openocd/src/flash/nor/stm32l4x.c

1009 lines
27 KiB
C
Raw Normal View History

/***************************************************************************
* Copyright (C) 2015 by Uwe Bonnes *
* bon@elektron.ikp.physik.tu-darmstadt.de *
*
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
/* STM32L4xxx series for reference.
*
* RM0351 (STM32L4x5/STM32L4x6)
* http://www.st.com/resource/en/reference_manual/dm00083560.pdf
*
* RM0394 (STM32L43x/44x/45x/46x)
* http://www.st.com/resource/en/reference_manual/dm00151940.pdf
*
* STM32L476RG Datasheet (for erase timing)
* http://www.st.com/resource/en/datasheet/stm32l476rg.pdf
*
* The RM0351 devices have normally two banks, but on 512 and 256 kiB devices
* an option byte is available to map all sectors to the first bank.
* Both STM32 banks are treated as one OpenOCD bank, as other STM32 devices
* handlers do!
*
* RM0394 devices have a single bank only.
*
*/
/* Erase time can be as high as 25ms, 10x this and assume it's toast... */
#define FLASH_ERASE_TIMEOUT 250
#define STM32_FLASH_BASE 0x40022000
#define STM32_FLASH_ACR 0x40022000
#define STM32_FLASH_KEYR 0x40022008
#define STM32_FLASH_OPTKEYR 0x4002200c
#define STM32_FLASH_SR 0x40022010
#define STM32_FLASH_CR 0x40022014
#define STM32_FLASH_OPTR 0x40022020
#define STM32_FLASH_WRP1AR 0x4002202c
#define STM32_FLASH_WRP1BR 0x40022030
#define STM32_FLASH_WRP2AR 0x4002204c
#define STM32_FLASH_WRP2BR 0x40022050
/* FLASH_CR register bits */
#define FLASH_PG (1 << 0)
#define FLASH_PER (1 << 1)
#define FLASH_MER1 (1 << 2)
#define FLASH_PAGE_SHIFT 3
#define FLASH_CR_BKER (1 << 11)
#define FLASH_MER2 (1 << 15)
#define FLASH_STRT (1 << 16)
#define FLASH_OPTSTRT (1 << 17)
#define FLASH_EOPIE (1 << 24)
#define FLASH_ERRIE (1 << 25)
#define FLASH_OBLLAUNCH (1 << 27)
#define FLASH_OPTLOCK (1 << 30)
#define FLASH_LOCK (1 << 31)
/* FLASH_SR register bits */
#define FLASH_BSY (1 << 16)
/* Fast programming not used => related errors not used*/
#define FLASH_PGSERR (1 << 7) /* Programming sequence error */
#define FLASH_SIZERR (1 << 6) /* Size error */
#define FLASH_PGAERR (1 << 5) /* Programming alignment error */
#define FLASH_WRPERR (1 << 4) /* Write protection error */
#define FLASH_PROGERR (1 << 3) /* Programming error */
#define FLASH_OPERR (1 << 1) /* Operation error */
#define FLASH_EOP (1 << 0) /* End of operation */
#define FLASH_ERROR (FLASH_PGSERR | FLASH_PGSERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
/* STM32_FLASH_OBR bit definitions (reading) */
#define OPT_DUALBANK (1 << 21) /* dual flash bank only */
/* register unlock keys */
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
/* option register unlock key */
#define OPTKEY1 0x08192A3B
#define OPTKEY2 0x4C5D6E7F
#define RDP_LEVEL_0 0xAA
#define RDP_LEVEL_1 0xBB
#define RDP_LEVEL_2 0xCC
/* other registers */
#define DBGMCU_IDCODE 0xE0042000
#define FLASH_SIZE_REG 0x1FFF75E0
struct stm32l4_flash_bank {
uint16_t bank2_start;
int probed;
};
/* flash bank stm32l4x <base> <size> 0 0 <target#>
*/
FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
{
struct stm32l4_flash_bank *stm32l4_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
stm32l4_info = malloc(sizeof(struct stm32l4_flash_bank));
if (!stm32l4_info)
return ERROR_FAIL; /* Checkme: What better error to use?*/
bank->driver_priv = stm32l4_info;
stm32l4_info->probed = 0;
return ERROR_OK;
}
static inline int stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg)
{
return reg;
}
static inline int stm32l4_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
struct target *target = bank->target;
return target_read_u32(
target, stm32l4_get_flash_reg(bank, STM32_FLASH_SR), status);
}
static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
{
struct target *target = bank->target;
uint32_t status;
int retval = ERROR_OK;
/* wait for busy to clear */
for (;;) {
retval = stm32l4_get_flash_status(bank, &status);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("status: 0x%" PRIx32 "", status);
