target: Rewrite read/write buffer default implementations

Rewrite the target_*_buffer_default to generate as large accesses as
possible while maintaining natural alignment.

These versions are easy to extend to generate 8-byte accesses to support
64-bit targets, although it requires some conformity from all target
implementations (i.e. they need to refuse unsupported access sizes with
some defined error code, so we can try again with a smaller one).

Change-Id: I00ddcbb1d2fd33f9f8b99cb448cc93505a2421fc
Signed-off-by: Andreas Fritiofson <andreas.fritiofson@gmail.com>
Reviewed-on: http://openocd.zylin.com/1221
Tested-by: jenkins
Reviewed-by: Spencer Oliver <spen@spen-soft.co.uk>
This commit is contained in:
Andreas Fritiofson 2013-03-13 23:41:04 +01:00 committed by Spencer Oliver
parent 5c2f920cc7
commit 3377c16420

View File

@ -60,9 +60,9 @@
#define DEFAULT_HALT_TIMEOUT 5000
static int target_read_buffer_default(struct target *target, uint32_t address,
uint32_t size, uint8_t *buffer);
uint32_t count, uint8_t *buffer);
static int target_write_buffer_default(struct target *target, uint32_t address,
uint32_t size, const uint8_t *buffer);
uint32_t count, const uint8_t *buffer);
static int target_array2mem(Jim_Interp *interp, struct target *target,
int argc, Jim_Obj * const *argv);
static int target_mem2array(Jim_Interp *interp, struct target *target,
@ -1766,50 +1766,37 @@ int target_write_buffer(struct target *target, uint32_t address, uint32_t size,
return target->type->write_buffer(target, address, size, buffer);
}
static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
{
int retval = ERROR_OK;
uint32_t size;
if (((address % 2) == 0) && (size == 2))
return target_write_memory(target, address, 2, 1, buffer);
/* handle unaligned head bytes */
if (address % 4) {
uint32_t unaligned = 4 - (address % 4);
if (unaligned > size)
unaligned = size;
retval = target_write_memory(target, address, 1, unaligned, buffer);
if (retval != ERROR_OK)
return retval;
buffer += unaligned;
address += unaligned;
size -= unaligned;
/* Align up to maximum 4 bytes. The loop condition makes sure the next pass
* will have something to do with the size we leave to it. */
for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
if (address & size) {
int retval = target_write_memory(target, address, size, 1, buffer);
if (retval != ERROR_OK)
return retval;
address += size;
count -= size;
buffer += size;
}
}
/* handle aligned words */
if (size >= 4) {
int aligned = size - (size % 4);
retval = target_write_memory(target, address, 4, aligned / 4, buffer);
if (retval != ERROR_OK)
return retval;
buffer += aligned;
address += aligned;
size -= aligned;
/* Write the data with as large access size as possible. */
for (; size > 0; size /= 2) {
uint32_t aligned = count - count % size;
if (aligned > 0) {
int retval = target_write_memory(target, address, size, aligned / size, buffer);
if (retval != ERROR_OK)
return retval;
address += aligned;
count -= aligned;
buffer += aligned;
}
}
/* handle tail writes of less than 4 bytes */
if (size > 0) {
retval = target_write_memory(target, address, 1, size, buffer);
if (retval != ERROR_OK)
return retval;
}
return retval;
return ERROR_OK;
}
/* Single aligned words are guaranteed to use 16 or 32 bit access
@ -1840,58 +1827,34 @@ int target_read_buffer(struct target *target, uint32_t address, uint32_t size, u
return target->type->read_buffer(target, address, size, buffer);
}
static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
{
int retval = ERROR_OK;
uint32_t size;
if (((address % 2) == 0) && (size == 2))
return target_read_memory(target, address, 2, 1, buffer);
/* handle unaligned head bytes */
if (address % 4) {
uint32_t unaligned = 4 - (address % 4);
if (unaligned > size)
unaligned = size;
retval = target_read_memory(target, address, 1, unaligned, buffer);
if (retval != ERROR_OK)
return retval;
buffer += unaligned;
address += unaligned;
size -= unaligned;
/* Align up to maximum 4 bytes. The loop condition makes sure the next pass
* will have something to do with the size we leave to it. */
for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
if (address & size) {
int retval = target_read_memory(target, address, size, 1, buffer);
if (retval != ERROR_OK)
return retval;
address += size;
count -= size;
buffer += size;
}
}
/* handle aligned words */
if (size >= 4) {
int aligned = size - (size % 4);
retval = target_read_memory(target, address, 4, aligned / 4, buffer);
if (retval != ERROR_OK)
return retval;
buffer += aligned;
address += aligned;
size -= aligned;
}
/*prevent byte access when possible (avoid AHB access limitations in some cases)*/
if (size >= 2) {
int aligned = size - (size % 2);
retval = target_read_memory(target, address, 2, aligned / 2, buffer);
if (retval != ERROR_OK)
return retval;
buffer += aligned;
address += aligned;
size -= aligned;
}
/* handle tail writes of less than 4 bytes */
if (size > 0) {
retval = target_read_memory(target, address, 1, size, buffer);
if (retval != ERROR_OK)
return retval;
/* Read the data with as large access size as possible. */
for (; size > 0; size /= 2) {
uint32_t aligned = count - count % size;
if (aligned > 0) {
int retval = target_read_memory(target, address, size, aligned / size, buffer);
if (retval != ERROR_OK)
return retval;
address += aligned;
count -= aligned;
buffer += aligned;
}
}
return ERROR_OK;