tcl/target: Add K3 basic support

Add basic connection details for AM654 and J721E SoCs from TI.

See AM65x Technical Reference Manual (SPRUID7, April 2018)
for further details: https://www.ti.com/lit/pdf/spruid7

See J721E Technical Reference Manual (SPRUIL1, May 2019)
for further details: https://www.ti.com/lit/pdf/spruil1

See J7200 Technical Reference Manual (SPRUIU1, June 2020)
for further details: https://www.ti.com/lit/pdf/spruiu1

See AM64X Technical Reference Manual (SPRUIM2, Nov 2020)
for further details: https://www.ti.com/lit/pdf/spruim2

Change-Id: Ie5108c6ad6f1304a6bf5b9f81aa9ebd33b8a559d
Signed-off-by: Nishanth Menon <nm@ti.com>
Reviewed-on: http://openocd.zylin.com/5182
Reviewed-by: Antonio Borneo <borneo.antonio@gmail.com>
Tested-by: jenkins
This commit is contained in:
Nishanth Menon 2018-06-08 16:48:27 -05:00 committed by Antonio Borneo
parent 4307d93eb0
commit 431dd88536
1 changed files with 256 additions and 0 deletions

256
tcl/target/ti_k3.cfg Normal file
View File

@ -0,0 +1,256 @@
# SPDX-License-Identifier: GPL-2.0-or-later
# Copyright (C) 2019-2021 Texas Instruments Incorporated - http://www.ti.com/
#
# Texas Instruments K3 devices:
# * AM654x: https://www.ti.com/lit/pdf/spruid7
# Has 4 ARMV8 Cores and 2 R5 Cores and an M3
# * J721E: https://www.ti.com/lit/pdf/spruil1
# Has 2 ARMV8 Cores and 6 R5 Cores and an M3
# * J7200: https://www.ti.com/lit/pdf/spruiu1
# Has 2 ARMV8 Cores and 4 R5 Cores and an M3
# * AM642: https://www.ti.com/lit/pdf/spruim2
# Has 2 ARMV8 Cores and 4 R5 Cores, M4F and an M3
#
if { [info exists SOC] } {
set _soc $SOC
} else {
set _soc am654
}
# set V8_SMP_DEBUG to non 0 value in board if you'd like to use SMP debug
if { [info exists V8_SMP_DEBUG] } {
set _v8_smp_debug $V8_SMP_DEBUG
} else {
set _v8_smp_debug 0
}
# Common Definitions
# CM3 the very first processor - all current SoCs have it.
set CM3_CTIBASE {0x3C016000}
# M3 power-ap unlock offsets
set _m3_ap_unlock_offsets {0xf0 0x44}
# All the ARMV8s are the next processors.
# CL0,CORE0 CL0,CORE1 CL1,CORE0 CL1,CORE1
set ARMV8_DBGBASE {0x90410000 0x90510000 0x90810000 0x90910000}
set ARMV8_CTIBASE {0x90420000 0x90520000 0x90820000 0x90920000}
# And we add up the R5s
# (0)MCU 0 (1)MCU 1 (2)MAIN_0_0 (3)MAIN_0_1 (4)MAIN_1_0 (5)MAIN_1_1
set R5_DBGBASE {0x9d010000 0x9d012000 0x9d410000 0x9d412000 0x9d510000 0x9d512000}
set R5_CTIBASE {0x9d018000 0x9d019000 0x9d418000 0x9d419000 0x9d518000 0x9d519000}
# Finally an M4F
set CM4_CTIBASE {0x20001000}
# M4 may be present on some very few SoCs
set _mcu_m4_cores 0
# M4 power-ap unlock offsets
set _m4_ap_unlock_offsets {0xf0 0x60}
# Set configuration overrides for each SOC
switch $_soc {
am654 {
set _CHIPNAME am654
set _K3_DAP_TAPID 0x0bb5a02f
# AM654 has 2 clusters of 2 A53 cores each.
set _armv8_cpu_name a53
set _armv8_cores 4
# AM654 has 1 cluster of 2 R5s cores.
set _r5_cores 2
set _mcu_r5_cores 2
set _mcu_base_core_id 0
set _main0_r5_cores 0
set _main0_base_core_id 0
set _main1_r5_cores 0
set _main1_base_core_id 0
# M3 power-ap unlock offsets
set _m3_ap_unlock_offsets {0xf0 0x50}
}
am642 {
set _CHIPNAME am642
set _K3_DAP_TAPID 0x0bb3802f
# AM642 has 1 clusters of 2 A53 cores each.
set _armv8_cpu_name a53
set _armv8_cores 2
set ARMV8_DBGBASE {0x90010000 0x90110000}
set ARMV8_CTIBASE {0x90020000 0x90120000}
