openocd/src/flash/nor/kinetis_ke.c

1283 lines
36 KiB
C
Raw Normal View History

/***************************************************************************
* Copyright (C) 2015 by Ivan Meleca *
* ivan@artekit.eu *
* *
* Modified from kinetis.c *
* *
* Copyright (C) 2011 by Mathias Kuester *
* kesmtp@freenet.de *
* *
* Copyright (C) 2011 sleep(5) ltd *
* tomas@sleepfive.com *
* *
* Copyright (C) 2012 by Christopher D. Kilgour *
* techie at whiterocker.com *
* *
* Copyright (C) 2013 Nemui Trinomius *
* nemuisan_kawausogasuki@live.jp *
* *
* Copyright (C) 2015 Tomas Vanek *
* vanekt@fbl.cz *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "jtag/interface.h"
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/arm_adi_v5.h>
#include <target/armv7m.h>
#include <target/cortex_m.h>
/* Addresses */
#define SIM_SRSID 0x40048000
#define ICS_C1 0x40064000
#define ICS_C2 0x40064001
#define ICS_C3 0x40064002
#define ICS_C4 0x40064003
#define ICS_S 0x40064004
#define SIM_BUSDIV 0x40048018
#define SIM_CLKDIV_KE06 0x40048024
#define SIM_CLKDIV_KE04_44_64_80 0x40048024
#define SIM_CLKDIV_KE04_16_20_24 0x4004801C
#define WDOG_CS1 0x40052000
#define ICS_C2_BDIV_MASK 0xE0
#define ICS_C2_BDIV_SHIFT 5
#define ICS_C2_BDIV(x) (((uint8_t)(((uint8_t)(x))<<ICS_C2_BDIV_SHIFT))&ICS_C2_BDIV_MASK)
#define ICS_S_LOCK_MASK 0x40
#define ICS_C4_SCFTRIM_MASK 0x1
#define SIM_CLKDIV_OUTDIV2_MASK 0x1000000
#define FTMRX_FCLKDIV_FDIV_MASK 0x3F
#define FTMRX_FCLKDIV_FDIV_SHIFT 0
#define FTMRX_FCLKDIV_FDIV(x) (((uint8_t)(((uint8_t)(x))<<FTMRX_FCLKDIV_FDIV_SHIFT))&FTMRX_FCLKDIV_FDIV_MASK)
#define FTMRX_FCLKDIV_FDIVLCK_MASK 0x40
#define FTMRX_FCLKDIV_FDIVLCK_SHIFT 6
#define FTMRX_FCLKDIV_FDIVLD_MASK 0x80
#define FTMRX_FCLKDIV_FDIVLD_SHIFT 7
#define FTMRX_FSTAT_CCIF_MASK 0x80
#define FTMRX_FSTAT_MGSTAT0_MASK 0x01
#define FTMRX_FSTAT_MGSTAT1_MASK 0x02
/* Commands */
#define FTMRX_CMD_ALLERASED 0x01
#define FTMRX_CMD_BLOCKERASED 0x02
#define FTMRX_CMD_SECTIONERASED 0x03
#define FTMRX_CMD_READONCE 0x04
#define FTMRX_CMD_PROGFLASH 0x06
#define FTMRX_CMD_PROGONCE 0x07
#define FTMRX_CMD_ERASEALL 0x08
#define FTMRX_CMD_ERASEBLOCK 0x09
#define FTMRX_CMD_ERASESECTOR 0x0A
#define FTMRX_CMD_UNSECURE 0x0B
#define FTMRX_CMD_VERIFYACCESS 0x0C
#define FTMRX_CMD_SETMARGINLVL 0x0D
#define FTMRX_CMD_SETFACTORYLVL 0x0E
#define FTMRX_CMD_CONFIGNVM 0x0F
/* Error codes */
#define FTMRX_ERROR_ACCERR 0x20
#define FTMRX_ERROR_FPVIOL 0x10
#define KINETIS_KE_SRSID_FAMID(x) ((x >> 28) & 0x0F)
#define KINETIS_KE_SRSID_SUBFAMID(x) ((x >> 24) & 0x0F)
#define KINETIS_KE_SRSID_PINCOUNT(x) ((x >> 16) & 0x0F)
#define KINETIS_KE_SRSID_KEX2 0x02
#define KINETIS_KE_SRSID_KEX4 0x04
#define KINETIS_KE_SRSID_KEX6 0x06
struct kinetis_ke_flash_bank {
uint32_t sector_size;
uint32_t protection_size;
uint32_t sim_srsid;
uint32_t ftmrx_fclkdiv_addr;
uint32_t ftmrx_fccobix_addr;
uint32_t ftmrx_fstat_addr;
uint32_t ftmrx_fprot_addr;
uint32_t ftmrx_fccobhi_addr;
uint32_t ftmrx_fccoblo_addr;
};
#define MDM_REG_STAT 0x00
#define MDM_REG_CTRL 0x04
#define MDM_REG_ID 0xfc
#define MDM_STAT_FMEACK (1<<0)
#define MDM_STAT_FREADY (1<<1)
#define MDM_STAT_SYSSEC (1<<2)
#define MDM_STAT_SYSRES (1<<3)
#define MDM_STAT_FMEEN (1<<5)
#define MDM_STAT_BACKDOOREN (1<<6)
#define MDM_STAT_LPEN (1<<7)
#define MDM_STAT_VLPEN (1<<8)
#define MDM_STAT_LLSMODEXIT (1<<9)
#define MDM_STAT_VLLSXMODEXIT (1<<10)
#define MDM_STAT_CORE_HALTED (1<<16)
#define MDM_STAT_CORE_SLEEPDEEP (1<<17)
#define MDM_STAT_CORESLEEPING (1<<18)
#define MEM_CTRL_FMEIP (1<<0)
#define MEM_CTRL_DBG_DIS (1<<1)
#define MEM_CTRL_DBG_REQ (1<<2)
#define MEM_CTRL_SYS_RES_REQ (1<<3)
#define MEM_CTRL_CORE_HOLD_RES (1<<4)
#define MEM_CTRL_VLLSX_DBG_REQ (1<<5)
#define MEM_CTRL_VLLSX_DBG_ACK (1<<6)
#define MEM_CTRL_VLLSX_STAT_ACK (1<<7)
#define MDM_ACCESS_TIMEOUT 3000 /* iterations */
static int kinetis_ke_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value)
{
LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value);
arm_adi_v5: add ap refcount and add get/put around ap use While an ADIv5 DAP can only have 256 AP, ADIv6 can provide till 2**40 (1,099,511,627,776) AP per DAP. The actual trivial code implementation for ADIv5 (that uses an array of 256 ap in the struct adiv5_dap) cannot be extended as-is to handle ADIv6. The simple array of 256 AP can be reused as a dynamic storage for ADIv6 ap: - the ADIv5 AP number is replaced by the ADIv6 base address; - the index of the array (equal to ADIv5 AP number) has no link to any ADIv6 property; - the ADIv6 base_address has to be searched in the array of AP. The 256 elements in the AP array should be enough for any device available today. In future it can be easily increased, if needed. To efficiently use the 256 elements in the AP array, the code should associate one element of the array to an ADIv6 AP (through the AP base address), then cancel the association when the AP is not anymore needed. This is important to avoid saturating the AP array while exploring the device through 'dap apreg' commands. Add a reference counter in the struct adiv5_ap to track how many times the struct has been associated with the same base address. Introduce the function dap_get_ap() to associate and return the struct, and dap_put_ap() to release the struct. For the moment the code covers ADIv5 only, so the association is through the index. Use the two functions above and dap_find_get_ap() throughout the code. Check the return value of dap_get_ap(). It is always not NULL in the current ADIv5-only implementation, but can be NULL for ADIv6 when there are no more available AP in the array. Instrument dap_queue_ap_read() and dap_queue_ap_write() to log an error message if the AP has reference counter zero, meaning that the AP has not been 'get' yet. This helps identifying AP used without get/put, e.g. code missed by this patch, or merged later. Instrument dap_cleanup_all() to log an error message if an AP has reference counter not zero at openocd exit, meaning that the AP has not been 'put' yet. Change-Id: I98316eb42b9f3d9c9bbbb6c73b1091b53f629092 Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com> Reviewed-on: https://review.openocd.org/c/openocd/+/6455 Reviewed-by: Daniel Goehring <dgoehrin@os.amperecomputing.com> Tested-by: jenkins
2021-08-04 21:07:57 +00:00
struct adiv5_ap *ap = dap_get_ap(dap, 1);
if (!ap) {
LOG_DEBUG("MDM: failed to get AP");
return ERROR_FAIL;
}
int retval = dap_queue_ap_write(ap, reg, value);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: failed to queue a write request");
