openocd/src/flash/nor/at91samd.c

628 lines
17 KiB
C
Raw Normal View History

/***************************************************************************
* Copyright (C) 2013 by Andrey Yurovsky *
* Andrey Yurovsky <yurovsky@gmail.com> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#define SAMD_NUM_SECTORS 16
#define SAMD_FLASH 0x00000000 /* physical Flash memory */
#define SAMD_DSU 0x41002000 /* Device Service Unit */
#define SAMD_NVMCTRL 0x41004000 /* Non-volatile memory controller */
#define SAMD_DSU_DID 0x18 /* Device ID register */
#define SAMD_NVMCTRL_CTRLA 0x00 /* NVM control A register */
#define SAMD_NVMCTRL_CTRLB 0x04 /* NVM control B register */
#define SAMD_NVMCTRL_PARAM 0x08 /* NVM parameters register */
#define SAMD_NVMCTRL_INTFLAG 0x18 /* NVM Interupt Flag Status & Clear */
#define SAMD_NVMCTRL_STATUS 0x18 /* NVM status register */
#define SAMD_NVMCTRL_ADDR 0x1C /* NVM address register */
#define SAMD_NVMCTRL_LOCK 0x20 /* NVM Lock section register */
#define SAMD_CMDEX_KEY 0xA5UL
#define SAMD_NVM_CMD(n) ((SAMD_CMDEX_KEY << 8) | (n & 0x7F))
/* NVMCTRL commands. See Table 20-4 in 42129FSAM10/2013 */
#define SAMD_NVM_CMD_ER 0x02 /* Erase Row */
#define SAMD_NVM_CMD_WP 0x04 /* Write Page */
#define SAMD_NVM_CMD_EAR 0x05 /* Erase Auxilary Row */
#define SAMD_NVM_CMD_WAP 0x06 /* Write Auxilary Page */
#define SAMD_NVM_CMD_LR 0x40 /* Lock Region */
#define SAMD_NVM_CMD_UR 0x41 /* Unlock Region */
#define SAMD_NVM_CMD_SPRM 0x42 /* Set Power Reduction Mode */
#define SAMD_NVM_CMD_CPRM 0x43 /* Clear Power Reduction Mode */
#define SAMD_NVM_CMD_PBC 0x44 /* Page Buffer Clear */
#define SAMD_NVM_CMD_SSB 0x45 /* Set Security Bit */
#define SAMD_NVM_CMD_INVALL 0x46 /* Invalidate all caches */
/* Known identifiers */
#define SAMD_PROCESSOR_M0 0x01
#define SAMD_FAMILY_D 0x00
#define SAMD_SERIES_20 0x00
#define SAMD_SERIES_21 0x01
struct samd_part {
uint8_t id;
const char *name;
uint32_t flash_kb;
uint32_t ram_kb;
};
/* Known SAMD20 parts. See Table 12-8 in 42129FSAM10/2013 */
static const struct samd_part samd20_parts[] = {
{ 0x0, "SAMD20J18A", 256, 32 },
{ 0x1, "SAMD20J17A", 128, 16 },
{ 0x2, "SAMD20J16A", 64, 8 },
{ 0x3, "SAMD20J15A", 32, 4 },
{ 0x4, "SAMD20J14A", 16, 2 },
{ 0x5, "SAMD20G18A", 256, 32 },
{ 0x6, "SAMD20G17A", 128, 16 },
{ 0x7, "SAMD20G16A", 64, 8 },
{ 0x8, "SAMD20G15A", 32, 4 },
{ 0x9, "SAMD20G14A", 16, 2 },
{ 0xB, "SAMD20E17A", 128, 16 },
{ 0xC, "SAMD20E16A", 64, 8 },
{ 0xD, "SAMD20E15A", 32, 4 },
{ 0xE, "SAMD20E14A", 16, 2 },
};
/* Known SAMD21 parts. */
static const struct samd_part samd21_parts[] = {
{ 0x0, "SAMD21J18A", 256, 32 },
{ 0x1, "SAMD21J17A", 128, 16 },
{ 0x2, "SAMD21J16A", 64, 8 },
{ 0x3, "SAMD21J15A", 32, 4 },
{ 0x4, "SAMD21J14A", 16, 2 },
{ 0x5, "SAMD21G18A", 256, 32 },
{ 0x6, "SAMD21G17A", 128, 16 },
{ 0x7, "SAMD21G16A", 64, 8 },
{ 0x8, "SAMD21G15A", 32, 4 },
{ 0x9, "SAMD21G14A", 16, 2 },
{ 0xA, "SAMD21E18A", 256, 32 },
{ 0xB, "SAMD21E17A", 128, 16 },
{ 0xC, "SAMD21E16A", 64, 8 },
{ 0xD, "SAMD21E15A", 32, 4 },
{ 0xE, "SAMD21E14A", 16, 2 },
};
/* Each family of parts contains a parts table in the DEVSEL field of DID. The
* processor ID, family ID, and series ID are used to determine which exact
* family this is and then we can use the corresponding table. */
struct samd_family {
uint8_t processor;
uint8_t family;
uint8_t series;
const struct samd_part *parts;
size_t num_parts;
};
/* Known SAMD families */
static const struct samd_family samd_families[] = {
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_20,
samd20_parts, ARRAY_SIZE(samd20_parts) },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_21,
samd21_parts, ARRAY_SIZE(samd21_parts) },
};
struct samd_info {
uint32_t page_size;
int num_pages;
int sector_size;
bool probed;
struct target *target;
struct samd_info *next;
};
static struct samd_info *samd_chips;
static const struct samd_part *samd_find_part(uint32_t id)