if ((status & FLASH_BSY) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("timed out waiting for flash");
return ERROR_FAIL;
}
alive_sleep(1);
}
if (status & FLASH_WRPERR) {
LOG_ERROR("stm32x device protected");
retval = ERROR_FAIL;
}
/* Clear but report errors */
if (status & FLASH_ERROR) {
if (retval == ERROR_OK)
retval = ERROR_FAIL;
/* If this operation fails, we ignore it and report the original
* retval
*/
target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_SR),
status & FLASH_ERROR);
}
return retval;
}
static int stm32l4_unlock_reg(struct target *target)
{
uint32_t ctrl;
/* first check if not already unlocked
* otherwise writing on STM32_FLASH_KEYR will fail
*/
int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & FLASH_LOCK) == 0)
return ERROR_OK;
/* unlock flash registers */
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & FLASH_LOCK) {
LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}
return ERROR_OK;
}
static int stm32l4_unlock_option_reg(struct target *target)
{
uint32_t ctrl;
int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & FLASH_OPTLOCK) == 0)
return ERROR_OK;
/* unlock option registers */
retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & FLASH_OPTLOCK) {
LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}
return ERROR_OK;
}
static int stm32l4_read_option(struct flash_bank *bank, uint32_t address, uint32_t* value)
{
struct target *target = bank->target;
return target_read_u32(target, address, value);
}
static int stm32l4_write_option(struct flash_bank *bank, uint32_t address, uint32_t value, uint32_t mask)
{
struct target *target = bank->target;
uint32_t optiondata;
int retval = target_read_u32(target, address, &optiondata);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_unlock_reg(target);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_unlock_option_reg(target);
if (retval != ERROR_OK)
return retval;
optiondata = (optiondata & ~mask) | (value & mask);
retval = target_write_u32(target, address, optiondata);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_OPTSTRT);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
return retval;
}
static int stm32l4_protect_check(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
uint32_t wrp1ar, wrp1br, wrp2ar, wrp2br;
stm32l4_read_option(bank, STM32_FLASH_WRP1AR, &wrp1ar);
stm32l4_read_option(bank, STM32_FLASH_WRP1BR, &wrp1br);
stm32l4_read_option(bank, STM32_FLASH_WRP2AR, &wrp2ar);
stm32l4_read_option(bank, STM32_FLASH_WRP2BR, &wrp2br);
const uint8_t wrp1a_start = wrp1ar & 0xFF;
const uint8_t wrp1a_end = (wrp1ar >> 16) & 0xFF;
const uint8_t wrp1b_start = wrp1br & 0xFF;
const uint8_t wrp1b_end = (wrp1br >> 16) & 0xFF;
const uint8_t wrp2a_start = wrp2ar & 0xFF;
const uint8_t wrp2a_end = (wrp2ar >> 16) & 0xFF;
const uint8_t wrp2b_start = wrp2br & 0xFF;
const uint8_t wrp2b_end = (wrp2br >> 16) & 0xFF;
for (int i = 0; i < bank->num_sectors; i++) {
if (i < stm32l4_info->bank2_start) {
if (((i >= wrp1a_start) &&
(i <= wrp1a_end)) ||
((i >= wrp1b_start) &&
(i <= wrp1b_end)))
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
} else {
uint8_t snb;
snb = i - stm32l4_info->bank2_start + 256;
if (((snb >= wrp2a_start) &&
(snb <= wrp2a_end)) ||
((snb >= wrp2b_start) &&
(snb <= wrp2b_end)))
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
}
}
return ERROR_OK;
}
static int stm32l4_erase(struct flash_bank *bank, int first, int last)
{
struct target *target = bank->target;
int i;
assert(first < bank->num_sectors);
assert(last < bank->num_sectors);
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
int retval;
retval = stm32l4_unlock_reg(target);
if (retval != ERROR_OK)
return retval;
/*
Sector Erase
To erase a sector, follow the procedure below:
1. Check that no Flash memory operation is ongoing by
checking the BSY bit in the FLASH_SR register
2. Set the PER bit and select the page and bank