arm_adi_v5: add ap refcount and add get/put around ap use While an ADIv5 DAP can only have 256 AP, ADIv6 can provide till 2**40 (1,099,511,627,776) AP per DAP. The actual trivial code implementation for ADIv5 (that uses an array of 256 ap in the struct adiv5_dap) cannot be extended as-is to handle ADIv6. The simple array of 256 AP can be reused as a dynamic storage for ADIv6 ap: - the ADIv5 AP number is replaced by the ADIv6 base address; - the index of the array (equal to ADIv5 AP number) has no link to any ADIv6 property; - the ADIv6 base_address has to be searched in the array of AP. The 256 elements in the AP array should be enough for any device available today. In future it can be easily increased, if needed. To efficiently use the 256 elements in the AP array, the code should associate one element of the array to an ADIv6 AP (through the AP base address), then cancel the association when the AP is not anymore needed. This is important to avoid saturating the AP array while exploring the device through 'dap apreg' commands. Add a reference counter in the struct adiv5_ap to track how many times the struct has been associated with the same base address. Introduce the function dap_get_ap() to associate and return the struct, and dap_put_ap() to release the struct. For the moment the code covers ADIv5 only, so the association is through the index. Use the two functions above and dap_find_get_ap() throughout the code. Check the return value of dap_get_ap(). It is always not NULL in the current ADIv5-only implementation, but can be NULL for ADIv6 when there are no more available AP in the array. Instrument dap_queue_ap_read() and dap_queue_ap_write() to log an error message if the AP has reference counter zero, meaning that the AP has not been 'get' yet. This helps identifying AP used without get/put, e.g. code missed by this patch, or merged later. Instrument dap_cleanup_all() to log an error message if an AP has reference counter not zero at openocd exit, meaning that the AP has not been 'put' yet. Change-Id: I98316eb42b9f3d9c9bbbb6c73b1091b53f629092 Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com> Reviewed-on: https://review.openocd.org/c/openocd/+/6455 Reviewed-by: Daniel Goehring <dgoehrin@os.amperecomputing.com> Tested-by: jenkins
2021-08-04 21:07:57 +00:00
dap_put_ap(ap);
return retval;
}
retval = dap_run(dap);
arm_adi_v5: add ap refcount and add get/put around ap use While an ADIv5 DAP can only have 256 AP, ADIv6 can provide till 2**40 (1,099,511,627,776) AP per DAP. The actual trivial code implementation for ADIv5 (that uses an array of 256 ap in the struct adiv5_dap) cannot be extended as-is to handle ADIv6. The simple array of 256 AP can be reused as a dynamic storage for ADIv6 ap: - the ADIv5 AP number is replaced by the ADIv6 base address; - the index of the array (equal to ADIv5 AP number) has no link to any ADIv6 property; - the ADIv6 base_address has to be searched in the array of AP. The 256 elements in the AP array should be enough for any device available today. In future it can be easily increased, if needed. To efficiently use the 256 elements in the AP array, the code should associate one element of the array to an ADIv6 AP (through the AP base address), then cancel the association when the AP is not anymore needed. This is important to avoid saturating the AP array while exploring the device through 'dap apreg' commands. Add a reference counter in the struct adiv5_ap to track how many times the struct has been associated with the same base address. Introduce the function dap_get_ap() to associate and return the struct, and dap_put_ap() to release the struct. For the moment the code covers ADIv5 only, so the association is through the index. Use the two functions above and dap_find_get_ap() throughout the code. Check the return value of dap_get_ap(). It is always not NULL in the current ADIv5-only implementation, but can be NULL for ADIv6 when there are no more available AP in the array. Instrument dap_queue_ap_read() and dap_queue_ap_write() to log an error message if the AP has reference counter zero, meaning that the AP has not been 'get' yet. This helps identifying AP used without get/put, e.g. code missed by this patch, or merged later. Instrument dap_cleanup_all() to log an error message if an AP has reference counter not zero at openocd exit, meaning that the AP has not been 'put' yet. Change-Id: I98316eb42b9f3d9c9bbbb6c73b1091b53f629092 Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com> Reviewed-on: https://review.openocd.org/c/openocd/+/6455 Reviewed-by: Daniel Goehring <dgoehrin@os.amperecomputing.com> Tested-by: jenkins
2021-08-04 21:07:57 +00:00
dap_put_ap(ap);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: dap_run failed");
return retval;
}
return ERROR_OK;
}
static int kinetis_ke_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result)
{
arm_adi_v5: add ap refcount and add get/put around ap use While an ADIv5 DAP can only have 256 AP, ADIv6 can provide till 2**40 (1,099,511,627,776) AP per DAP. The actual trivial code implementation for ADIv5 (that uses an array of 256 ap in the struct adiv5_dap) cannot be extended as-is to handle ADIv6. The simple array of 256 AP can be reused as a dynamic storage for ADIv6 ap: - the ADIv5 AP number is replaced by the ADIv6 base address; - the index of the array (equal to ADIv5 AP number) has no link to any ADIv6 property; - the ADIv6 base_address has to be searched in the array of AP. The 256 elements in the AP array should be enough for any device available today. In future it can be easily increased, if needed. To efficiently use the 256 elements in the AP array, the code should associate one element of the array to an ADIv6 AP (through the AP base address), then cancel the association when the AP is not anymore needed. This is important to avoid saturating the AP array while exploring the device through 'dap apreg' commands. Add a reference counter in the struct adiv5_ap to track how many times the struct has been associated with the same base address. Introduce the function dap_get_ap() to associate and return the struct, and dap_put_ap() to release the struct. For the moment the code covers ADIv5 only, so the association is through the index. Use the two functions above and dap_find_get_ap() throughout the code. Check the return value of dap_get_ap(). It is always not NULL in the current ADIv5-only implementation, but can be NULL for ADIv6 when there are no more available AP in the array. Instrument dap_queue_ap_read() and dap_queue_ap_write() to log an error message if the AP has reference counter zero, meaning that the AP has not been 'get' yet. This helps identifying AP used without get/put, e.g. code missed by this patch, or merged later. Instrument dap_cleanup_all() to log an error message if an AP has reference counter not zero at openocd exit, meaning that the AP has not been 'put' yet. Change-Id: I98316eb42b9f3d9c9bbbb6c73b1091b53f629092 Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com> Reviewed-on: https://review.openocd.org/c/openocd/+/6455 Reviewed-by: Daniel Goehring <dgoehrin@os.amperecomputing.com> Tested-by: jenkins
