip, bank->base + offset, buffer, count);
if (res != ERROR_OK)
goto error;
return nrf5_nvmc_read_only(chip);
error:
nrf5_nvmc_read_only(chip);
LOG_ERROR("Failed to write to nrf5 flash");
return res;
}
static int nrf5_erase(struct flash_bank *bank, int first, int last)
{
int res;
struct nrf5_info *chip;
res = nrf5_get_probed_chip_if_halted(bank, &chip);
if (res != ERROR_OK)
return res;
/* For each sector to be erased */
for (int s = first; s <= last && res == ERROR_OK; s++)
res = nrf5_erase_page(bank, chip, &bank->sectors[s]);
return res;
}
static void nrf5_free_driver_priv(struct flash_bank *bank)
{
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
if (chip == NULL)
return;
chip->refcount--;
if (chip->refcount == 0) {
free(chip);
bank->driver_priv = NULL;
}
}
FLASH_BANK_COMMAND_HANDLER(nrf5_flash_bank_command)
{
static struct nrf5_info *chip;
struct nrf5_bank *nbank = NULL;
switch (bank->base) {
case NRF5_FLASH_BASE:
case NRF5_UICR_BASE:
break;
default:
LOG_ERROR("Invalid bank address " TARGET_ADDR_FMT, bank->base);
return ERROR_FAIL;
}
if (!chip) {
/* Create a new chip */
chip = calloc(1, sizeof(*chip));
if (!chip)
return ERROR_FAIL;
chip->target = bank->target;
}
switch (bank->base) {
case NRF5_FLASH_BASE:
nbank = &chip->bank[0];
break;
case NRF5_UICR_BASE:
nbank = &chip->bank[1];
break;
}
assert(nbank != NULL);
chip->refcount++;
nbank->chip = chip;
nbank->probed = false;
bank->driver_priv = nbank;
bank->write_start_alignment = bank->write_end_alignment = 4;
return ERROR_OK;
}
COMMAND_HANDLER(nrf5_handle_mass_erase_command)
{
int res;
struct flash_bank *bank = NULL;
struct target *target = get_current_target(CMD_CTX);
res = get_flash_bank_by_addr(target, NRF5_FLASH_BASE, true, &bank);
if (res != ERROR_OK)
return res;
assert(bank != NULL);
struct nrf5_info *chip;
res = nrf5_get_probed_chip_if_halted(bank, &chip);
if (res != ERROR_OK)
return res;
uint32_t ppfc;
res = target_read_u32(target, NRF5_FICR_PPFC,
&ppfc);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read PPFC register");
return res;
}
if ((ppfc & 0xFF) == 0x00) {
LOG_ERROR("Code region 0 size was pre-programmed at the factory, "
"mass erase command won't work.");
return ERROR_FAIL;
}
res = nrf5_erase_all(chip);
if (res != ERROR_OK) {
LOG_ERROR("Failed to erase the chip");
nrf5_protect_check(bank);
return res;
}
res = nrf5_protect_check(bank);
if (res != ERROR_OK) {
LOG_ERROR("Failed to check chip's write protection");
return res;
}
res = get_flash_bank_by_addr(target, NRF5_UICR_BASE, true, &bank);
if (res != ERROR_OK)
return res;
return ERROR_OK;
}
static int nrf5_info(struct flash_bank *bank, char *buf, int buf_size)
{
int res;
struct nrf5_info *chip;
res = nrf5_get_probed_chip_if_halted(bank, &chip);
if (res != ERROR_OK)
return res;
static struct {
const uint32_t address;
uint32_t value;
} ficr[] = {
{ .address = NRF5_FICR_CODEPAGESIZE },
{ .address = NRF5_FICR_CODESIZE },
{ .address = NRF5_FICR_CLENR0 },
{ .address = NRF5_FICR_PPFC },
{ .address = NRF5_FICR_NUMRAMBLOCK },
{ .address = NRF5_FICR_SIZERAMBLOCK0 },
{ .address = NRF5_FICR_SIZERAMBLOCK1 },
{ .address = NRF5_FICR_SIZERAMBLOCK2 },
{ .address = NRF5_FICR_SIZERAMBLOCK3 },
{ .address = NRF5_FICR_CONFIGID },
{ .address = NRF5_FICR_DEVICEID0 },
{ .address = NRF5_FICR_DEVICEID1 },
{ .address = NRF5_FICR_ER0 },
{ .address = NRF5_FICR_ER1 },
{ .address = NRF5_FICR_ER2 },
{ .address = NRF5_FICR_ER3 },
{ .address = NRF5_FICR_IR0 },
{ .address = NRF5_FICR_IR1 },
{ .address = NRF5_FICR_IR2 },
{ .address = NRF5_FICR_IR3 },
{ .address = NRF5_FICR_DEVICEADDRTYPE },
{ .address = NRF5_FICR_DEVICEADDR0 },
{ .address = NRF5_FICR_DEVICEADDR1 },
{ .address = NRF5_FICR_OVERRIDEN },
{ .address = NRF5_FICR_NRF_1MBIT0 },
{ .address = NRF5_FICR_NRF_1MBIT1 },
{ .address = NRF5_FICR_NRF_1MBIT2 },
{ .address = NRF5_FICR_NRF_1MBIT3 },
{ .address = NRF5_FICR_NRF_1MBIT4 },
{ .address = NRF5_FICR_BLE_1MBIT0 },
{ .address = NRF5_FICR_BLE_1MBIT1 },
{ .address = NRF5_FICR_BLE_1MBIT2 },
{ .address = NRF5_FICR_BLE_1MBIT3 },
{ .address = NRF5_FICR_BLE_1MBIT4 },
