openocd/src/flash/nand/mx3.c

880 lines
22 KiB
C
Raw Normal View History

/***************************************************************************
* Copyright (C) 2009 by Alexei Babich *
* Rezonans plc., Chelyabinsk, Russia *
* impatt@mail.ru *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
/*
* Freescale iMX3* OpenOCD NAND Flash controller support.
*
* Many thanks to Ben Dooks for writing s3c24xx driver.
*/
/*
driver tested with STMicro NAND512W3A @imx31
tested "nand probe #", "nand erase # 0 #", "nand dump # file 0 #", "nand write # file 0"
get_next_halfword_from_sram_buffer() not tested
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "mx3.h"
static const char target_not_halted_err_msg[] =
"target must be halted to use mx3 NAND flash controller";
static const char data_block_size_err_msg[] =
"minimal granularity is one half-word, %" PRId32 " is incorrect";
static const char sram_buffer_bounds_err_msg[] =
"trying to access out of SRAM buffer bound (addr=0x%" PRIx32 ")";
static const char get_status_register_err_msg[] = "can't get NAND status";
static uint32_t in_sram_address;
unsigned char sign_of_sequental_byte_read;
static int test_iomux_settings (struct target * target, uint32_t value,
uint32_t mask, const char *text);
static int initialize_nf_controller (struct nand_device *nand);
static int get_next_byte_from_sram_buffer (struct target * target, uint8_t * value);
static int get_next_halfword_from_sram_buffer (struct target * target,
uint16_t * value);
static int poll_for_complete_op (struct target * target, const char *text);
static int validate_target_state (struct nand_device *nand);
static int do_data_output (struct nand_device *nand);
static int imx31_command (struct nand_device *nand, uint8_t command);
static int imx31_address (struct nand_device *nand, uint8_t address);
static int imx31_controller_ready (struct nand_device *nand, int tout);
NAND_DEVICE_COMMAND_HANDLER(imx31_nand_device_command)
{
struct mx3_nf_controller *mx3_nf_info;
mx3_nf_info = malloc (sizeof (struct mx3_nf_controller));
if (mx3_nf_info == NULL)
{
LOG_ERROR ("no memory for nand controller");
return ERROR_FAIL;
}
nand->controller_priv = mx3_nf_info;
mx3_nf_info->target = get_target (CMD_ARGV[1]);
if (mx3_nf_info->target == NULL)
{
LOG_ERROR ("target '%s' not defined", CMD_ARGV[1]);
return ERROR_FAIL;
}
if (CMD_ARGC < 3)
{
LOG_ERROR ("use \"nand device imx31 target noecc|hwecc\"");
return ERROR_FAIL;
}
/*
* check hwecc requirements
*/
{
int hwecc_needed;
hwecc_needed = strcmp (CMD_ARGV[2], "hwecc");
if (hwecc_needed == 0)
{
mx3_nf_info->flags.hw_ecc_enabled = 1;
}
else
{
mx3_nf_info->flags.hw_ecc_enabled = 0;
}
}
mx3_nf_info->optype = MX3_NF_DATAOUT_PAGE;
mx3_nf_info->fin = MX3_NF_FIN_NONE;
mx3_nf_info->flags.target_little_endian =
(mx3_nf_info->target->endianness == TARGET_LITTLE_ENDIAN);
/*
* testing host endianess
*/
{
int x = 1;
if (*(char *) &x == 1)
{
mx3_nf_info->flags.host_little_endian = 1;
}
else
{
mx3_nf_info->flags.host_little_endian = 0;