2021-08-04 21:07:57 +00:00
struct adiv5_ap *ap = dap_get_ap(dap, 1);
if (!ap) {
LOG_DEBUG("MDM: failed to get AP");
return ERROR_FAIL;
}
int retval = dap_queue_ap_read(ap, reg, result);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: failed to queue a read request");
arm_adi_v5: add ap refcount and add get/put around ap use While an ADIv5 DAP can only have 256 AP, ADIv6 can provide till 2**40 (1,099,511,627,776) AP per DAP. The actual trivial code implementation for ADIv5 (that uses an array of 256 ap in the struct adiv5_dap) cannot be extended as-is to handle ADIv6. The simple array of 256 AP can be reused as a dynamic storage for ADIv6 ap: - the ADIv5 AP number is replaced by the ADIv6 base address; - the index of the array (equal to ADIv5 AP number) has no link to any ADIv6 property; - the ADIv6 base_address has to be searched in the array of AP. The 256 elements in the AP array should be enough for any device available today. In future it can be easily increased, if needed. To efficiently use the 256 elements in the AP array, the code should associate one element of the array to an ADIv6 AP (through the AP base address), then cancel the association when the AP is not anymore needed. This is important to avoid saturating the AP array while exploring the device through 'dap apreg' commands. Add a reference counter in the struct adiv5_ap to track how many times the struct has been associated with the same base address. Introduce the function dap_get_ap() to associate and return the struct, and dap_put_ap() to release the struct. For the moment the code covers ADIv5 only, so the association is through the index. Use the two functions above and dap_find_get_ap() throughout the code. Check the return value of dap_get_ap(). It is always not NULL in the current ADIv5-only implementation, but can be NULL for ADIv6 when there are no more available AP in the array. Instrument dap_queue_ap_read() and dap_queue_ap_write() to log an error message if the AP has reference counter zero, meaning that the AP has not been 'get' yet. This helps identifying AP used without get/put, e.g. code missed by this patch, or merged later. Instrument dap_cleanup_all() to log an error message if an AP has reference counter not zero at openocd exit, meaning that the AP has not been 'put' yet. Change-Id: I98316eb42b9f3d9c9bbbb6c73b1091b53f629092 Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com> Reviewed-on: https://review.openocd.org/c/openocd/+/6455 Reviewed-by: Daniel Goehring <dgoehrin@os.amperecomputing.com> Tested-by: jenkins
2021-08-04 21:07:57 +00:00
dap_put_ap(ap);
return retval;
}
retval = dap_run(dap);
arm_adi_v5: add ap refcount and add get/put around ap use While an ADIv5 DAP can only have 256 AP, ADIv6 can provide till 2**40 (1,099,511,627,776) AP per DAP. The actual trivial code implementation for ADIv5 (that uses an array of 256 ap in the struct adiv5_dap) cannot be extended as-is to handle ADIv6. The simple array of 256 AP can be reused as a dynamic storage for ADIv6 ap: - the ADIv5 AP number is replaced by the ADIv6 base address; - the index of the array (equal to ADIv5 AP number) has no link to any ADIv6 property; - the ADIv6 base_address has to be searched in the array of AP. The 256 elements in the AP array should be enough for any device available today. In future it can be easily increased, if needed. To efficiently use the 256 elements in the AP array, the code should associate one element of the array to an ADIv6 AP (through the AP base address), then cancel the association when the AP is not anymore needed. This is important to avoid saturating the AP array while exploring the device through 'dap apreg' commands. Add a reference counter in the struct adiv5_ap to track how many times the struct has been associated with the same base address. Introduce the function dap_get_ap() to associate and return the struct, and dap_put_ap() to release the struct. For the moment the code covers ADIv5 only, so the association is through the index. Use the two functions above and dap_find_get_ap() throughout the code. Check the return value of dap_get_ap(). It is always not NULL in the current ADIv5-only implementation, but can be NULL for ADIv6 when there are no more available AP in the array. Instrument dap_queue_ap_read() and dap_queue_ap_write() to log an error message if the AP has reference counter zero, meaning that the AP has not been 'get' yet. This helps identifying AP used without get/put, e.g. code missed by this patch, or merged later. Instrument dap_cleanup_all() to log an error message if an AP has reference counter not zero at openocd exit, meaning that the AP has not been 'put' yet. Change-Id: I98316eb42b9f3d9c9bbbb6c73b1091b53f629092 Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com> Reviewed-on: https://review.openocd.org/c/openocd/+/6455 Reviewed-by: Daniel Goehring <dgoehrin@os.amperecomputing.com> Tested-by: jenkins
2021-08-04 21:07:57 +00:00
dap_put_ap(ap);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: dap_run failed");
return retval;
}
LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result);
return ERROR_OK;
}
static int kinetis_ke_mdm_poll_register(struct adiv5_dap *dap, unsigned reg, uint32_t mask, uint32_t value)
{
uint32_t val;
int retval;
int timeout = MDM_ACCESS_TIMEOUT;
do {
retval = kinetis_ke_mdm_read_register(dap, reg, &val);
if (retval != ERROR_OK || (val & mask) == value)
return retval;
alive_sleep(1);
} while (timeout--);
LOG_DEBUG("MDM: polling timed out");
return ERROR_FAIL;
}
static int kinetis_ke_prepare_flash(struct flash_bank *bank)
{
struct target *target = bank->target;
struct kinetis_ke_flash_bank *kinfo = bank->driver_priv;
uint8_t c2, c3, c4, s = 0;
uint16_t trim_value = 0;
uint16_t timeout = 0;
uint32_t bus_clock = 0;
uint32_t bus_reg_val = 0;
uint32_t bus_reg_addr = 0;
uint32_t flash_clk_div;
uint8_t fclkdiv;
int result;
/*
* The RM states that the flash clock has to be set to 1MHz for writing and
* erasing operations (otherwise it can damage the flash).
