openocd/src/flash/avrf.c

477 lines
14 KiB
C
Raw Normal View History

/***************************************************************************
* Copyright (C) 2009 by Simon Qian *
* SimonQian@SimonQian.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "avrf.h"
#include "avrt.h"
#include "flash.h"
/* AVR_JTAG_Instructions */
#define AVR_JTAG_INS_LEN 4
// Public Instructions:
#define AVR_JTAG_INS_EXTEST 0x00
#define AVR_JTAG_INS_IDCODE 0x01
#define AVR_JTAG_INS_SAMPLE_PRELOAD 0x02
#define AVR_JTAG_INS_BYPASS 0x0F
// AVR Specified Public Instructions:
#define AVR_JTAG_INS_AVR_RESET 0x0C
#define AVR_JTAG_INS_PROG_ENABLE 0x04
#define AVR_JTAG_INS_PROG_COMMANDS 0x05
#define AVR_JTAG_INS_PROG_PAGELOAD 0x06
#define AVR_JTAG_INS_PROG_PAGEREAD 0x07
// Data Registers:
#define AVR_JTAG_REG_Bypass_Len 1
#define AVR_JTAG_REG_DeviceID_Len 32
#define AVR_JTAG_REG_Reset_Len 1
#define AVR_JTAG_REG_JTAGID_Len 32
#define AVR_JTAG_REG_ProgrammingEnable_Len 16
#define AVR_JTAG_REG_ProgrammingCommand_Len 15
#define AVR_JTAG_REG_FlashDataByte_Len 16
struct avrf_type avft_chips_info[] =
{
// name, chip_id, flash_page_size, flash_page_num, eeprom_page_size, eeprom_page_num
{"atmega128", 0x9702, 256, 512, 8, 512},
};
int avr_jtag_sendinstr(struct jtag_tap *tap, uint8_t *ir_in, uint8_t ir_out);
int avr_jtag_senddat(struct jtag_tap *tap, uint32_t *dr_in, uint32_t dr_out, int len);
int mcu_write_ir(struct jtag_tap *tap, uint8_t *ir_in, uint8_t *ir_out, int ir_len, int rti);
int mcu_write_dr(struct jtag_tap *tap, uint8_t *ir_in, uint8_t *ir_out, int dr_len, int rti);
int mcu_write_ir_u8(struct jtag_tap *tap, uint8_t *ir_in, uint8_t ir_out, int ir_len, int rti);
int mcu_write_dr_u8(struct jtag_tap *tap, uint8_t *ir_in, uint8_t ir_out, int dr_len, int rti);
int mcu_write_ir_u16(struct jtag_tap *tap, uint16_t *ir_in, uint16_t ir_out, int ir_len, int rti);
int mcu_write_dr_u16(struct jtag_tap *tap, uint16_t *ir_in, uint16_t ir_out, int dr_len, int rti);
int mcu_write_ir_u32(struct jtag_tap *tap, uint32_t *ir_in, uint32_t ir_out, int ir_len, int rti);
int mcu_write_dr_u32(struct jtag_tap *tap, uint32_t *ir_in, uint32_t ir_out, int dr_len, int rti);
int mcu_execute_queue(void);
/* avr program functions */
static int avr_jtag_reset(struct avr_common *avr, uint32_t reset)
{
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_AVR_RESET);
avr_jtag_senddat(avr->jtag_info.tap, NULL, reset ,AVR_JTAG_REG_Reset_Len);
return ERROR_OK;
}
static int avr_jtag_read_jtagid(struct avr_common *avr, uint32_t *id)
{
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_IDCODE);
avr_jtag_senddat(avr->jtag_info.tap, id, 0, AVR_JTAG_REG_JTAGID_Len);
return ERROR_OK;
}
static int avr_jtagprg_enterprogmode(struct avr_common *avr)
{
avr_jtag_reset(avr, 1);
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_ENABLE);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0xA370, AVR_JTAG_REG_ProgrammingEnable_Len);
return ERROR_OK;
}
static int avr_jtagprg_leaveprogmode(struct avr_common *avr)
{
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x2300, AVR_JTAG_REG_ProgrammingCommand_Len);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3300, AVR_JTAG_REG_ProgrammingCommand_Len);
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_ENABLE);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0, AVR_JTAG_REG_ProgrammingEnable_Len);
avr_jtag_reset(avr, 0);
return ERROR_OK;
}
static int avr_jtagprg_chiperase(struct avr_common *avr)
{
uint32_t poll_value;
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x2380, AVR_JTAG_REG_ProgrammingCommand_Len);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3180, AVR_JTAG_REG_ProgrammingCommand_Len);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3380, AVR_JTAG_REG_ProgrammingCommand_Len);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3380, AVR_JTAG_REG_ProgrammingCommand_Len);
do {
poll_value = 0;
avr_jtag_senddat(avr->jtag_info.tap, &poll_value, 0x3380, AVR_JTAG_REG_ProgrammingCommand_Len);