}
}
return ERROR_OK;
}
static int imx31_init (struct nand_device *nand)
{
struct mx3_nf_controller *mx3_nf_info = nand->controller_priv;
struct target *target = mx3_nf_info->target;
{
/*
* validate target state
*/
int validate_target_result;
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
{
return validate_target_result;
}
}
{
uint16_t buffsize_register_content;
target_read_u16 (target, MX3_NF_BUFSIZ, &buffsize_register_content);
mx3_nf_info->flags.one_kb_sram = !(buffsize_register_content & 0x000f);
}
{
uint32_t pcsr_register_content;
target_read_u32 (target, MX3_PCSR, &pcsr_register_content);
if (!nand->bus_width)
{
nand->bus_width =
(pcsr_register_content & 0x80000000) ? 16 : 8;
}
else
{
pcsr_register_content |=
((nand->bus_width == 16) ? 0x80000000 : 0x00000000);
target_write_u32 (target, MX3_PCSR, pcsr_register_content);
}
if (!nand->page_size)
{
nand->page_size =
(pcsr_register_content & 0x40000000) ? 2048 : 512;
}
else
{
pcsr_register_content |=
((nand->page_size == 2048) ? 0x40000000 : 0x00000000);
target_write_u32 (target, MX3_PCSR, pcsr_register_content);
}
if (mx3_nf_info->flags.one_kb_sram && (nand->page_size == 2048))
{
LOG_ERROR
("NAND controller have only 1 kb SRAM, so pagesize 2048 is incompatible with it");
}
}
{
uint32_t cgr_register_content;
target_read_u32 (target, MX3_CCM_CGR2, &cgr_register_content);
if (!(cgr_register_content & 0x00000300))
{
LOG_ERROR ("clock gating to EMI disabled");
return ERROR_FAIL;
}
}
{
uint32_t gpr_register_content;
target_read_u32 (target, MX3_GPR, &gpr_register_content);
if (gpr_register_content & 0x00000060)
{
LOG_ERROR ("pins mode overrided by GPR");
return ERROR_FAIL;
}
}
{
/*
* testing IOMUX settings; must be in "functional-mode output and
* functional-mode input" mode
*/
int test_iomux;
test_iomux = ERROR_OK;
test_iomux |=
test_iomux_settings (target, 0x43fac0c0, 0x7f7f7f00, "d0,d1,d2");
test_iomux |=
test_iomux_settings (target, 0x43fac0c4, 0x7f7f7f7f, "d3,d4,d5,d6");
test_iomux |=
test_iomux_settings (target, 0x43fac0c8, 0x0000007f, "d7");
if (nand->bus_width == 16)
{
test_iomux |=
test_iomux_settings (target, 0x43fac0c8, 0x7f7f7f00,
"d8,d9,d10");
test_iomux |=
test_iomux_settings (target, 0x43fac0cc, 0x7f7f7f7f,
"d11,d12,d13,d14");
test_iomux |=
test_iomux_settings (target, 0x43fac0d0, 0x0000007f, "d15");
}
test_iomux |=
test_iomux_settings (target, 0x43fac0d0, 0x7f7f7f00,
"nfwp,nfce,nfrb");
test_iomux |=
test_iomux_settings (target, 0x43fac0d4, 0x7f7f7f7f,
"nfwe,nfre,nfale,nfcle");
if (test_iomux != ERROR_OK)
{
return ERROR_FAIL;
}
}
initialize_nf_controller (nand);
{
int retval;
uint16_t nand_status_content;
retval = ERROR_OK;
retval |= imx31_command (nand, NAND_CMD_STATUS);
retval |= imx31_address (nand, 0x00);
retval |= do_data_output (nand);
if (retval != ERROR_OK)
{
LOG_ERROR (get_status_register_err_msg);
return ERROR_FAIL;
}
target_read_u16 (target, MX3_NF_MAIN_BUFFER0, &nand_status_content);
if (!(nand_status_content & 0x0080))
{
/*
* is host-big-endian correctly ??