you wish to erase in the FLASH_CR register
3. Set the STRT bit in the FLASH_CR register
4. Wait for the BSY bit to be cleared
*/
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
for (i = first; i <= last; i++) {
uint32_t erase_flags;
erase_flags = FLASH_PER | FLASH_STRT;
if (i >= stm32l4_info->bank2_start) {
uint8_t snb;
snb = (i - stm32l4_info->bank2_start) + 256;
erase_flags |= snb << FLASH_PAGE_SHIFT | FLASH_CR_BKER;
} else
erase_flags |= i << FLASH_PAGE_SHIFT;
retval = target_write_u32(target,
stm32l4_get_flash_reg(bank, STM32_FLASH_CR), erase_flags);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
bank->sectors[i].is_erased = 1;
}
retval = target_write_u32(
target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32l4_protect(struct flash_bank *bank, int set, int first, int last)
{
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
int ret = ERROR_OK;
/* Bank 2 */
uint32_t reg_value = 0xFF; /* Default to bank un-protected */
if (last >= stm32l4_info->bank2_start) {
if (set == 1) {
uint8_t begin = first > stm32l4_info->bank2_start ? first : 0x00;
reg_value = ((last & 0xFF) << 16) | begin;
}
ret = stm32l4_write_option(bank, STM32_FLASH_WRP2AR, reg_value, 0xffffffff);
}
/* Bank 1 */
reg_value = 0xFF; /* Default to bank un-protected */
if (first < stm32l4_info->bank2_start) {
if (set == 1) {
uint8_t end = last >= stm32l4_info->bank2_start ? 0xFF : last;
reg_value = (end << 16) | (first & 0xFF);
}
ret = stm32l4_write_option(bank, STM32_FLASH_WRP1AR, reg_value, 0xffffffff);
}
return ret;
}
/* Count is in halfwords */
static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t buffer_size = 16384;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
static const uint8_t stm32l4_flash_write_code[] = {
#include "../../../contrib/loaders/flash/stm32/stm32l4x.inc"
};
if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = target_write_buffer(target, write_algorithm->address,
sizeof(stm32l4_flash_write_code),
stm32l4_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}
/* memory buffer */
while (target_alloc_working_area_try(target, buffer_size, &source) !=
ERROR_OK) {
buffer_size /= 2;
if (buffer_size <= 256) {
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer end */
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* target address */
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* count (double word-64bit) */
init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT); /* flash base */
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[2].value, 0, 32, address);
buf_set_u32(reg_params[3].value, 0, 32, count / 4);
buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
retval = target_run_flash_async_algorithm(target, buffer, count, 2,
0, NULL,
5, reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
LOG_ERROR("error executing stm32l4 flash write algorithm");
uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
if (error & FLASH_WRPERR)
LOG_ERROR("flash memory write protected");
if (error != 0) {
LOG_ERROR("flash write failed = %08" PRIx32, error);
/* Clear but report errors */
target_write_u32(target, STM32_FLASH_SR, error);
retval = ERROR_FAIL;
}
}
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
return retval;
}
static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
int retval;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x7) {
LOG_WARNING("offset 0x%" PRIx32 " breaks required 8-byte alignment",
offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
if (count & 0x7) {
LOG_WARNING("Padding %d bytes to keep 8-byte write size",
count & 7);
count = (count + 7) & ~7;
/* This pads the write chunk with random bytes by overrunning the
* write buffer. Padding with the erased pattern 0xff is purely
* cosmetical, as 8-byte flash words are ECC secured and the first
* write will program the ECC bits. A second write would need
* to reprogramm these ECC bits.
* But this can only be done after erase!