if (ERROR_OK != mcu_execute_queue())
{
return ERROR_FAIL;
}
LOG_DEBUG("poll_value = 0x%04" PRIx32 "", poll_value);
} while (!(poll_value & 0x0200));
return ERROR_OK;
}
static int avr_jtagprg_writeflashpage(struct avr_common *avr, uint8_t *page_buf, uint32_t buf_size, uint32_t addr, uint32_t page_size)
{
uint32_t i, poll_value;
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x2310, AVR_JTAG_REG_ProgrammingCommand_Len);
// load addr high byte
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x0700 | ((addr >> 9) & 0xFF), AVR_JTAG_REG_ProgrammingCommand_Len);
// load addr low byte
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x0300 | ((addr >> 1) & 0xFF), AVR_JTAG_REG_ProgrammingCommand_Len);
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_PAGELOAD);
for (i = 0; i < page_size; i++)
{
if (i < buf_size)
{
avr_jtag_senddat(avr->jtag_info.tap, NULL, page_buf[i], 8);
}
else
{
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0xFF, 8);
}
}
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3700, AVR_JTAG_REG_ProgrammingCommand_Len);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3500, AVR_JTAG_REG_ProgrammingCommand_Len);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3700, AVR_JTAG_REG_ProgrammingCommand_Len);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3700, AVR_JTAG_REG_ProgrammingCommand_Len);
do {
poll_value = 0;
avr_jtag_senddat(avr->jtag_info.tap, &poll_value, 0x3700, AVR_JTAG_REG_ProgrammingCommand_Len);
if (ERROR_OK != mcu_execute_queue())
{
return ERROR_FAIL;
}
LOG_DEBUG("poll_value = 0x%04" PRIx32 "", poll_value);
} while (!(poll_value & 0x0200));
return ERROR_OK;
}
FLASH_BANK_COMMAND_HANDLER(avrf_flash_bank_command)
{
struct avrf_flash_bank *avrf_info;
if (argc < 6)
{
LOG_WARNING("incomplete flash_bank avr configuration");
return ERROR_FLASH_BANK_INVALID;
}
avrf_info = malloc(sizeof(struct avrf_flash_bank));
bank->driver_priv = avrf_info;
avrf_info->probed = 0;
return ERROR_OK;
}
static int avrf_erase(struct flash_bank_s *bank, int first, int last)
{
LOG_INFO("%s", __FUNCTION__);
return ERROR_OK;
}
static int avrf_protect(struct flash_bank_s *bank, int set, int first, int last)
{
LOG_INFO("%s", __FUNCTION__);
return ERROR_OK;
}
static int avrf_write(struct flash_bank_s *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
{
target_t *target = bank->target;
struct avr_common *avr = target->arch_info;
uint32_t cur_size, cur_buffer_size, page_size;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
page_size = bank->sectors[0].size;
if ((offset % page_size) != 0)
{
LOG_WARNING("offset 0x%" PRIx32 " breaks required %" PRIu32 "-byte alignment", offset, page_size);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
LOG_DEBUG("offset is 0x%08" PRIx32 "", offset);
LOG_DEBUG("count is %" PRId32 "", count);
if (ERROR_OK != avr_jtagprg_enterprogmode(avr))
{
return ERROR_FAIL;
}
cur_size = 0;
while (count > 0)
{
if (count > page_size)
{
cur_buffer_size = page_size;
}
else
{
cur_buffer_size = count;
}
avr_jtagprg_writeflashpage(avr, buffer + cur_size, cur_buffer_size, offset + cur_size, page_size);
count -= cur_buffer_size;
cur_size += cur_buffer_size;
keep_alive();
}
return avr_jtagprg_leaveprogmode(avr);
}
#define EXTRACT_MFG(X) (((X) & 0xffe) >> 1)
#define EXTRACT_PART(X) (((X) & 0xffff000) >> 12)
#define EXTRACT_VER(X) (((X) & 0xf0000000) >> 28)
static int avrf_probe(struct flash_bank_s *bank)
{
target_t *target = bank->target;
struct avrf_flash_bank *avrf_info = bank->driver_priv;
struct avr_common *avr = target->arch_info;
struct avrf_type *avr_info = NULL;
int i;
uint32_t device_id;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
avrf_info->probed = 0;
avr_jtag_read_jtagid(avr, &device_id);
if (ERROR_OK != mcu_execute_queue())
{
return ERROR_FAIL;
}
LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
if (EXTRACT_MFG(device_id) != 0x1F)
{
LOG_ERROR("0x%" PRIx32 " is invalid Manufacturer for avr, 0x%X is expected", EXTRACT_MFG(device_id), 0x1F);
