mem_ap: allow GDB connections

The target mem_ap is a convenient way to access buses, memory and
peripherals behind an ARM AP.
The current implementation provides only access through OpenOCD
commands, because GDB remote protocol has to interact with a CPU
and has to operate on CPU states and registers.
Using GDB to access the memory is welcome, because GDB can resolve
the symbol's address from an ELF file and can nicely display the
content of complex struct and data types.

Extend mem_ap target with the bare minimal support for a remote
GDB connection, by emulating a fake basic ARM core. It means that
only a GDB that has support for ARM can be used (either 'aarch64',
'arm' or 'multiarch' GDB). This is not seen as a big limitation,
because the mem_ap target is mainly used on ARM based devices.

Add a minimalist register description for the fake CPU.
Fill the field 'debug_reason' as expected by GDB server.
Call the target halted event to reply to GDB halt requests.

For backward compatibility, don't open the GDB port by default. If
needed, it has to be specified at 'target create' or 'configure'
with the flag '-gdb-port'.

Change-Id: I5a1b7adb749746516f5d4ffc6193c47b70132364
Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com>
Reviewed-on: http://openocd.zylin.com/6034
Tested-by: jenkins
This commit is contained in:
Antonio Borneo 2020-12-20 21:13:58 +01:00
parent 651b861d5d
commit 0f06d94336
2 changed files with 97 additions and 4 deletions

View File

@ -4509,7 +4509,13 @@ The current implementation supports eSi-32xx cores.
@item @code{hla_target} -- a Cortex-M alternative to work with HL adapters like ST-Link.
@item @code{ls1_sap} -- this is the SAP on NXP LS102x CPUs,
allowing access to physical memory addresses independently of CPU cores.
@item @code{mem_ap} -- this is an ARM debug infrastructure Access Port without a CPU, through which bus read and write cycles can be generated; it may be useful for working with non-CPU hardware behind an AP or during development of support for new CPUs.
@item @code{mem_ap} -- this is an ARM debug infrastructure Access Port without
a CPU, through which bus read and write cycles can be generated; it may be
useful for working with non-CPU hardware behind an AP or during development of
support for new CPUs.
It's possible to connect a GDB client to this target (the GDB port has to be
specified, @xref{gdbportoverride,,option -gdb-port}), and a fake ARM core will
be emulated to comply to GDB remote protocol.
@item @code{mips_m4k} -- a MIPS core.
@item @code{mips_mips64} -- a MIPS64 core.
@item @code{nds32_v2} -- this is an Andes NDS32 v2 core.