{
uint8_t processor = (id >> 28);
uint8_t family = (id >> 24) & 0x0F;
uint8_t series = (id >> 16) & 0xFF;
uint8_t devsel = id & 0xFF;
for (unsigned i = 0; i < ARRAY_SIZE(samd_families); i++) {
if (samd_families[i].processor == processor &&
samd_families[i].series == series &&
samd_families[i].family == family) {
for (unsigned j = 0; j < samd_families[i].num_parts; j++) {
if (samd_families[i].parts[j].id == devsel)
return &samd_families[i].parts[j];
}
}
}
return NULL;
}
static int samd_protect_check(struct flash_bank *bank)
{
int res;
uint16_t lock;
res = target_read_u16(bank->target,
SAMD_NVMCTRL + SAMD_NVMCTRL_LOCK, &lock);
if (res != ERROR_OK)
return res;
/* Lock bits are active-low */
for (int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_protected = !(lock & (1<<i));
return ERROR_OK;
}
static int samd_probe(struct flash_bank *bank)
{
uint32_t id, param;
int res;
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
const struct samd_part *part;
if (chip->probed)
return ERROR_OK;
res = target_read_u32(bank->target, SAMD_DSU + SAMD_DSU_DID, &id);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read Device ID register");
return res;
}
part = samd_find_part(id);
if (part == NULL) {
LOG_ERROR("Couldn't find part correspoding to DID %08" PRIx32, id);
return ERROR_FAIL;
}
res = target_read_u32(bank->target,
SAMD_NVMCTRL + SAMD_NVMCTRL_PARAM, &param);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read NVM Parameters register");
return res;
}
bank->size = part->flash_kb * 1024;
chip->sector_size = bank->size / SAMD_NUM_SECTORS;
/* The PSZ field (bits 18:16) indicate the page size bytes as 2^(3+n) so
* 0 is 8KB and 7 is 1024KB. */
chip->page_size = (8 << ((param >> 16) & 0x7));
/* The NVMP field (bits 15:0) indicates the total number of pages */
chip->num_pages = param & 0xFFFF;
/* Sanity check: the total flash size in the DSU should match the page size
* multiplied by the number of pages. */
if (bank->size != chip->num_pages * chip->page_size) {
LOG_WARNING("SAMD: bank size doesn't match NVM parameters. "
"Identified %uKB Flash but NVMCTRL reports %u %uB pages",
part->flash_kb, chip->num_pages, chip->page_size);
}
/* Allocate the sector table */
bank->num_sectors = SAMD_NUM_SECTORS;
bank->sectors = calloc(bank->num_sectors, sizeof((bank->sectors)[0]));
if (!bank->sectors)
return ERROR_FAIL;
/* Fill out the sector information: all SAMD sectors are the same size and
* there is always a fixed number of them. */
for (int i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].size = chip->sector_size;
bank->sectors[i].offset = i * chip->sector_size;
/* mark as unknown */
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = -1;
}
samd_protect_check(bank);
/* Done */
chip->probed = true;
LOG_INFO("SAMD MCU: %s (%uKB Flash, %uKB RAM)", part->name,
part->flash_kb, part->ram_kb);
return ERROR_OK;
}
static int samd_protect(struct flash_bank *bank, int set, int first, int last)
{
int res;
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
for (int s = first; s <= last; s++) {
/* Load an address that is within this sector (we use offset 0) */
res = target_write_u32(bank->target, SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR,
s * chip->sector_size);
if (res != ERROR_OK)
return res;
/* Tell the controller to lock that sector */
res = target_write_u16(bank->target,
SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA,
SAMD_NVM_CMD(SAMD_NVM_CMD_LR));
if (res != ERROR_OK)
return res;
}
samd_protect_check(bank);
return ERROR_OK;
}
static bool samd_check_error(struct flash_bank *bank)
{
int ret;
bool error;
uint16_t status;
ret = target_read_u16(bank->target,
SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, &status);
if (ret != ERROR_OK) {
LOG_ERROR("Can't read NVM status");
return true;
}
if (status & 0x001C) {
if (status & (1 << 4)) /* NVME */