* This function configures the entire clock tree to make sure we
* run at the specified clock. We'll set FEI mode running from the ~32KHz
* internal clock. So we need to:
* - Trim internal clock.
* - Configure the divider for ICSOUTCLK (ICS module).
* - Configure the divider to get a bus clock (SIM module).
* - Configure the flash clock that depends on the bus clock.
*
* For MKE02_40 and MKE02_20 we set ICSOUTCLK = 20MHz and bus clock = 20MHz.
* For MKE04 and MKE06 we run at ICSOUTCLK = 48MHz and bus clock = 24MHz.
*/
/*
* Trim internal clock
*/
switch (KINETIS_KE_SRSID_SUBFAMID(kinfo->sim_srsid)) {
case KINETIS_KE_SRSID_KEX2:
/* Both KE02_20 and KE02_40 should get the same trim value */
trim_value = 0x4C;
break;
case KINETIS_KE_SRSID_KEX4:
trim_value = 0x54;
break;
case KINETIS_KE_SRSID_KEX6:
trim_value = 0x58;
break;
}
result = target_read_u8(target, ICS_C4, &c4);
if (result != ERROR_OK)
return result;
c3 = trim_value;
c4 = (c4 & ~(ICS_C4_SCFTRIM_MASK)) | ((trim_value >> 8) & 0x01);
result = target_write_u8(target, ICS_C3, c3);
if (result != ERROR_OK)
return result;
result = target_write_u8(target, ICS_C4, c4);
if (result != ERROR_OK)
return result;
result = target_read_u8(target, ICS_S, &s);
if (result != ERROR_OK)
return result;
/* Wait */
while (!(s & ICS_S_LOCK_MASK)) {
if (timeout <= 1000) {
timeout++;
alive_sleep(1);
} else {
return ERROR_FAIL;
}
result = target_read_u8(target, ICS_S, &s);
if (result != ERROR_OK)
return result;
}
/* ... trim done ... */
/*
* Configure SIM (bus clock)
*/
switch (KINETIS_KE_SRSID_SUBFAMID(kinfo->sim_srsid)) {
/* KE02 sub-family operates on SIM_BUSDIV */
case KINETIS_KE_SRSID_KEX2:
bus_reg_val = 0;
bus_reg_addr = SIM_BUSDIV;
bus_clock = 20000000;
break;
/* KE04 and KE06 sub-family operates on SIM_CLKDIV
* Clocks are divided by:
* DIV1 = core clock = 48MHz
* DIV2 = bus clock = 24Mhz
* DIV3 = timer clocks
* So we need to configure SIM_CLKDIV, DIV1 and DIV2 value
*/
case KINETIS_KE_SRSID_KEX4:
/* KE04 devices have the SIM_CLKDIV register at a different offset
* depending on the pin count. */
switch (KINETIS_KE_SRSID_PINCOUNT(kinfo->sim_srsid)) {
/* 16, 20 and 24 pins */
case 1:
case 2:
case 3:
bus_reg_addr = SIM_CLKDIV_KE04_16_20_24;
break;
/* 44, 64 and 80 pins */
case 5:
case 7:
case 8:
bus_reg_addr = SIM_CLKDIV_KE04_44_64_80;
break;
default:
LOG_ERROR("KE04 - Unknown pin count");
return ERROR_FAIL;
}
bus_reg_val = SIM_CLKDIV_OUTDIV2_MASK;
bus_clock = 24000000;
break;
case KINETIS_KE_SRSID_KEX6:
bus_reg_val = SIM_CLKDIV_OUTDIV2_MASK;
bus_reg_addr = SIM_CLKDIV_KE06;
bus_clock = 24000000;
break;
}
result = target_write_u32(target, bus_reg_addr, bus_reg_val);
if (result != ERROR_OK)
return result;
/*
* Configure ICS to FEI (internal source)
*/
result = target_read_u8(target, ICS_C2, &c2);
if (result != ERROR_OK)
return result;
c2 &= ~ICS_C2_BDIV_MASK;
switch (KINETIS_KE_SRSID_SUBFAMID(kinfo->sim_srsid)) {
case KINETIS_KE_SRSID_KEX2:
/* Note: since there are two KE02 types, the KE02_40 @ 40MHz and the
* KE02_20 @ 20MHz, we divide here the ~40MHz ICSFLLCLK down to 20MHz,
* for compatibility.
*/
c2 |= ICS_C2_BDIV(1);
break;
case KINETIS_KE_SRSID_KEX4:
case KINETIS_KE_SRSID_KEX6:
/* For KE04 and KE06, the ICSFLLCLK can be 48MHz. */
c2 |= ICS_C2_BDIV(0);
break;
}
result = target_write_u8(target, ICS_C2, c2);
if (result != ERROR_OK)
return result;
/* Internal clock as reference (IREFS = 1) */
result = target_write_u8(target, ICS_C1, 4);
if (result != ERROR_OK)
return result;
/* Wait for FLL to lock */
result = target_read_u8(target, ICS_S, &s);
if (result != ERROR_OK)
return result;
while (!(s & ICS_S_LOCK_MASK)) {
if (timeout <= 1000) {
timeout++;
alive_sleep(1);
} else {
return ERROR_FLASH_OPERATION_FAILED;
}
result = target_read_u8(target, ICS_S, &s);
if (result != ERROR_OK)
return result;
}
/*
* Configure flash clock to 1MHz.