*/
LOG_INFO ("NAND read-only");
mx3_nf_info->flags.nand_readonly = 1;
}
else
{
mx3_nf_info->flags.nand_readonly = 0;
}
}
return ERROR_OK;
}
static int imx31_read_data (struct nand_device *nand, void *data)
{
struct mx3_nf_controller *mx3_nf_info = nand->controller_priv;
struct target *target = mx3_nf_info->target;
{
/*
* validate target state
*/
int validate_target_result;
validate_target_result = validate_target_state (nand);
if (validate_target_result != ERROR_OK)
{
return validate_target_result;
}
}
{
/*
* get data from nand chip
*/
int try_data_output_from_nand_chip;
try_data_output_from_nand_chip = do_data_output (nand);
if (try_data_output_from_nand_chip != ERROR_OK)
{
return try_data_output_from_nand_chip;
}
}
if (nand->bus_width == 16)
{
get_next_halfword_from_sram_buffer (target, data);
}
else
{
get_next_byte_from_sram_buffer (target, data);
}
return ERROR_OK;
}
static int imx31_write_data (struct nand_device *nand, uint16_t data)
{
LOG_ERROR ("write_data() not implemented");
return ERROR_NAND_OPERATION_FAILED;
}
static int imx31_nand_ready (struct nand_device *nand, int timeout)
{
return imx31_controller_ready (nand, timeout);
}
static int imx31_reset (struct nand_device *nand)
{
/*
* validate target state
*/
int validate_target_result;
validate_target_result = validate_target_state (nand);
if (validate_target_result != ERROR_OK)
{
return validate_target_result;
}
initialize_nf_controller (nand);
return ERROR_OK;
}
static int imx31_command (struct nand_device *nand, uint8_t command)
{
struct mx3_nf_controller *mx3_nf_info = nand->controller_priv;
struct target *target = mx3_nf_info->target;
{
/*
* validate target state
*/
int validate_target_result;
validate_target_result = validate_target_state (nand);
if (validate_target_result != ERROR_OK)
{
return validate_target_result;
}
}
switch (command)
{
case NAND_CMD_READOOB:
command = NAND_CMD_READ0;
in_sram_address = MX3_NF_SPARE_BUFFER0; /* set read point for
* data_read() and
* read_block_data() to
* spare area in SRAM
* buffer */
break;
case NAND_CMD_READ1:
command = NAND_CMD_READ0;
/*
* offset == one half of page size
*/
in_sram_address =
MX3_NF_MAIN_BUFFER0 + (nand->page_size >> 1);
default:
in_sram_address = MX3_NF_MAIN_BUFFER0;
}
target_write_u16 (target, MX3_NF_FCMD, command);
/*
* start command input operation (set MX3_NF_BIT_OP_DONE==0)
*/
target_write_u16 (target, MX3_NF_CFG2, MX3_NF_BIT_OP_FCI);
{
int poll_result;
poll_result = poll_for_complete_op (target, "command");
if (poll_result != ERROR_OK)
{
return poll_result;
}
}
/*
* reset cursor to begin of the buffer
*/
sign_of_sequental_byte_read = 0;
switch (command)
{
case NAND_CMD_READID:
mx3_nf_info->optype = MX3_NF_DATAOUT_NANDID;
mx3_nf_info->fin = MX3_NF_FIN_DATAOUT;
break;
case NAND_CMD_STATUS:
mx3_nf_info->optype = MX3_NF_DATAOUT_NANDSTATUS;
mx3_nf_info->fin = MX3_NF_FIN_DATAOUT;
break;
case NAND_CMD_READ0:
mx3_nf_info->fin = MX3_NF_FIN_DATAOUT;
mx3_nf_info->optype = MX3_NF_DATAOUT_PAGE;
break;
default:
mx3_nf_info->optype = MX3_NF_DATAOUT_PAGE;
}
return ERROR_OK;
}
static int imx31_address (struct nand_device *nand, uint8_t address)
{
struct mx3_nf_controller *mx3_nf_info = nand->controller_priv;
struct target *target = mx3_nf_info->target;
{
/*
* validate target state