}
for (i = 0; i < (int)(sizeof(avft_chips_info) / sizeof(avft_chips_info[0])); i++)
{
if (avft_chips_info[i].chip_id == EXTRACT_PART(device_id))
{
avr_info = &avft_chips_info[i];
LOG_INFO("target device is %s", avr_info->name);
break;
}
}
if (avr_info != NULL)
{
// chip found
bank->base = 0x00000000;
bank->size = (avr_info->flash_page_size * avr_info->flash_page_num);
bank->num_sectors = avr_info->flash_page_num;
bank->sectors = malloc(sizeof(struct flash_sector) * avr_info->flash_page_num);
for (i = 0; i < avr_info->flash_page_num; i++)
{
bank->sectors[i].offset = i * avr_info->flash_page_size;
bank->sectors[i].size = avr_info->flash_page_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
avrf_info->probed = 1;
return ERROR_OK;
}
else
{
// chip not supported
LOG_ERROR("0x%" PRIx32 " is not support for avr", EXTRACT_PART(device_id));
avrf_info->probed = 1;
return ERROR_FAIL;
}
}
static int avrf_auto_probe(struct flash_bank_s *bank)
{
struct avrf_flash_bank *avrf_info = bank->driver_priv;
if (avrf_info->probed)
return ERROR_OK;
return avrf_probe(bank);
}
static int avrf_protect_check(struct flash_bank_s *bank)
{
LOG_INFO("%s", __FUNCTION__);
return ERROR_OK;
}
static int avrf_info(struct flash_bank_s *bank, char *buf, int buf_size)
{
target_t *target = bank->target;
struct avr_common *avr = target->arch_info;
struct avrf_type *avr_info = NULL;
int i;
uint32_t device_id;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
avr_jtag_read_jtagid(avr, &device_id);
if (ERROR_OK != mcu_execute_queue())
{
return ERROR_FAIL;
}
LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
if (EXTRACT_MFG(device_id) != 0x1F)
{
LOG_ERROR("0x%" PRIx32 " is invalid Manufacturer for avr, 0x%X is expected", EXTRACT_MFG(device_id), 0x1F);
}
for (i = 0; i < (int)(sizeof(avft_chips_info) / sizeof(avft_chips_info[0])); i++)
{
if (avft_chips_info[i].chip_id == EXTRACT_PART(device_id))
{
avr_info = &avft_chips_info[i];
LOG_INFO("target device is %s", avr_info->name);
break;
}
}
if (avr_info != NULL)
{
// chip found
snprintf(buf, buf_size, "%s - Rev: 0x%" PRIx32 "", avr_info->name, EXTRACT_VER(device_id));
return ERROR_OK;
}
else
{
// chip not supported
snprintf(buf, buf_size, "Cannot identify target as a avr\n");
return ERROR_FLASH_OPERATION_FAILED;
}
}
static int avrf_mass_erase(struct flash_bank_s *bank)
{
target_t *target = bank->target;
struct avr_common *avr = target->arch_info;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((ERROR_OK != avr_jtagprg_enterprogmode(avr))
|| (ERROR_OK != avr_jtagprg_chiperase(avr))
|| (ERROR_OK != avr_jtagprg_leaveprogmode(avr)))
{
return ERROR_FAIL;
}
return ERROR_OK;
}
COMMAND_HANDLER(avrf_handle_mass_erase_command)
{
int i;
if (argc < 1)
{
command_print(cmd_ctx, "avr mass_erase <bank>");
return ERROR_OK;
}
flash_bank_t *bank;
int retval = flash_command_get_bank_by_num(cmd_ctx, args[0], &bank);
if (ERROR_OK != retval)
return retval;
if (avrf_mass_erase(bank) == ERROR_OK)
{
/* set all sectors as erased */
for (i = 0; i < bank->num_sectors; i++)
{
bank->sectors[i].is_erased = 1;
}
command_print(cmd_ctx, "avr mass erase complete");
}
else
{
command_print(cmd_ctx, "avr mass erase failed");
}
LOG_DEBUG("%s", __FUNCTION__);
return ERROR_OK;
}
static int avrf_register_commands(struct command_context_s *cmd_ctx)
{
command_t *avr_cmd = register_command(cmd_ctx, NULL, "avr",
NULL, COMMAND_ANY, "avr flash specific commands");
register_command(cmd_ctx, avr_cmd, "mass_erase",
avrf_handle_mass_erase_command, COMMAND_EXEC,
"mass erase device");
return ERROR_OK;
}
struct flash_driver avr_flash = {
.name = "avr",
.register_commands = &avrf_register_commands,
.flash_bank_command = &avrf_flash_bank_command,
.erase = &avrf_erase,
.protect = &avrf_protect,
.write = &avrf_write,
.probe = &avrf_probe,
.auto_probe = &avrf_auto_probe,
.erase_check = &default_flash_mem_blank_check,
.protect_check = &avrf_protect_check,
.info = &avrf_info,
};