*/
flash_clk_div = bus_clock / 1000000L - 1;
/* Check if the FCLKDIV register is locked */
result = target_read_u8(target, kinfo->ftmrx_fclkdiv_addr, &fclkdiv);
if (result != ERROR_OK)
return result;
if (!(fclkdiv & FTMRX_FCLKDIV_FDIVLCK_MASK)) {
/* Unlocked. Check if the register was configured, and if so, if it has the right value */
if ((fclkdiv & FTMRX_FCLKDIV_FDIVLD_MASK) &&
((fclkdiv & FTMRX_FCLKDIV_FDIV_MASK) != FTMRX_FCLKDIV_FDIV(flash_clk_div))) {
LOG_WARNING("Flash clock was already set and contains an invalid value.");
LOG_WARNING("Please reset the target.");
return ERROR_FAIL;
}
/* Finally, configure the flash clock */
fclkdiv = (fclkdiv & ~(FTMRX_FCLKDIV_FDIV_MASK)) | FTMRX_FCLKDIV_FDIV(flash_clk_div);
result = target_write_u8(target, kinfo->ftmrx_fclkdiv_addr, fclkdiv);
if (result != ERROR_OK)
return result;
} else {
/* Locked. Check if the current value is correct. */
if ((fclkdiv & FTMRX_FCLKDIV_FDIV_MASK) != FTMRX_FCLKDIV_FDIV(flash_clk_div)) {
LOG_WARNING("Flash clock register is locked and contains an invalid value.");
LOG_WARNING("Please reset the target.");
return ERROR_FAIL;
}
}
LOG_INFO("Flash clock ready");
return ERROR_OK;
}
static int kinetis_ke_stop_watchdog(struct target *target)
{
struct working_area *watchdog_algorithm;
struct armv7m_algorithm armv7m_info;
int retval;
uint8_t cs1;
static const uint8_t watchdog_code[] = {
#include "../../../contrib/loaders/flash/kinetis_ke/kinetis_ke_watchdog.inc"
};
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Check if the watchdog is enabled */
retval = target_read_u8(target, WDOG_CS1, &cs1);
if (retval != ERROR_OK)
return retval;
if (!(cs1 & 0x80)) {
/* Already stopped */
return ERROR_OK;
}
/* allocate working area with watchdog code */
if (target_alloc_working_area(target, sizeof(watchdog_code), &watchdog_algorithm) != ERROR_OK) {
LOG_WARNING("No working area available for watchdog algorithm");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = target_write_buffer(target, watchdog_algorithm->address,
sizeof(watchdog_code), watchdog_code);
if (retval != ERROR_OK)
return retval;
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
retval = target_run_algorithm(target, 0, NULL, 0, NULL,
watchdog_algorithm->address, 0, 100000, &armv7m_info);
if (retval != ERROR_OK) {
LOG_ERROR("Error executing Kinetis KE watchdog algorithm");
} else {
LOG_INFO("Watchdog stopped");
}
target_free_working_area(target, watchdog_algorithm);
return retval;
}
COMMAND_HANDLER(kinetis_ke_disable_wdog_handler)
{
struct target *target = get_current_target(CMD_CTX);
if (CMD_ARGC > 0)
return ERROR_COMMAND_SYNTAX_ERROR;
return kinetis_ke_stop_watchdog(target);
}
COMMAND_HANDLER(kinetis_ke_mdm_mass_erase)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_m_common *cortex_m = target_to_cm(target);
struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
if (!dap) {
LOG_ERROR("Cannot perform mass erase with a high-level adapter");
return ERROR_FAIL;
}
int retval;
/* According to chapter 18.3.7.2 of the KE02 reference manual */
/* assert SRST */
if (jtag_get_reset_config() & RESET_HAS_SRST)
adapter_assert_reset();
/*
* 1. Reset the device by asserting RESET pin or DAP_CTRL[3]
*/
retval = kinetis_ke_mdm_write_register(dap, MDM_REG_CTRL, MEM_CTRL_SYS_RES_REQ);
if (retval != ERROR_OK)
return retval;
/*
* ... Read the MDM-AP status register until the Flash Ready bit sets...
*/
retval = kinetis_ke_mdm_poll_register(dap, MDM_REG_STAT,
MDM_STAT_FREADY | MDM_STAT_SYSRES,
MDM_STAT_FREADY);
if (retval != ERROR_OK) {
LOG_ERROR("MDM : flash ready timeout");
return retval;
}
/*
* 2. Set DAP_CTRL[0] bit to invoke debug mass erase via SWD
* 3. Release reset by deasserting RESET pin or DAP_CTRL[3] bit via SWD.
*/
retval = kinetis_ke_mdm_write_register(dap, MDM_REG_CTRL, MEM_CTRL_FMEIP);
if (retval != ERROR_OK)
return retval;
/* As a sanity check make sure that device started mass erase procedure */
retval = kinetis_ke_mdm_poll_register(dap, MDM_REG_STAT,
MDM_STAT_FMEACK, MDM_STAT_FMEACK);
if (retval != ERROR_OK)
return retval;
/*
* 4. Wait till DAP_CTRL[0] bit is cleared (after mass erase completes,
* DAP_CTRL[0] bit is cleared automatically).
*/
retval = kinetis_ke_mdm_poll_register(dap, MDM_REG_CTRL,
MEM_CTRL_FMEIP,
0);
if (retval != ERROR_OK)
return retval;
if (jtag_get_reset_config() & RESET_HAS_SRST)
adapter_deassert_reset();
return ERROR_OK;
}
static const uint32_t kinetis_ke_known_mdm_ids[] = {
0x001C0020, /* Kinetis-L/M/V/E/KE Series */
};
/*
* This function implements the procedure to connect to
* SWD/JTAG on Kinetis K and L series of devices as it is described in
* AN4835 "Production Flash Programming Best Practices for Kinetis K-
* and L-series MCUs" Section 4.1.1
*/
COMMAND_HANDLER(kinetis_ke_check_flash_security_status)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_m_common *cortex_m = target_to_cm(target);
struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
if (!dap) {
LOG_WARNING("Cannot check flash security status with a high-level adapter");
return ERROR_OK;
}
uint32_t val;
int retval;
/*
* ... The MDM-AP ID register can be read to verify that the
* connection is working correctly...