*/
}
retval = stm32l4_unlock_reg(target);
if (retval != ERROR_OK)
return retval;
/* Only full double words (8-byte) can be programmed*/
retval = stm32l4_write_block(bank, buffer, offset, count / 2);
if (retval != ERROR_OK) {
LOG_WARNING("block write failed");
return retval;
}
LOG_WARNING("block write succeeded");
return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
}
static int stm32l4_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
int i;
uint16_t flash_size_in_kb = 0xffff;
uint16_t max_flash_size_in_kb;
uint32_t device_id;
uint32_t options;
uint32_t base_address = 0x08000000;
stm32l4_info->probed = 0;
/* read stm32 device id register */
int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
if (retval != ERROR_OK)
return retval;
LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
/* set max flash size depending on family */
switch (device_id & 0xfff) {
case 0x461:
case 0x415:
max_flash_size_in_kb = 1024;
break;
case 0x462:
max_flash_size_in_kb = 512;
break;
case 0x435:
max_flash_size_in_kb = 256;
break;
default:
LOG_WARNING("Cannot identify target as a STM32L4 family.");
return ERROR_FAIL;
}
/* get flash size from target. */
retval = target_read_u16(target, FLASH_SIZE_REG, &flash_size_in_kb);
/* failed reading flash size or flash size invalid (early silicon),
* default to max target family */
if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
max_flash_size_in_kb);
flash_size_in_kb = max_flash_size_in_kb;
}
LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
/* did we assign flash size? */
assert(flash_size_in_kb != 0xffff);
/* get options to for DUAL BANK. */
retval = target_read_u32(target, STM32_FLASH_OPTR, &options);
if (retval != ERROR_OK)
return retval;
/* did we assign flash size? */
assert((flash_size_in_kb != 0xffff) && flash_size_in_kb);
/* calculate numbers of pages */
int num_pages = flash_size_in_kb / 2;
/* check that calculation result makes sense */
assert(num_pages > 0);
/* only devices with < 1024 kiB may be set to single bank dual banks */
if ((flash_size_in_kb == 1024) || !(options & OPT_DUALBANK))
stm32l4_info->bank2_start = 256;
else
stm32l4_info->bank2_start = num_pages / 2;
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
bank->base = base_address;
bank->size = num_pages * (1 << 11);
bank->num_sectors = num_pages;
bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
if (!bank->sectors)
return ERROR_FAIL; /* Checkme: What better error to use?*/
for (i = 0; i < num_pages; i++) {
bank->sectors[i].offset = i << 11;
bank->sectors[i].size = 1 << 11;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
stm32l4_info->probed = 1;
return ERROR_OK;
}
static int stm32l4_auto_probe(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (stm32l4_info->probed)
return ERROR_OK;
return stm32l4_probe(bank);
}
static int get_stm32l4_info(struct flash_bank *bank, char *buf, int buf_size)
{
struct target *target = bank->target;
uint32_t dbgmcu_idcode;
/* read stm32 device id register */
int retval = target_read_u32(target, DBGMCU_IDCODE, &dbgmcu_idcode);
if (retval != ERROR_OK)
return retval;
uint16_t device_id = dbgmcu_idcode & 0xfff;
uint8_t rev_id = dbgmcu_idcode >> 28;
uint8_t rev_minor = 0;
int i;
for (i = 16; i < 28; i++) {
if (dbgmcu_idcode & (1 << i))
rev_minor++;
else
break;
}
const char *device_str;
switch (device_id) {
case 0x461:
device_str = "STM32L496/4A6";
break;
case 0x415:
device_str = "STM32L475/476/486";
break;
case 0x462:
device_str = "STM32L45x/46x";
break;
case 0x435:
device_str = "STM32L43x/44x";
break;
default:
snprintf(buf, buf_size, "Cannot identify target as a STM32L4\n");
return ERROR_FAIL;
}
snprintf(buf, buf_size, "%s - Rev: %1d.%02d",
device_str, rev_id, rev_minor);
return ERROR_OK;
}
static int stm32l4_mass_erase(struct flash_bank *bank, uint32_t action)
{
int retval;
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32l4_unlock_reg(target);
if (retval != ERROR_OK)
return retval;
/* mass erase flash memory */
retval = target_write_u32(
target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), action);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(
target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR),
action | FLASH_STRT);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(
target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
{
int i;
uint32_t action;
if (CMD_ARGC < 1) {
command_print(CMD_CTX, "stm32l4x mass_erase <STM32L4 bank>");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