LOG_ERROR("SAMD: NVM Error");
if (status & (1 << 3)) /* LOCKE */
LOG_ERROR("SAMD: NVM lock error");
if (status & (1 << 2)) /* PROGE */
LOG_ERROR("SAMD: NVM programming error");
error = true;
} else {
error = false;
}
/* Clear the error conditions by writing a one to them */
ret = target_write_u16(bank->target,
SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, status);
if (ret != ERROR_OK)
LOG_ERROR("Can't clear NVM error conditions");
return error;
}
static int samd_erase_row(struct flash_bank *bank, uint32_t address)
{
int res;
bool error = false;
/* Set an address contained in the row to be erased */
res = target_write_u32(bank->target,
SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR, address >> 1);
if (res == ERROR_OK) {
/* Issue the Erase Row command to erase that row */
res = target_write_u16(bank->target,
SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA,
SAMD_NVM_CMD(SAMD_NVM_CMD_ER));
/* Check (and clear) error conditions */
error = samd_check_error(bank);
}
if (res != ERROR_OK || error) {
LOG_ERROR("Failed to erase row containing %08X" PRIx32, address);
return ERROR_FAIL;
}
return ERROR_OK;
}
static int samd_erase(struct flash_bank *bank, int first, int last)
{
int res;
int rows_in_sector;
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!chip->probed) {
if (samd_probe(bank) != ERROR_OK)
return ERROR_FLASH_BANK_NOT_PROBED;
}
/* The SAMD NVM has row erase granularity. There are four pages in a row
* and the number of rows in a sector depends on the sector size, which in
* turn depends on the Flash capacity as there is a fixed number of
* sectors. */
rows_in_sector = chip->sector_size / (chip->page_size * 4);
/* For each sector to be erased */
for (int s = first; s <= last; s++) {
/* For each row in that sector */
for (int r = s * rows_in_sector; r < (s + 1) * rows_in_sector; r++) {
res = samd_erase_row(bank, r * chip->page_size * 4);
if (res != ERROR_OK) {
LOG_ERROR("SAMD: failed to erase sector %d", s);
return res;
}
}
bank->sectors[s].is_erased = 1;
}
return ERROR_OK;
}
static struct flash_sector *samd_find_sector_by_address(struct flash_bank *bank, uint32_t address)
{
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
for (int i = 0; i < bank->num_sectors; i++) {
if (bank->sectors[i].offset <= address &&
address < bank->sectors[i].offset + chip->sector_size)
return &bank->sectors[i];
}
return NULL;
}
/* Write an entire row (four pages) from host buffer 'buf' to row-aligned
* 'address' in the Flash. */
static int samd_write_row(struct flash_bank *bank, uint32_t address,
const uint8_t *buf)
{
int res;
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
struct flash_sector *sector = samd_find_sector_by_address(bank, address);
if (!sector) {
LOG_ERROR("Can't find sector corresponding to address 0x%08" PRIx32, address);
return ERROR_FLASH_OPERATION_FAILED;
}
if (sector->is_protected) {
LOG_ERROR("Trying to write to a protected sector at 0x%08" PRIx32, address);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Erase the row that we'll be writing to */
res = samd_erase_row(bank, address);
if (res != ERROR_OK)
return res;
/* Now write the pages in this row. */
for (unsigned int i = 0; i < 4; i++) {
bool error;
/* Write the page contents to the target's page buffer. A page write
* is issued automatically once the last location is written in the
* page buffer (ie: a complete page has been written out). */
res = target_write_memory(bank->target, address, 4,
chip->page_size / 4, buf);
if (res != ERROR_OK) {
LOG_ERROR("%s: %d", __func__, __LINE__);
return res;
}
error = samd_check_error(bank);
if (error)
return ERROR_FAIL;
/* Next page */
address += chip->page_size;
buf += chip->page_size;
}
sector->is_erased = 0;
return res;
}
/* Write partial contents into row-aligned 'address' on the Flash from host
* buffer 'buf' by writing 'nb' of 'buf' at 'row_offset' into the Flash row. */
