openocd/src/jtag/zy1000.c

780 lines
16 KiB
C
Raw Normal View History

/***************************************************************************
* Copyright (C) 2007-2008 by <EFBFBD>yvind Harboe *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "log.h"
#include "jtag.h"
#include "bitbang.h"
#include "../target/embeddedice.h"
#include <cyg/hal/hal_io.h> // low level i/o
#include <cyg/hal/hal_diag.h>
#include <stdlib.h>
extern int jtag_error;
/* low level command set
*/
int zy1000_read(void);
static void zy1000_write(int tck, int tms, int tdi);
void zy1000_reset(int trst, int srst);
int zy1000_speed(int speed);
int zy1000_register_commands(struct command_context_s *cmd_ctx);
int zy1000_init(void);
int zy1000_quit(void);
/* interface commands */
int zy1000_handle_zy1000_port_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
static int zy1000_khz(int khz, int *jtag_speed)
{
if (khz==0)
{
*jtag_speed=0;
}
else
{
*jtag_speed=64000/khz;
}
return ERROR_OK;
}
static int zy1000_speed_div(int speed, int *khz)
{
if (speed==0)
{
*khz = 0;
}
else
{
*khz=64000/speed;
}
return ERROR_OK;
}
static bool readPowerDropout()
{
cyg_uint32 state;
// sample and clear power dropout
HAL_WRITE_UINT32(ZY1000_JTAG_BASE+0x10, 0x80);
HAL_READ_UINT32(ZY1000_JTAG_BASE+0x10, state);
bool powerDropout;
powerDropout = (state & 0x80) != 0;
return powerDropout;
}
static bool readSRST()
{
cyg_uint32 state;
// sample and clear SRST sensing
HAL_WRITE_UINT32(ZY1000_JTAG_BASE+0x10, 0x00000040);
HAL_READ_UINT32(ZY1000_JTAG_BASE+0x10, state);
bool srstAsserted;
srstAsserted = (state & 0x40) != 0;
return srstAsserted;
}
static int zy1000_srst_asserted(int *srst_asserted)
{
*srst_asserted=readSRST();
return ERROR_OK;
}
static int zy1000_power_dropout(int *dropout)
{
*dropout=readPowerDropout();
return ERROR_OK;
}
jtag_interface_t zy1000_interface =
{
.name = "ZY1000",
.execute_queue = bitbang_execute_queue,
.speed = zy1000_speed,
.register_commands = zy1000_register_commands,
.init = zy1000_init,
.quit = zy1000_quit,
.khz = zy1000_khz,
.speed_div = zy1000_speed_div,
.power_dropout = zy1000_power_dropout,
.srst_asserted = zy1000_srst_asserted,
};
bitbang_interface_t zy1000_bitbang =
{
.read = zy1000_read,
.write = zy1000_write,
.reset = zy1000_reset
};
static void zy1000_write(int tck, int tms, int tdi)
{
}
int zy1000_read(void)
{
return -1;
}
extern bool readSRST();
void zy1000_reset(int trst, int srst)
{
LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
if(!srst)
{
ZY1000_POKE(ZY1000_JTAG_BASE+0x14, 0x00000001);
}
else
{
/* Danger!!! if clk!=0 when in
* idle in TAP_RTI, reset halt on str912 will fail.
*/
ZY1000_POKE(ZY1000_JTAG_BASE+0x10, 0x00000001);
}
if(!trst)
{
ZY1000_POKE(ZY1000_JTAG_BASE+0x14, 0x00000002);
}
else
{
/* assert reset */
ZY1000_POKE(ZY1000_JTAG_BASE+0x10, 0x00000002);
}
if (trst||(srst&&(jtag_reset_config & RESET_SRST_PULLS_TRST)))
{
waitIdle();
/* we're now in the TLR state until trst is deasserted */
ZY1000_POKE(ZY1000_JTAG_BASE+0x20, TAP_TLR);
} else
{
/* We'll get RCLK failure when we assert TRST, so clear any false positives here */
ZY1000_POKE(ZY1000_JTAG_BASE+0x14, 0x400);
}
/* wait for srst to float back up */
if (!srst)
{
int i;
for (i=0; i<1000; i++)
{
// We don't want to sense our own reset, so we clear here.