}, uicr[] = {
{ .address = NRF5_UICR_CLENR0, },
{ .address = NRF5_UICR_RBPCONF },
{ .address = NRF5_UICR_XTALFREQ },
{ .address = NRF5_UICR_FWID },
};
for (size_t i = 0; i < ARRAY_SIZE(ficr); i++) {
res = target_read_u32(chip->target, ficr[i].address,
&ficr[i].value);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read %" PRIx32, ficr[i].address);
return res;
}
}
for (size_t i = 0; i < ARRAY_SIZE(uicr); i++) {
res = target_read_u32(chip->target, uicr[i].address,
&uicr[i].value);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read %" PRIx32, uicr[i].address);
return res;
}
}
snprintf(buf, buf_size,
"\n[factory information control block]\n\n"
"code page size: %"PRIu32"B\n"
"code memory size: %"PRIu32"kB\n"
"code region 0 size: %"PRIu32"kB\n"
"pre-programmed code: %s\n"
"number of ram blocks: %"PRIu32"\n"
"ram block 0 size: %"PRIu32"B\n"
"ram block 1 size: %"PRIu32"B\n"
"ram block 2 size: %"PRIu32"B\n"
"ram block 3 size: %"PRIu32 "B\n"
"config id: %" PRIx32 "\n"
"device id: 0x%"PRIx32"%08"PRIx32"\n"
"encryption root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
"identity root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
"device address type: 0x%"PRIx32"\n"
"device address: 0x%"PRIx32"%08"PRIx32"\n"
"override enable: %"PRIx32"\n"
"NRF_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
"BLE_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
"\n[user information control block]\n\n"
"code region 0 size: %"PRIu32"kB\n"
"read back protection configuration: %"PRIx32"\n"
"reset value for XTALFREQ: %"PRIx32"\n"
"firmware id: 0x%04"PRIx32,
ficr[0].value,
(ficr[1].value * ficr[0].value) / 1024,
(ficr[2].value == 0xFFFFFFFF) ? 0 : ficr[2].value / 1024,
((ficr[3].value & 0xFF) == 0x00) ? "present" : "not present",
ficr[4].value,
ficr[5].value,
(ficr[6].value == 0xFFFFFFFF) ? 0 : ficr[6].value,
(ficr[7].value == 0xFFFFFFFF) ? 0 : ficr[7].value,
(ficr[8].value == 0xFFFFFFFF) ? 0 : ficr[8].value,
ficr[9].value,
ficr[10].value, ficr[11].value,
ficr[12].value, ficr[13].value, ficr[14].value, ficr[15].value,
ficr[16].value, ficr[17].value, ficr[18].value, ficr[19].value,
ficr[20].value,
ficr[21].value, ficr[22].value,
ficr[23].value,
ficr[24].value, ficr[25].value, ficr[26].value, ficr[27].value, ficr[28].value,
ficr[29].value, ficr[30].value, ficr[31].value, ficr[32].value, ficr[33].value,
(uicr[0].value == 0xFFFFFFFF) ? 0 : uicr[0].value / 1024,
uicr[1].value & 0xFFFF,
uicr[2].value & 0xFF,
uicr[3].value & 0xFFFF);
return ERROR_OK;
}
static const struct command_registration nrf5_exec_command_handlers[] = {
{
.name = "mass_erase",
.handler = nrf5_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.help = "Erase all flash contents of the chip.",
.usage = "",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration nrf5_command_handlers[] = {
{
.name = "nrf5",
.mode = COMMAND_ANY,
.help = "nrf5 flash command group",
.usage = "",
.chain = nrf5_exec_command_handlers,
},
{
.name = "nrf51",
.mode = COMMAND_ANY,
.help = "nrf51 flash command group",
.usage = "",
.chain = nrf5_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver nrf5_flash = {
.name = "nrf5",
.commands = nrf5_command_handlers,
.flash_bank_command = nrf5_flash_bank_command,
.info = nrf5_info,
.erase = nrf5_erase,
.protect = nrf5_protect,
.write = nrf5_write,
.read = default_flash_read,
.probe = nrf5_probe,
.auto_probe = nrf5_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = nrf5_protect_check,
.free_driver_priv = nrf5_free_driver_priv,
};
/* We need to retain the flash-driver name as well as the commands
* for backwards compatability */
const struct flash_driver nrf51_flash = {
.name = "nrf51",
.commands = nrf5_command_handlers,
.flash_bank_command = nrf5_flash_bank_command,
.info = nrf5_info,
.erase = nrf5_erase,
.protect = nrf5_protect,
.write = nrf5_write,
.read = default_flash_read,
.probe = nrf5_probe,
.auto_probe = nrf5_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = nrf5_protect_check,
.free_driver_priv = nrf5_free_driver_priv,
};