action = FLASH_MER1 | FLASH_MER2;
retval = stm32l4_mass_erase(bank, action);
if (retval == ERROR_OK) {
/* set all sectors as erased */
for (i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
command_print(CMD_CTX, "stm32l4x mass erase complete");
} else {
command_print(CMD_CTX, "stm32l4x mass erase failed");
}
return retval;
}
COMMAND_HANDLER(stm32l4_handle_option_read_command)
{
if (CMD_ARGC < 2) {
command_print(CMD_CTX, "stm32l4x option_read <STM32L4 bank> <option_reg offset>");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
uint32_t reg_addr = STM32_FLASH_BASE;
uint32_t value = 0;
reg_addr += strtoul(CMD_ARGV[1], NULL, 16);
retval = stm32l4_read_option(bank, reg_addr, &value);
if (ERROR_OK != retval)
return retval;
command_print(CMD_CTX, "Option Register: <0x%" PRIx32 "> = 0x%" PRIx32 "", reg_addr, value);
return retval;
}
COMMAND_HANDLER(stm32l4_handle_option_write_command)
{
if (CMD_ARGC < 3) {
command_print(CMD_CTX, "stm32l4x option_write <STM32L4 bank> <option_reg offset> <value> [mask]");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
uint32_t reg_addr = STM32_FLASH_BASE;
uint32_t value = 0;
uint32_t mask = 0xFFFFFFFF;
reg_addr += strtoul(CMD_ARGV[1], NULL, 16);
value = strtoul(CMD_ARGV[2], NULL, 16);
if (CMD_ARGC > 3)
mask = strtoul(CMD_ARGV[3], NULL, 16);
command_print(CMD_CTX, "%s Option written.\n"
"INFO: a reset or power cycle is required "
"for the new settings to take effect.", bank->driver->name);
retval = stm32l4_write_option(bank, reg_addr, value, mask);
return retval;
}
COMMAND_HANDLER(stm32l4_handle_option_load_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
struct target *target = bank->target;
retval = stm32l4_unlock_reg(target);
if (ERROR_OK != retval)
return retval;
retval = stm32l4_unlock_option_reg(target);
if (ERROR_OK != retval)
return retval;
/* Write the OBLLAUNCH bit in CR -> Cause device "POR" and option bytes reload */
retval = target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_OBLLAUNCH);
command_print(CMD_CTX, "stm32l4x option load (POR) completed.");
return retval;
}
COMMAND_HANDLER(stm32l4_handle_lock_command)
{
struct target *target = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* set readout protection level 1 by erasing the RDP option byte */
if (stm32l4_write_option(bank, STM32_FLASH_OPTR, 0, 0x000000FF) != ERROR_OK) {
command_print(CMD_CTX, "%s failed to lock device", bank->driver->name);
return ERROR_OK;
}
return ERROR_OK;
}
COMMAND_HANDLER(stm32l4_handle_unlock_command)
{
struct target *target = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (stm32l4_write_option(bank, STM32_FLASH_OPTR, RDP_LEVEL_0, 0x000000FF) != ERROR_OK) {
command_print(CMD_CTX, "%s failed to unlock device", bank->driver->name);
return ERROR_OK;
}
return ERROR_OK;
}
static const struct command_registration stm32l4_exec_command_handlers[] = {
{
.name = "lock",
.handler = stm32l4_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock entire flash device.",
},
{
.name = "unlock",
.handler = stm32l4_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Unlock entire protected flash device.",
},
{
.name = "mass_erase",
.handler = stm32l4_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
},
{
.name = "option_read",
.handler = stm32l4_handle_option_read_command,
.mode = COMMAND_EXEC,
.usage = "bank_id reg_offset",
.help = "Read & Display device option bytes.",
},
{
.name = "option_write",
.handler = stm32l4_handle_option_write_command,
.mode = COMMAND_EXEC,
.usage = "bank_id reg_offset value mask",
.help = "Write device option bit fields with provided value.",
},
{
.name = "option_load",
.handler = stm32l4_handle_option_load_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Force re-load of device options (will cause device reset).",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration stm32l4_command_handlers[] = {
{
.name = "stm32l4x",
.mode = COMMAND_ANY,
.help = "stm32l4x flash command group",
.usage = "",
.chain = stm32l4_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver stm32l4x_flash = {
.name = "stm32l4x",
.commands = stm32l4_command_handlers,
.flash_bank_command = stm32l4_flash_bank_command,
.erase = stm32l4_erase,
.protect = stm32l4_protect,
.write = stm32l4_write,
.read = default_flash_read,
.probe = stm32l4_probe,
.auto_probe = stm32l4_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = stm32l4_protect_check,
.info = get_stm32l4_info,
.free_driver_priv = default_flash_free_driver_priv,
};