// There is of course a timing hole where we could loose
// a "real" reset.
if (!readSRST())
break;
/* wait 1ms */
alive_sleep(1);
}
if (i==1000)
{
LOG_USER("SRST didn't deassert after %dms", i);
} else if (i>1)
{
LOG_USER("SRST took %dms to deassert", i);
}
}
}
int zy1000_speed(int speed)
{
if(speed == 0)
{
/*0 means RCLK*/
speed = 0;
ZY1000_POKE(ZY1000_JTAG_BASE+0x10, 0x100);
LOG_DEBUG("jtag_speed using RCLK");
}
else
{
if(speed > 8190 || speed < 2)
{
LOG_ERROR("valid ZY1000 jtag_speed=[8190,2]. Divisor is 64MHz / even values between 8190-2, i.e. min 7814Hz, max 32MHz");
return ERROR_INVALID_ARGUMENTS;
}
LOG_USER("jtag_speed %d => JTAG clk=%f", speed, 64.0/(float)speed);
ZY1000_POKE(ZY1000_JTAG_BASE+0x14, 0x100);
ZY1000_POKE(ZY1000_JTAG_BASE+0x1c, speed&~1);
}
return ERROR_OK;
}
int zy1000_register_commands(struct command_context_s *cmd_ctx)
{
return ERROR_OK;
}
int zy1000_init(void)
{
ZY1000_POKE(ZY1000_JTAG_BASE+0x10, 0x30); // Turn on LED1 & LED2
/* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
zy1000_reset(0, 0);
zy1000_speed(jtag_speed);
bitbang_interface = &zy1000_bitbang;
return ERROR_OK;
}
int zy1000_quit(void)
{
return ERROR_OK;
}
/* loads a file and returns a pointer to it in memory. The file contains
* a 0 byte(sentinel) after len bytes - the length of the file. */
int loadFile(const char *fileName, void **data, int *len)
{
FILE * pFile;
pFile = fopen (fileName,"rb");
if (pFile==NULL)
{
LOG_ERROR("Can't open %s\n", fileName);
return ERROR_JTAG_DEVICE_ERROR;
}
if (fseek (pFile, 0, SEEK_END)!=0)
{
LOG_ERROR("Can't open %s\n", fileName);
fclose(pFile);
return ERROR_JTAG_DEVICE_ERROR;
}
*len=ftell (pFile);
if (*len==-1)
{
LOG_ERROR("Can't open %s\n", fileName);
fclose(pFile);
return ERROR_JTAG_DEVICE_ERROR;
}
if (fseek (pFile, 0, SEEK_SET)!=0)
{
LOG_ERROR("Can't open %s\n", fileName);
fclose(pFile);
return ERROR_JTAG_DEVICE_ERROR;
}
*data=malloc(*len+1);
if (*data==NULL)
{
LOG_ERROR("Can't open %s\n", fileName);
fclose(pFile);
return ERROR_JTAG_DEVICE_ERROR;
}
if (fread(*data, 1, *len, pFile)!=*len)
{
fclose(pFile);
free(*data);
LOG_ERROR("Can't open %s\n", fileName);
return ERROR_JTAG_DEVICE_ERROR;
}
fclose (pFile);
*(((char *)(*data))+*len)=0; /* sentinel */
return ERROR_OK;
}
int interface_jtag_execute_queue(void)
{
cyg_uint32 empty;
waitIdle();
ZY1000_PEEK(ZY1000_JTAG_BASE+0x10, empty);
/* clear JTAG error register */
ZY1000_POKE(ZY1000_JTAG_BASE+0x14, 0x400);
if ((empty&0x400)!=0)
{
LOG_WARNING("RCLK timeout");
/* the error is informative only as we don't want to break the firmware if there
* is a false positive.
*/
// return ERROR_FAIL;
}
return ERROR_OK;
}
static cyg_uint32 getShiftValue()
{
cyg_uint32 value;
waitIdle();
ZY1000_PEEK(ZY1000_JTAG_BASE+0xc, value);
VERBOSE(LOG_INFO("getShiftValue %08x", value));
return value;
}
#if 0
static cyg_uint32 getShiftValueFlip()
{
cyg_uint32 value;
waitIdle();
ZY1000_PEEK(ZY1000_JTAG_BASE+0x18, value);
VERBOSE(LOG_INFO("getShiftValue %08x (flipped)", value));
return value;
}
#endif
#if 0
static void shiftValueInnerFlip(const enum tap_state state, const enum tap_state endState, int repeat, cyg_uint32 value)
{
VERBOSE(LOG_INFO("shiftValueInner %s %s %d %08x (flipped)", tap_state_strings[state], tap_state_strings[endState], repeat, value));
cyg_uint32 a,b;
a=state;
b=endState;
ZY1000_POKE(ZY1000_JTAG_BASE+0xc, value);
ZY1000_POKE(ZY1000_JTAG_BASE+0x8, (1<<15)|(repeat<<8)|(a<<4)|b);
VERBOSE(getShiftValueFlip());
}
#endif
extern int jtag_check_value(u8 *captured, void *priv);
static void gotoEndState()
{
setCurrentState(cmd_queue_end_state);
}