*/
int validate_target_result;
validate_target_result = validate_target_state (nand);
if (validate_target_result != ERROR_OK)
{
return validate_target_result;
}
}
target_write_u16 (target, MX3_NF_FADDR, address);
/*
* start address input operation (set MX3_NF_BIT_OP_DONE==0)
*/
target_write_u16 (target, MX3_NF_CFG2, MX3_NF_BIT_OP_FAI);
{
int poll_result;
poll_result = poll_for_complete_op (target, "address");
if (poll_result != ERROR_OK)
{
return poll_result;
}
}
return ERROR_OK;
}
static int imx31_controller_ready (struct nand_device *nand, int tout)
{
uint16_t poll_complete_status;
struct mx3_nf_controller *mx3_nf_info = nand->controller_priv;
struct target *target = mx3_nf_info->target;
{
/*
* validate target state
*/
int validate_target_result;
validate_target_result = validate_target_state (nand);
if (validate_target_result != ERROR_OK)
{
return validate_target_result;
}
}
do
{
target_read_u16 (target, MX3_NF_CFG2, &poll_complete_status);
if (poll_complete_status & MX3_NF_BIT_OP_DONE)
{
return tout;
}
alive_sleep (1);
}
while (tout-- > 0);
return tout;
}
static int imx31_write_page (struct nand_device *nand, uint32_t page,
uint8_t * data, uint32_t data_size, uint8_t * oob,
uint32_t oob_size)
{
struct mx3_nf_controller *mx3_nf_info = nand->controller_priv;
struct target *target = mx3_nf_info->target;
if (data_size % 2)
{
LOG_ERROR (data_block_size_err_msg, data_size);
return ERROR_NAND_OPERATION_FAILED;
}
if (oob_size % 2)
{
LOG_ERROR (data_block_size_err_msg, oob_size);
return ERROR_NAND_OPERATION_FAILED;
}
if (!data)
{
LOG_ERROR ("nothing to program");
return ERROR_NAND_OPERATION_FAILED;
}
{
/*
* validate target state
*/
int retval;
retval = validate_target_state (nand);
if (retval != ERROR_OK)
{
return retval;
}
}
{
int retval = ERROR_OK;
retval |= imx31_command(nand, NAND_CMD_SEQIN);
retval |= imx31_address(nand, 0x00);
retval |= imx31_address(nand, page & 0xff);
retval |= imx31_address(nand, (page >> 8) & 0xff);
if (nand->address_cycles >= 4)
{
retval |= imx31_address (nand, (page >> 16) & 0xff);
if (nand->address_cycles >= 5)
{
retval |= imx31_address (nand, (page >> 24) & 0xff);
}
}
target_write_buffer (target, MX3_NF_MAIN_BUFFER0, data_size, data);
if (oob)
{
if (mx3_nf_info->flags.hw_ecc_enabled)
{
/*
* part of spare block will be overrided by hardware
* ECC generator
*/
LOG_DEBUG
("part of spare block will be overrided by hardware ECC generator");
}
target_write_buffer (target, MX3_NF_SPARE_BUFFER0, oob_size,
oob);
}
/*
* start data input operation (set MX3_NF_BIT_OP_DONE==0)
*/
target_write_u16 (target, MX3_NF_CFG2, MX3_NF_BIT_OP_FDI);
{
int poll_result;
poll_result = poll_for_complete_op (target, "data input");
if (poll_result != ERROR_OK)
{
return poll_result;
}
}
retval |= imx31_command (nand, NAND_CMD_PAGEPROG);
if (retval != ERROR_OK)
{
return retval;
}
/*
* check status register
*/
{
uint16_t nand_status_content;
retval = ERROR_OK;
retval |= imx31_command(nand, NAND_CMD_STATUS);
retval |= imx31_address(nand, 0x00);
retval |= do_data_output(nand);
if (retval != ERROR_OK)
{
LOG_ERROR (get_status_register_err_msg);
return retval;
}
target_read_u16 (target, MX3_NF_MAIN_BUFFER0, &nand_status_content);
if (nand_status_content & 0x0001)
{
/*
* is host-big-endian correctly ??