View File

@ -20,6 +20,7 @@
#include "target_type.h"
#include "arm.h"
#include "arm_adi_v5.h"
#include "register.h"
#include <jtag/jtag.h>
@ -55,6 +56,9 @@ static int mem_ap_target_create(struct target *target, Jim_Interp *interp)
target->arch_info = mem_ap;
if (!target->gdb_port_override)
target->gdb_port_override = strdup("disabled");
return ERROR_OK;
}
@ -62,6 +66,7 @@ static int mem_ap_init_target(struct command_context *cmd_ctx, struct target *ta
{
LOG_DEBUG("%s", __func__);
target->state = TARGET_UNKNOWN;
target->debug_reason = DBG_REASON_UNDEFINED;
return ERROR_OK;
}
@ -82,8 +87,10 @@ static int mem_ap_arch_state(struct target *target)
static int mem_ap_poll(struct target *target)
{
if (target->state == TARGET_UNKNOWN)
if (target->state == TARGET_UNKNOWN) {
target->state = TARGET_RUNNING;
target->debug_reason = DBG_REASON_NOTHALTED;
}
return ERROR_OK;
}
@ -92,6 +99,8 @@ static int mem_ap_halt(struct target *target)
{
LOG_DEBUG("%s", __func__);
target->state = TARGET_HALTED;
target->debug_reason = DBG_REASON_DBGRQ;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
return ERROR_OK;
}
@ -100,6 +109,7 @@ static int mem_ap_resume(struct target *target, int current, target_addr_t addre
{
LOG_DEBUG("%s", __func__);
target->state = TARGET_RUNNING;
target->debug_reason = DBG_REASON_NOTHALTED;
return ERROR_OK;
}
@ -108,12 +118,15 @@ static int mem_ap_step(struct target *target, int current, target_addr_t address
{
LOG_DEBUG("%s", __func__);
target->state = TARGET_HALTED;
target->debug_reason = DBG_REASON_DBGRQ;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
return ERROR_OK;
}
static int mem_ap_assert_reset(struct target *target)
{
target->state = TARGET_RESET;
target->debug_reason = DBG_REASON_UNDEFINED;
LOG_DEBUG("%s", __func__);
return ERROR_OK;
@ -127,6 +140,7 @@ static int mem_ap_examine(struct target *target)
mem_ap->ap = dap_ap(mem_ap->arm.dap, mem_ap->ap_num);
target_set_examined(target);
target->state = TARGET_UNKNOWN;
target->debug_reason = DBG_REASON_UNDEFINED;
return mem_ap_init(mem_ap->ap);
}
@ -135,15 +149,85 @@ static int mem_ap_examine(struct target *target)
static int mem_ap_deassert_reset(struct target *target)
{
if (target->reset_halt)
if (target->reset_halt) {
target->state = TARGET_HALTED;
else
target->debug_reason = DBG_REASON_DBGRQ;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
} else {
target->state = TARGET_RUNNING;
target->debug_reason = DBG_REASON_NOTHALTED;
}
LOG_DEBUG("%s", __func__);
return ERROR_OK;
}
static int mem_ap_reg_get(struct reg *reg)
{
return ERROR_OK;
}
static int mem_ap_reg_set(struct reg *reg, uint8_t *buf)
{
return ERROR_OK;
}
static struct reg_arch_type mem_ap_reg_arch_type = {
.get = mem_ap_reg_get,
.set = mem_ap_reg_set,
};
const char *mem_ap_get_gdb_arch(struct target *target)
{
return "arm";
}
/*
* Dummy ARM register emulation:
* reg[0..15]: 32 bits, r0~r12, sp, lr, pc
* reg[16..23]: 96 bits, f0~f7
* reg[24]: 32 bits, fps
* reg[25]: 32 bits, cpsr
*
* Set 'exist' only to reg[0..15], so initial response to GDB is correct
*/
#define NUM_REGS 26
#define MAX_REG_SIZE 96
#define REG_EXIST(n) ((n) < 16)
#define REG_SIZE(n) ((((n) >= 16) && ((n) < 24)) ? 96 : 32)
struct mem_ap_alloc_reg_list {
/* reg_list must be the first field */
struct reg *reg_list[NUM_REGS];
struct reg regs[NUM_REGS];
uint8_t regs_value[MAX_REG_SIZE / 8];
};
static int mem_ap_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
int *reg_list_size, enum target_register_class reg_class)
{
struct mem_ap_alloc_reg_list *mem_ap_alloc = calloc(1, sizeof(struct mem_ap_alloc_reg_list));
if (!mem_ap_alloc) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
*reg_list = mem_ap_alloc->reg_list;
*reg_list_size = NUM_REGS;
struct reg *regs = mem_ap_alloc->regs;
for (int i = 0; i < NUM_REGS; i++) {
regs[i].number = i;
regs[i].value = mem_ap_alloc->regs_value;
regs[i].size = REG_SIZE(i);
regs[i].exist = REG_EXIST(i);
regs[i].type = &mem_ap_reg_arch_type;
(*reg_list)[i] = &regs[i];
}
return ERROR_OK;
}
static int mem_ap_read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
@ -192,6 +276,9 @@ struct target_type mem_ap_target = {
.assert_reset = mem_ap_assert_reset,
.deassert_reset = mem_ap_deassert_reset,
.get_gdb_arch = mem_ap_get_gdb_arch,
.get_gdb_reg_list = mem_ap_get_gdb_reg_list,
.read_memory = mem_ap_read_memory,
.write_memory = mem_ap_write_memory,
};