static __inline void scanFields(int num_fields, scan_field_t *fields, enum tap_state shiftState, int pause)
{
int i;
int j;
int k;
for (i = 0; i < num_fields; i++)
{
cyg_uint32 value;
static u8 *in_buff=NULL; /* pointer to buffer for scanned data */
static int in_buff_size=0;
u8 *inBuffer=NULL;
// figure out where to store the input data
int num_bits=fields[i].num_bits;
if (fields[i].in_value!=NULL)
{
inBuffer=fields[i].in_value;
} else if (fields[i].in_handler!=NULL)
{
if (in_buff_size*8<num_bits)
{
// we need more space
if (in_buff!=NULL)
free(in_buff);
in_buff=NULL;
in_buff_size=(num_bits+7)/8;
in_buff=malloc(in_buff_size);
if (in_buff==NULL)
{
LOG_ERROR("Out of memory");
jtag_error=ERROR_JTAG_QUEUE_FAILED;
return;
}
}
inBuffer=in_buff;
}
// here we shuffle N bits out/in
j=0;
while (j<num_bits)
{
enum tap_state pause_state;
int l;
k=num_bits-j;
pause_state=(shiftState==TAP_SD)?TAP_SD:TAP_SI;
if (k>32)
{
k=32;
/* we have more to shift out */
} else if (pause&&(i == num_fields-1))
{
/* this was the last to shift out this time */
pause_state=(shiftState==TAP_SD)?TAP_PD:TAP_PI;
}
// we have (num_bits+7)/8 bytes of bits to toggle out.
// bits are pushed out LSB to MSB
value=0;
if (fields[i].out_value!=NULL)
{
for (l=0; l<k; l+=8)
{
value|=fields[i].out_value[(j+l)/8]<<l;
}
}
/* mask away unused bits for easier debugging */
value&=~(((u32)0xffffffff)<<k);
shiftValueInner(shiftState, pause_state, k, value);
if (inBuffer!=NULL)
{
// data in, LSB to MSB
value=getShiftValue();
// we're shifting in data to MSB, shift data to be aligned for returning the value
value >>= 32-k;
for (l=0; l<k; l+=8)
{
inBuffer[(j+l)/8]=(value>>l)&0xff;
}
}
j+=k;
}
if (fields[i].in_handler!=NULL)
{
// invoke callback
int r=fields[i].in_handler(inBuffer, fields[i].in_handler_priv, fields+i);
if (r!=ERROR_OK)
{
/* this will cause jtag_execute_queue() to return an error */
jtag_error=r;
}
}
}
}
int interface_jtag_add_end_state(enum tap_state state)
{
return ERROR_OK;
}
int interface_jtag_add_ir_scan(int num_fields, scan_field_t *fields, enum tap_state state)
{
int i, j;
int scan_size = 0;
jtag_device_t *device;
for (i=0; i < jtag_num_devices; i++)
{
int pause=i==(jtag_num_devices-1);
int found = 0;
device = jtag_get_device(i);
if (device==NULL)
{
return ERROR_FAIL;
}
scan_size = device->ir_length;
/* search the list */
for (j=0; j < num_fields; j++)
{
if (i == fields[j].device)
{
found = 1;
if ((jtag_verify_capture_ir)&&(fields[j].in_handler==NULL))
{
jtag_set_check_value(fields+j, device->expected, device->expected_mask, NULL);
} else if (jtag_verify_capture_ir)
{
fields[j].in_check_value = device->expected;
fields[j].in_check_mask = device->expected_mask;
}
scanFields(1, fields+j, TAP_SI, pause);
/* update device information */
buf_cpy(fields[j].out_value, device->cur_instr, scan_size);
device->bypass = 0;
break;
}
}
if (!found)
{
/* if a device isn't listed, set it to BYPASS */
u8 ones[]={0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff};
scan_field_t tmp;
memset(&tmp, 0, sizeof(tmp));
tmp.out_value = ones;
tmp.num_bits = scan_size;
scanFields(1, &tmp, TAP_SI, pause);
/* update device information */
buf_cpy(tmp.out_value, device->cur_instr, scan_size);
device->bypass = 1;
}
}
gotoEndState();
return ERROR_OK;
}
int interface_jtag_add_plain_ir_scan(int num_fields, scan_field_t *fields, enum tap_state state)
{
scanFields(num_fields, fields, TAP_SI, 1);
gotoEndState();
return ERROR_OK;
}
/*extern jtag_command_t **jtag_get_last_command_p(void);*/
int interface_jtag_add_dr_scan(int num_fields, scan_field_t *fields, enum tap_state state)
{
int i, j;
for (i=0; i < jtag_num_devices; i++)
{
int found = 0;