*/
return ERROR_NAND_OPERATION_FAILED;
}
}
}
return ERROR_OK;
}
static int imx31_read_page (struct nand_device *nand, uint32_t page,
uint8_t * data, uint32_t data_size, uint8_t * oob,
uint32_t oob_size)
{
struct mx3_nf_controller *mx3_nf_info = nand->controller_priv;
struct target *target = mx3_nf_info->target;
if (data_size % 2)
{
LOG_ERROR (data_block_size_err_msg, data_size);
return ERROR_NAND_OPERATION_FAILED;
}
if (oob_size % 2)
{
LOG_ERROR (data_block_size_err_msg, oob_size);
return ERROR_NAND_OPERATION_FAILED;
}
{
/*
* validate target state
*/
int retval;
retval = validate_target_state(nand);
if (retval != ERROR_OK)
{
return retval;
}
}
{
int retval = ERROR_OK;
retval |= imx31_command(nand, NAND_CMD_READ0);
retval |= imx31_address(nand, 0x00);
retval |= imx31_address(nand, page & 0xff);
retval |= imx31_address(nand, (page >> 8) & 0xff);
if (nand->address_cycles >= 4)
{
retval |= imx31_address(nand, (page >> 16) & 0xff);
if (nand->address_cycles >= 5)
{
retval |= imx31_address(nand, (page >> 24) & 0xff);
retval |= imx31_command(nand, NAND_CMD_READSTART);
}
}
retval |= do_data_output (nand);
if (retval != ERROR_OK)
{
return retval;
}
if (data)
{
target_read_buffer (target, MX3_NF_MAIN_BUFFER0, data_size,
data);
}
if (oob)
{
target_read_buffer (target, MX3_NF_SPARE_BUFFER0, oob_size,
oob);
}
}
return ERROR_OK;
}
static int test_iomux_settings (struct target * target, uint32_t address,
uint32_t mask, const char *text)
{
uint32_t register_content;
target_read_u32 (target, address, &register_content);
if ((register_content & mask) != (0x12121212 & mask))
{
LOG_ERROR ("IOMUX for {%s} is bad", text);
return ERROR_FAIL;
}
return ERROR_OK;
}
static int initialize_nf_controller (struct nand_device *nand)
{
struct mx3_nf_controller *mx3_nf_info = nand->controller_priv;
struct target *target = mx3_nf_info->target;
/*
* resets NAND flash controller in zero time ? I dont know.
*/
target_write_u16 (target, MX3_NF_CFG1, MX3_NF_BIT_RESET_EN);
{
uint16_t work_mode;
work_mode = MX3_NF_BIT_INT_DIS; /* disable interrupt */
if (target->endianness == TARGET_BIG_ENDIAN)
{
work_mode |= MX3_NF_BIT_BE_EN;
}
if (mx3_nf_info->flags.hw_ecc_enabled)
{
work_mode |= MX3_NF_BIT_ECC_EN;
}
target_write_u16 (target, MX3_NF_CFG1, work_mode);
}
/*
* unlock SRAM buffer for write; 2 mean "Unlock", other values means "Lock"
*/
target_write_u16 (target, MX3_NF_BUFCFG, 2);
{
uint16_t temp;
target_read_u16 (target, MX3_NF_FWP, &temp);
if ((temp & 0x0007) == 1)
{
LOG_ERROR ("NAND flash is tight-locked, reset needed");
return ERROR_FAIL;
}
}
/*
* unlock NAND flash for write
*/
target_write_u16 (target, MX3_NF_FWP, 4);
target_write_u16 (target, MX3_NF_LOCKSTART, 0x0000);
target_write_u16 (target, MX3_NF_LOCKEND, 0xFFFF);
/*
* 0x0000 means that first SRAM buffer @0xB800_0000 will be used
*/
target_write_u16 (target, MX3_NF_BUFADDR, 0x0000);
/*
* address of SRAM buffer
*/
in_sram_address = MX3_NF_MAIN_BUFFER0;
sign_of_sequental_byte_read = 0;
return ERROR_OK;
}
static int get_next_byte_from_sram_buffer (struct target * target, uint8_t * value)
{
static uint8_t even_byte = 0;
/*
* host-big_endian ??