*/
retval = kinetis_ke_mdm_read_register(dap, MDM_REG_ID, &val);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to read ID register");
goto fail;
}
bool found = false;
for (size_t i = 0; i < ARRAY_SIZE(kinetis_ke_known_mdm_ids); i++) {
if (val == kinetis_ke_known_mdm_ids[i]) {
found = true;
break;
}
}
if (!found)
LOG_WARNING("MDM: unknown ID %08" PRIX32, val);
/*
* ... Read the MDM-AP status register until the Flash Ready bit sets...
*/
retval = kinetis_ke_mdm_poll_register(dap, MDM_REG_STAT,
MDM_STAT_FREADY,
MDM_STAT_FREADY);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: flash ready timeout");
goto fail;
}
/*
* ... Read the System Security bit to determine if security is enabled.
* If System Security = 0, then proceed. If System Security = 1, then
* communication with the internals of the processor, including the
* flash, will not be possible without issuing a mass erase command or
* unsecuring the part through other means (backdoor key unlock)...
*/
retval = kinetis_ke_mdm_read_register(dap, MDM_REG_STAT, &val);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to read MDM_REG_STAT");
goto fail;
}
if (val & MDM_STAT_SYSSEC) {
jtag_poll_set_enabled(false);
LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
LOG_WARNING("**** ****");
LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that, ****");
LOG_WARNING("**** with exception for very basic communication, JTAG/SWD ****");
LOG_WARNING("**** interface will NOT work. In order to restore its ****");
LOG_WARNING("**** functionality please issue 'kinetis_ke mdm mass_erase' ****");
LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD. ****");
LOG_WARNING("**** ****");
LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
} else {
LOG_INFO("MDM: Chip is unsecured. Continuing.");
jtag_poll_set_enabled(true);
}
return ERROR_OK;
fail:
LOG_ERROR("MDM: Failed to check security status of the MCU. Cannot proceed further");
jtag_poll_set_enabled(false);
return retval;
}
FLASH_BANK_COMMAND_HANDLER(kinetis_ke_flash_bank_command)
{
struct kinetis_ke_flash_bank *bank_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
LOG_INFO("add flash_bank kinetis_ke %s", bank->name);
bank_info = malloc(sizeof(struct kinetis_ke_flash_bank));
memset(bank_info, 0, sizeof(struct kinetis_ke_flash_bank));
bank->driver_priv = bank_info;
return ERROR_OK;
}
/* Kinetis Program-LongWord Microcodes */
static uint8_t kinetis_ke_flash_write_code[] = {
#include "../../../contrib/loaders/flash/kinetis_ke/kinetis_ke_flash.inc"
};
static int kinetis_ke_write_words(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t words)
{
struct kinetis_ke_flash_bank *kinfo = bank->driver_priv;
struct target *target = bank->target;
uint32_t ram_buffer_size = 512 + 16;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[4];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
uint32_t flash_code_size;
LOG_INFO("Kinetis KE: FLASH Write ...");
/* allocate working area with flash programming code */
if (target_alloc_working_area(target, sizeof(kinetis_ke_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* Patch the FTMRx registers addresses */
flash_code_size = sizeof(kinetis_ke_flash_write_code);
buf_set_u32(&kinetis_ke_flash_write_code[flash_code_size-16], 0, 32, kinfo->ftmrx_fstat_addr);
buf_set_u32(&kinetis_ke_flash_write_code[flash_code_size-12], 0, 32, kinfo->ftmrx_fccobix_addr);
buf_set_u32(&kinetis_ke_flash_write_code[flash_code_size-8], 0, 32, kinfo->ftmrx_fccobhi_addr);
buf_set_u32(&kinetis_ke_flash_write_code[flash_code_size-4], 0, 32, kinfo->ftmrx_fccoblo_addr);
retval = target_write_buffer(target, write_algorithm->address,
sizeof(kinetis_ke_flash_write_code), kinetis_ke_flash_write_code);
if (retval != ERROR_OK)
return retval;
/* memory buffer */
if (target_alloc_working_area(target, ram_buffer_size, &source) != ERROR_OK) {
/* free working area, write algorithm already allocated */
target_free_working_area(target, write_algorithm);
LOG_WARNING("No large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, address);
buf_set_u32(reg_params[1].value, 0, 32, words);
buf_set_u32(reg_params[2].value, 0, 32, source->address);
buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
retval = target_run_flash_async_algorithm(target, buffer, words, 4,
0, NULL,
4, reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
if (buf_get_u32(reg_params[0].value, 0, 32) & FTMRX_ERROR_ACCERR)
LOG_ERROR("flash access error");
if (buf_get_u32(reg_params[0].value, 0, 32) & FTMRX_ERROR_FPVIOL)
LOG_ERROR("flash protection violation");
}
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
return retval;
}
static int kinetis_ke_protect(struct flash_bank *bank, int set,
unsigned int first, unsigned int last)
{
LOG_WARNING("kinetis_ke_protect not supported yet");
/* FIXME: TODO */
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
return ERROR_FLASH_BANK_INVALID;
}
static int kinetis_ke_protect_check(struct flash_bank *bank)
{
struct kinetis_ke_flash_bank *kinfo = bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
int result;
uint8_t fprot;
uint8_t fpopen, fpldis, fphdis;
uint8_t fphs, fpls;
uint32_t lprot_size = 0, hprot_size = 0;
uint32_t lprot_to = 0, hprot_from = 0;
/* read protection register */
result = target_read_u8(bank->target, kinfo->ftmrx_fprot_addr, &fprot);
if (result != ERROR_OK)
return result;
fpopen = fprot & 0x80;
fpldis = fprot & 0x04;
fphdis = fprot & 0x20;
fphs = (fprot >> 3) & 0x03;
fpls = fprot & 0x03;
/* Fully unprotected? */
if (fpopen && fpldis && fphdis) {
LOG_WARNING("No flash protection found.");
for (unsigned int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_protected = 0;
kinfo->protection_size = 0;
} else {
LOG_WARNING("Flash protected. FPOPEN=%i FPLDIS=%i FPHDIS=%i FPLS=%i FPHS=%i",
fpopen ? 1 : 0, fpldis ? 1 : 0, fphdis ? 1 : 0, fpls, fphs);