int pause = (i==(jtag_num_devices-1));
for (j=0; j < num_fields; j++)
{
if (i == fields[j].device)
{
found = 1;
scanFields(1, fields+j, TAP_SD, pause);
}
}
if (!found)
{
#ifdef _DEBUG_JTAG_IO_
/* if a device isn't listed, the BYPASS register should be selected */
if (!jtag_get_device(i)->bypass)
{
LOG_ERROR("BUG: no scan data for a device not in BYPASS");
exit(-1);
}
#endif
scan_field_t tmp;
/* program the scan field to 1 bit length, and ignore it's value */
tmp.num_bits = 1;
tmp.out_value = NULL;
tmp.out_mask = NULL;
tmp.in_value = NULL;
tmp.in_check_value = NULL;
tmp.in_check_mask = NULL;
tmp.in_handler = NULL;
tmp.in_handler_priv = NULL;
scanFields(1, &tmp, TAP_SD, pause);
}
else
{
#ifdef _DEBUG_JTAG_IO_
/* if a device is listed, the BYPASS register must not be selected */
if (jtag_get_device(i)->bypass)
{
LOG_WARNING("scan data for a device in BYPASS");
}
#endif
}
}
gotoEndState();
return ERROR_OK;
}
int interface_jtag_add_plain_dr_scan(int num_fields, scan_field_t *fields, enum tap_state state)
{
scanFields(num_fields, fields, TAP_SD, 1);
gotoEndState();
return ERROR_OK;
}
int interface_jtag_add_tlr()
{
setCurrentState(TAP_TLR);
return ERROR_OK;
}
extern int jtag_nsrst_delay;
extern int jtag_ntrst_delay;
int interface_jtag_add_reset(int req_trst, int req_srst)
{
zy1000_reset(req_trst, req_srst);
return ERROR_OK;
}
int interface_jtag_add_runtest(int num_cycles, enum tap_state state)
{
/* num_cycles can be 0 */
setCurrentState(TAP_RTI);
/* execute num_cycles, 32 at the time. */
int i;
for (i=0; i<num_cycles; i+=32)
{
int num;
num=32;
if (num_cycles-i<num)
{
num=num_cycles-i;
}
shiftValueInner(TAP_RTI, TAP_RTI, num, 0);
}
#if !TEST_MANUAL()
/* finish in end_state */
setCurrentState(state);
#else
enum tap_state t=TAP_RTI;
/* test manual drive code on any target */
int tms;
u8 tms_scan = TAP_MOVE(t, state);
for (i = 0; i < 7; i++)
{
tms = (tms_scan >> i) & 1;
waitIdle();
ZY1000_POKE(ZY1000_JTAG_BASE+0x28, tms);
}
waitIdle();
ZY1000_POKE(ZY1000_JTAG_BASE+0x20, state);
#endif
return ERROR_OK;
}
int interface_jtag_add_sleep(u32 us)
{
jtag_sleep(us);
return ERROR_OK;
}
int interface_jtag_add_pathmove(int num_states, enum tap_state *path)
{
int state_count;
int tms = 0;
/*wait for the fifo to be empty*/
waitIdle();
state_count = 0;
enum tap_state cur_state=cmd_queue_cur_state;
while (num_states)
{
if (tap_transitions[cur_state].low == path[state_count])
{
tms = 0;
}
else if (tap_transitions[cur_state].high == path[state_count])
{
tms = 1;
}
else
{
LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_strings[cur_state], tap_state_strings[path[state_count]]);
exit(-1);
}
waitIdle();
ZY1000_POKE(ZY1000_JTAG_BASE+0x28, tms);
cur_state = path[state_count];
state_count++;
num_states--;
}
waitIdle();
ZY1000_POKE(ZY1000_JTAG_BASE+0x20, cur_state);
return ERROR_OK;
}
void embeddedice_write_dcc(int chain_pos, int reg_addr, u8 *buffer, int little, int count)
{
// static int const reg_addr=0x5;
enum tap_state end_state=cmd_queue_end_state;
if (jtag_num_devices==1)
{
/* better performance via code duplication */
if (little)
{
int i;
for (i = 0; i < count; i++)
{
shiftValueInner(TAP_SD, TAP_SD, 32, fast_target_buffer_get_u32(buffer, 1));
shiftValueInner(TAP_SD, end_state, 6, reg_addr|(1<<5));
buffer+=4;
}
} else
{
int i;
for (i = 0; i < count; i++)
{
shiftValueInner(TAP_SD, TAP_SD, 32, fast_target_buffer_get_u32(buffer, 0));
shiftValueInner(TAP_SD, end_state, 6, reg_addr|(1<<5));
buffer+=4;
}
}
}
else
{
int i;
for (i = 0; i < count; i++)
{
embeddedice_write_reg_inner(chain_pos, reg_addr, fast_target_buffer_get_u32(buffer, little));
buffer += 4;
}
}
}