static int samd_write_row_partial(struct flash_bank *bank, uint32_t address,
const uint8_t *buf, uint32_t row_offset, uint32_t nb)
{
int res;
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
uint32_t row_size = chip->page_size * 4;
uint8_t *rb = malloc(row_size);
if (!rb)
return ERROR_FAIL;
assert(row_offset + nb < row_size);
assert((address % row_size) == 0);
/* Retrieve the full row contents from Flash */
res = target_read_memory(bank->target, address, 4, row_size / 4, rb);
if (res != ERROR_OK) {
free(rb);
return res;
}
/* Insert our partial row over the data from Flash */
memcpy(rb + (row_offset % row_size), buf, nb);
/* Write the row back out */
res = samd_write_row(bank, address, rb);
free(rb);
return res;
}
static int samd_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
int res;
uint32_t address;
uint32_t nb = 0;
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
uint32_t row_size = chip->page_size * 4;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!chip->probed) {
if (samd_probe(bank) != ERROR_OK)
return ERROR_FLASH_BANK_NOT_PROBED;
}
if (offset % row_size) {
/* We're starting at an unaligned offset so we'll write a partial row
* comprising that offset and up to the end of that row. */
nb = row_size - (offset % row_size);
if (nb > count)
nb = count;
} else if (count < row_size) {
/* We're writing an aligned but partial row. */
nb = count;
}
address = (offset / row_size) * row_size + bank->base;
if (nb > 0) {
res = samd_write_row_partial(bank, address, buffer,
offset % row_size, nb);
if (res != ERROR_OK)
return res;
/* We're done with the row contents */
count -= nb;
offset += nb;
buffer += row_size;
}
/* There's at least one aligned row to write out. */
if (count >= row_size) {
int nr = count / row_size + ((count % row_size) ? 1 : 0);
unsigned int r = 0;
for (unsigned int i = address / row_size;
(i < (address / row_size) + nr) && count > 0; i++) {
address = (i * row_size) + bank->base;
if (count >= row_size) {
res = samd_write_row(bank, address, buffer + (r * row_size));
/* Advance one row */
offset += row_size;
count -= row_size;
} else {
res = samd_write_row_partial(bank, address,
buffer + (r * row_size), 0, count);
/* We're done after this. */
offset += count;
count = 0;
}
r++;
if (res != ERROR_OK)
return res;
}
}
return ERROR_OK;
}
FLASH_BANK_COMMAND_HANDLER(samd_flash_bank_command)
{
struct samd_info *chip = samd_chips;
while (chip) {
if (chip->target == bank->target)
break;
chip = chip->next;
}
if (!chip) {
/* Create a new chip */
chip = calloc(1, sizeof(*chip));
if (!chip)
return ERROR_FAIL;
chip->target = bank->target;
chip->probed = false;
bank->driver_priv = chip;
/* Insert it into the chips list (at head) */
chip->next = samd_chips;
samd_chips = chip;
}
if (bank->base != SAMD_FLASH) {
LOG_ERROR("Address 0x%08" PRIx32 " invalid bank address (try 0x%08" PRIx32
"[at91samd series] )",
bank->base, SAMD_FLASH);
return ERROR_FAIL;
}
return ERROR_OK;
}
COMMAND_HANDLER(samd_handle_info_command)
{
return ERROR_OK;
}
static const struct command_registration at91samd_exec_command_handlers[] = {
{
.name = "info",
.handler = samd_handle_info_command,
.mode = COMMAND_EXEC,
.help = "Print information about the current at91samd chip"
"and its flash configuration.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration at91samd_command_handlers[] = {
{
.name = "at91samd",
.mode = COMMAND_ANY,
.help = "at91samd flash command group",
.usage = "",
.chain = at91samd_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver at91samd_flash = {
.name = "at91samd",
.commands = at91samd_command_handlers,
.flash_bank_command = samd_flash_bank_command,
.erase = samd_erase,
.protect = samd_protect,
.write = samd_write,
.read = default_flash_read,
.probe = samd_probe,
.auto_probe = samd_probe,
.erase_check = default_flash_blank_check,
.protect_check = samd_protect_check,
};