/* Retrieve which region is protected and how much */
if (fpopen) {
if (fpldis == 0)
lprot_size = (kinfo->sector_size * 4) << fpls;
if (fphdis == 0)
hprot_size = (kinfo->sector_size * 2) << fphs;
} else {
if (fpldis == 1)
lprot_size = (kinfo->sector_size * 4) << fpls;
if (fphdis == 1)
hprot_size = (kinfo->sector_size * 2) << fphs;
}
kinfo->protection_size = lprot_size + hprot_size;
/* lprot_to indicates up to where the lower region is protected */
lprot_to = lprot_size / kinfo->sector_size;
/* hprot_from indicates from where the upper region is protected */
hprot_from = (0x8000 - hprot_size) / kinfo->sector_size;
for (unsigned int i = 0; i < bank->num_sectors; i++) {
/* Check if the sector is in the lower region */
if (bank->sectors[i].offset < 0x4000) {
/* Compare the sector start address against lprot_to */
if (lprot_to && (i < lprot_to))
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
/* Check if the sector is between the lower and upper region
* OR after the upper region */
} else if (bank->sectors[i].offset < 0x6000 || bank->sectors[i].offset >= 0x8000) {
/* If fpopen is 1 then these regions are protected */
if (fpopen)
bank->sectors[i].is_protected = 0;
else
bank->sectors[i].is_protected = 1;
/* Check if the sector is in the upper region */
} else if (bank->sectors[i].offset < 0x8000) {
if (hprot_from && (i > hprot_from))
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
}
}
}
return ERROR_OK;
}
static int kinetis_ke_ftmrx_command(struct flash_bank *bank, uint8_t count,
uint8_t *FCCOBIX, uint8_t *FCCOBHI, uint8_t *FCCOBLO, uint8_t *fstat)
{
uint8_t i;
int result;
struct target *target = bank->target;
struct kinetis_ke_flash_bank *kinfo = bank->driver_priv;
uint32_t timeout = 0;
/* Clear error flags */
result = target_write_u8(target, kinfo->ftmrx_fstat_addr, 0x30);
if (result != ERROR_OK)
return result;
for (i = 0; i < count; i++) {
/* Write index */
result = target_write_u8(target, kinfo->ftmrx_fccobix_addr, FCCOBIX[i]);
if (result != ERROR_OK)
return result;
/* Write high part */
result = target_write_u8(target, kinfo->ftmrx_fccobhi_addr, FCCOBHI[i]);
if (result != ERROR_OK)
return result;
/* Write low part (that is not always required) */
if (FCCOBLO) {
result = target_write_u8(target, kinfo->ftmrx_fccoblo_addr, FCCOBLO[i]);
if (result != ERROR_OK)
return result;
}
}
/* Launch the command */
result = target_write_u8(target, kinfo->ftmrx_fstat_addr, 0x80);
if (result != ERROR_OK)
return result;
/* Wait for it to finish */
result = target_read_u8(target, kinfo->ftmrx_fstat_addr, fstat);
if (result != ERROR_OK)
return result;
while (!(*fstat & FTMRX_FSTAT_CCIF_MASK)) {
if (timeout <= 1000) {
timeout++;
alive_sleep(1);
} else {
return ERROR_FLASH_OPERATION_FAILED;
}
result = target_read_u8(target, kinfo->ftmrx_fstat_addr, fstat);
if (result != ERROR_OK)
return result;
}
return ERROR_OK;
}
static int kinetis_ke_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
int result;
uint8_t FCCOBIX[2], FCCOBHI[2], FCCOBLO[2], fstat;
bool fcf_erased = false;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first > bank->num_sectors) || (last > bank->num_sectors))
return ERROR_FLASH_OPERATION_FAILED;
result = kinetis_ke_prepare_flash(bank);
if (result != ERROR_OK)
return result;
for (unsigned int i = first; i <= last; i++) {
FCCOBIX[0] = 0;
FCCOBHI[0] = FTMRX_CMD_ERASESECTOR;
FCCOBLO[0] = (bank->base + bank->sectors[i].offset) >> 16;
FCCOBIX[1] = 1;
FCCOBHI[1] = (bank->base + bank->sectors[i].offset) >> 8;
FCCOBLO[1] = (bank->base + bank->sectors[i].offset);
result = kinetis_ke_ftmrx_command(bank, 2, FCCOBIX, FCCOBHI, FCCOBLO, &fstat);
if (result != ERROR_OK) {
LOG_WARNING("erase sector %u failed", i);
return ERROR_FLASH_OPERATION_FAILED;
}
if (i == 2)
fcf_erased = true;
}
if (fcf_erased) {
LOG_WARNING
("flash configuration field erased, please reset the device");
}
return ERROR_OK;
}
static int kinetis_ke_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
int result;
uint8_t *new_buffer = NULL;
uint32_t words = count / 4;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset > bank->size)
return ERROR_FLASH_BANK_INVALID;
if (offset & 0x3) {
LOG_WARNING("offset 0x%" PRIx32 " breaks the required alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
result = kinetis_ke_stop_watchdog(bank->target);
if (result != ERROR_OK)
return result;
result = kinetis_ke_prepare_flash(bank);
if (result != ERROR_OK)
return result;
if (count & 0x3) {
uint32_t old_count = count;
count = (old_count | 3) + 1;
new_buffer = malloc(count);
if (!new_buffer) {
LOG_ERROR("odd number of bytes to write and no memory "
"for padding buffer");
return ERROR_FAIL;
}
LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
"and padding with 0xff", old_count, count);
memset(new_buffer, 0xff, count);
buffer = memcpy(new_buffer, buffer, old_count);
words++;
}
result = kinetis_ke_write_words(bank, buffer, offset, words);
free(new_buffer);
return result;
}
static int kinetis_ke_probe(struct flash_bank *bank)
{
int result;
uint32_t offset = 0;
struct target *target = bank->target;
struct kinetis_ke_flash_bank *kinfo = bank->driver_priv;
result = target_read_u32(target, SIM_SRSID, &kinfo->sim_srsid);
if (result != ERROR_OK)
return result;
if (KINETIS_KE_SRSID_FAMID(kinfo->sim_srsid) != 0x00) {
LOG_ERROR("Unsupported KE family");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
switch (KINETIS_KE_SRSID_SUBFAMID(kinfo->sim_srsid)) {
case KINETIS_KE_SRSID_KEX2:
LOG_INFO("KE02 sub-family");
break;
case KINETIS_KE_SRSID_KEX4:
LOG_INFO("KE04 sub-family");
break;
case KINETIS_KE_SRSID_KEX6:
LOG_INFO("KE06 sub-family");
break;
default:
LOG_ERROR("Unsupported KE sub-family");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
/* We can only retrieve the ke0x part, but there is no way to know
* the flash size, so assume the maximum flash size for the entire
* sub family.