*/
if (sign_of_sequental_byte_read == 0)
{
even_byte = 0;
}
if (in_sram_address > MX3_NF_LAST_BUFFER_ADDR)
{
LOG_ERROR (sram_buffer_bounds_err_msg, in_sram_address);
*value = 0;
sign_of_sequental_byte_read = 0;
even_byte = 0;
return ERROR_NAND_OPERATION_FAILED;
}
else
{
uint16_t temp;
target_read_u16 (target, in_sram_address, &temp);
if (even_byte)
{
*value = temp >> 8;
even_byte = 0;
in_sram_address += 2;
}
else
{
*value = temp & 0xff;
even_byte = 1;
}
}
sign_of_sequental_byte_read = 1;
return ERROR_OK;
}
static int get_next_halfword_from_sram_buffer (struct target * target,
uint16_t * value)
{
if (in_sram_address > MX3_NF_LAST_BUFFER_ADDR)
{
LOG_ERROR (sram_buffer_bounds_err_msg, in_sram_address);
*value = 0;
return ERROR_NAND_OPERATION_FAILED;
}
else
{
target_read_u16 (target, in_sram_address, value);
in_sram_address += 2;
}
return ERROR_OK;
}
static int poll_for_complete_op (struct target * target, const char *text)
{
uint16_t poll_complete_status;
for (int poll_cycle_count = 0; poll_cycle_count < 100; poll_cycle_count++)
{
usleep (25);
target_read_u16 (target, MX3_NF_CFG2, &poll_complete_status);
if (poll_complete_status & MX3_NF_BIT_OP_DONE)
{
break;
}
}
if (!(poll_complete_status & MX3_NF_BIT_OP_DONE))
{
LOG_ERROR ("%s sending timeout", text);
return ERROR_NAND_OPERATION_FAILED;
}
return ERROR_OK;
}
static int validate_target_state (struct nand_device *nand)
{
struct mx3_nf_controller *mx3_nf_info = nand->controller_priv;
struct target *target = mx3_nf_info->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR (target_not_halted_err_msg);
return ERROR_NAND_OPERATION_FAILED;
}
if (mx3_nf_info->flags.target_little_endian !=
(target->endianness == TARGET_LITTLE_ENDIAN))
{
/*
* endianness changed after NAND controller probed
*/
return ERROR_NAND_OPERATION_FAILED;
}
return ERROR_OK;
}
static int do_data_output (struct nand_device *nand)
{
struct mx3_nf_controller *mx3_nf_info = nand->controller_priv;
struct target *target = mx3_nf_info->target;
switch (mx3_nf_info->fin)
{
case MX3_NF_FIN_DATAOUT:
/*
* start data output operation (set MX3_NF_BIT_OP_DONE==0)
*/
target_write_u16 (target, MX3_NF_CFG2,
MX3_NF_BIT_DATAOUT_TYPE (mx3_nf_info->
optype));
{
int poll_result;
poll_result = poll_for_complete_op (target, "data output");
if (poll_result != ERROR_OK)
{
return poll_result;
}
}
mx3_nf_info->fin = MX3_NF_FIN_NONE;
/*
* ECC stuff
*/
if ((mx3_nf_info->optype == MX3_NF_DATAOUT_PAGE)
&& mx3_nf_info->flags.hw_ecc_enabled)
{
uint16_t ecc_status;
target_read_u16 (target, MX3_NF_ECCSTATUS, &ecc_status);
switch (ecc_status & 0x000c)
{
case 1 << 2:
LOG_DEBUG
("main area readed with 1 (correctable) error");
break;
case 2 << 2:
LOG_DEBUG
("main area readed with more than 1 (incorrectable) error");
return ERROR_NAND_OPERATION_FAILED;
break;
}
switch (ecc_status & 0x0003)
{
case 1:
LOG_DEBUG
("spare area readed with 1 (correctable) error");
break;
case 2:
LOG_DEBUG
("main area readed with more than 1 (incorrectable) error");
return ERROR_NAND_OPERATION_FAILED;
break;
}
}
break;
case MX3_NF_FIN_NONE:
break;
}
return ERROR_OK;
}
struct nand_flash_controller imx31_nand_flash_controller = {
.name = "imx31",
.nand_device_command = &imx31_nand_device_command,
.init = &imx31_init,
.reset = &imx31_reset,
.command = &imx31_command,
.address = &imx31_address,
.write_data = &imx31_write_data,
.read_data = &imx31_read_data,
.write_page = &imx31_write_page,
.read_page = &imx31_read_page,
.controller_ready = &imx31_controller_ready,
.nand_ready = &imx31_nand_ready,
};