*/
bank->base = 0x00000000;
kinfo->sector_size = 512;
switch (KINETIS_KE_SRSID_SUBFAMID(kinfo->sim_srsid)) {
case KINETIS_KE_SRSID_KEX2:
/* Max. 64KB */
bank->size = 0x00010000;
bank->num_sectors = 128;
/* KE02 uses the FTMRH flash controller,
* and registers have a different offset from the
* FTMRE flash controller. Sort this out here.
*/
kinfo->ftmrx_fclkdiv_addr = 0x40020000;
kinfo->ftmrx_fccobix_addr = 0x40020002;
kinfo->ftmrx_fstat_addr = 0x40020006;
kinfo->ftmrx_fprot_addr = 0x40020008;
kinfo->ftmrx_fccobhi_addr = 0x4002000A;
kinfo->ftmrx_fccoblo_addr = 0x4002000B;
break;
case KINETIS_KE_SRSID_KEX6:
case KINETIS_KE_SRSID_KEX4:
/* Max. 128KB */
bank->size = 0x00020000;
bank->num_sectors = 256;
/* KE04 and KE06 use the FTMRE flash controller,
* and registers have a different offset from the
* FTMRH flash controller. Sort this out here.
*/
kinfo->ftmrx_fclkdiv_addr = 0x40020003;
kinfo->ftmrx_fccobix_addr = 0x40020001;
kinfo->ftmrx_fstat_addr = 0x40020005;
kinfo->ftmrx_fprot_addr = 0x4002000B;
kinfo->ftmrx_fccobhi_addr = 0x40020009;
kinfo->ftmrx_fccoblo_addr = 0x40020008;
break;
}
free(bank->sectors);
assert(bank->num_sectors > 0);
bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
for (unsigned int i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].offset = offset;
bank->sectors[i].size = kinfo->sector_size;
offset += kinfo->sector_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
return ERROR_OK;
}
static int kinetis_ke_auto_probe(struct flash_bank *bank)
{
struct kinetis_ke_flash_bank *kinfo = bank->driver_priv;
if (kinfo->sim_srsid)
return ERROR_OK;
return kinetis_ke_probe(bank);
}
static int kinetis_ke_info(struct flash_bank *bank, struct command_invocation *cmd)
{
command_print_sameline(cmd, "%s driver for flash bank %s at " TARGET_ADDR_FMT,
bank->driver->name, bank->name, bank->base);
return ERROR_OK;
}
static int kinetis_ke_blank_check(struct flash_bank *bank)
{
uint8_t FCCOBIX[3], FCCOBHI[3], FCCOBLO[3], fstat;
uint16_t longwords = 0;
int result;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
result = kinetis_ke_prepare_flash(bank);
if (result != ERROR_OK)
return result;
/* check if whole bank is blank */
FCCOBIX[0] = 0;
FCCOBHI[0] = FTMRX_CMD_ALLERASED;
result = kinetis_ke_ftmrx_command(bank, 1, FCCOBIX, FCCOBHI, NULL, &fstat);
if (result != ERROR_OK)
return result;
if (fstat & (FTMRX_FSTAT_MGSTAT0_MASK | FTMRX_FSTAT_MGSTAT1_MASK)) {
/* the whole bank is not erased, check sector-by-sector */
for (unsigned int i = 0; i < bank->num_sectors; i++) {
FCCOBIX[0] = 0;
FCCOBHI[0] = FTMRX_CMD_SECTIONERASED;
FCCOBLO[0] = (bank->base + bank->sectors[i].offset) >> 16;
FCCOBIX[1] = 1;
FCCOBHI[1] = (bank->base + bank->sectors[i].offset) >> 8;
FCCOBLO[1] = (bank->base + bank->sectors[i].offset);
longwords = 128;
FCCOBIX[2] = 2;
FCCOBHI[2] = longwords >> 8;
FCCOBLO[2] = longwords;
result = kinetis_ke_ftmrx_command(bank, 3, FCCOBIX, FCCOBHI, FCCOBLO, &fstat);
if (result == ERROR_OK) {
bank->sectors[i].is_erased = !(fstat & (FTMRX_FSTAT_MGSTAT0_MASK | FTMRX_FSTAT_MGSTAT1_MASK));
} else {
LOG_DEBUG("Ignoring error on PFlash sector blank-check");
bank->sectors[i].is_erased = -1;
}
}
} else {
/* the whole bank is erased, update all sectors */
for (unsigned int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
}
return ERROR_OK;
}
static const struct command_registration kinetis_ke_security_command_handlers[] = {
{
.name = "check_security",
.mode = COMMAND_EXEC,
.help = "Check status of device security lock",
.usage = "",
.handler = kinetis_ke_check_flash_security_status,
},
{
.name = "mass_erase",
.mode = COMMAND_EXEC,
.help = "Issue a complete flash erase via the MDM-AP",
.usage = "",
.handler = kinetis_ke_mdm_mass_erase,
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration kinetis_ke_exec_command_handlers[] = {
{
.name = "mdm",
.mode = COMMAND_ANY,
.help = "MDM-AP command group",
.usage = "",
.chain = kinetis_ke_security_command_handlers,
},
{
.name = "disable_wdog",
.mode = COMMAND_EXEC,
.help = "Disable the watchdog timer",
.usage = "",
.handler = kinetis_ke_disable_wdog_handler,
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration kinetis_ke_command_handler[] = {
{
.name = "kinetis_ke",
.mode = COMMAND_ANY,
.help = "Kinetis KE flash controller commands",
.usage = "",
.chain = kinetis_ke_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver kinetis_ke_flash = {
.name = "kinetis_ke",
.commands = kinetis_ke_command_handler,
.flash_bank_command = kinetis_ke_flash_bank_command,
.erase = kinetis_ke_erase,
.protect = kinetis_ke_protect,
.write = kinetis_ke_write,
.read = default_flash_read,
.probe = kinetis_ke_probe,
.auto_probe = kinetis_ke_auto_probe,
.erase_check = kinetis_ke_blank_check,
.protect_check = kinetis_ke_protect_check,
.info = kinetis_ke_info,
.free_driver_priv = default_flash_free_driver_priv,
};