# AM642 has 2 cluster of 2 R5s cores.
set _r5_cores 4
set _mcu_r5_cores 0
set _mcu_base_core_id 0
set _main0_r5_cores 2
set _main0_base_core_id 0
set _main1_r5_cores 2
set _main1_base_core_id 2
set R5_DBGBASE {0x9d410000 0x9d412000 0x9d510000 0x9d512000}
set R5_CTIBASE {0x9d418000 0x9d419000 0x9d518000 0x9d519000}
# M4 processor
set _mcu_m4_cores 1
}
j721e {
set _CHIPNAME j721e
set _K3_DAP_TAPID 0x0bb6402f
# J721E has 1 cluster of 2 A72 cores.
set _armv8_cpu_name a72
set _armv8_cores 2
# J721E has 3 clusters of 2 R5 cores each.
set _r5_cores 6
set _mcu_r5_cores 2
set _mcu_base_core_id 0
set _main0_r5_cores 2
set _main0_base_core_id 2
set _main1_r5_cores 2
set _main1_base_core_id 4
}
j7200 {
set _CHIPNAME j7200
set _K3_DAP_TAPID 0x0bb6d02f
# J7200 has 1 cluster of 2 A72 cores.
set _armv8_cpu_name a72
set _armv8_cores 2
# J7200 has 2 clusters of 2 R5 cores each.
set _r5_cores 4
set _mcu_r5_cores 2
set _mcu_base_core_id 0
set _main0_r5_cores 2
set _main0_base_core_id 2
set _main1_r5_cores 0
set _main1_base_core_id 0
set R5_DBGBASE {0x9d010000 0x9d012000 0x9d110000 0x9d112000}
set R5_CTIBASE {0x9d018000 0x9d019000 0x9d118000 0x9d119000}
# M3 CTI base
set CM3_CTIBASE {0x20001000}
}
default {
echo "'$_soc' is invalid!"
}
}
jtag newtap $_CHIPNAME cpu -irlen 4 -expected-id $_K3_DAP_TAPID -ignore-version
dap create $_CHIPNAME.dap -chain-position $_CHIPNAME.cpu
set _TARGETNAME $_CHIPNAME.cpu
set _CTINAME $_CHIPNAME.cti
# M3 is always present
cti create $_CTINAME.m3 -dap $_CHIPNAME.dap -ap-num 7 -baseaddr [lindex $CM3_CTIBASE 0]
target create $_TARGETNAME.m3 cortex_m -dap $_CHIPNAME.dap -ap-num 7 -defer-examine
$_TARGETNAME.m3 configure -event reset-assert { }
proc m3_up { args } {
# To access M3, we need to enable the JTAG access for the same.
# Ensure Power-AP unlocked
$::_CHIPNAME.dap apreg 3 [lindex $::_m3_ap_unlock_offsets 0] 0x00190000
$::_CHIPNAME.dap apreg 3 [lindex $::_m3_ap_unlock_offsets 1] 0x00102098
$::_TARGETNAME.m3 arp_examine
}
set _v8_smp_targets ""
for { set _core 0 } { $_core < $_armv8_cores } { incr _core } {
cti create $_CTINAME.$_armv8_cpu_name.$_core -dap $_CHIPNAME.dap -ap-num 1 \
-baseaddr [lindex $ARMV8_CTIBASE $_core]
target create $_TARGETNAME.$_armv8_cpu_name.$_core aarch64 -dap $_CHIPNAME.dap \
-dbgbase [lindex $ARMV8_DBGBASE $_core] -cti $_CTINAME.$_armv8_cpu_name.$_core -defer-examine
set _v8_smp_targets "$_v8_smp_targets $_TARGETNAME.$_armv8_cpu_name.$_core"
}
# Setup ARMV8 proc commands based on CPU to prevent people confusing SoCs
set _armv8_up_cmd "$_armv8_cpu_name"_up
# Available if V8_SMP_DEBUG is set to non-zero value
set _armv8_smp_cmd "$_armv8_cpu_name"_smp
if { $_v8_smp_debug == 0 } {
proc $_armv8_up_cmd { args } {
foreach { _core } [set args] {
$::_TARGETNAME.$::_armv8_cpu_name.$_core arp_examine
$::_TARGETNAME.$::_armv8_cpu_name.$_core aarch64 dbginit
}
}
} else {
proc $_armv8_smp_cmd { args } {
for { set _core 0 } { $_core < $::_armv8_cores } { incr _core } {
$::_TARGETNAME.$::_armv8_cpu_name.$_core arp_examine
$::_TARGETNAME.$::_armv8_cpu_name.$_core aarch64 dbginit
$::_TARGETNAME.$::_armv8_cpu_name.$_core aarch64 smp on
}
# Set Default target are core 0
targets $::_TARGETNAME.$::_armv8_cpu_name.0
}
# Declare SMP
target smp $:::_v8_smp_targets
}
for { set _core 0 } { $_core < $_r5_cores } { incr _core } {
cti create $_CTINAME.r5.$_core -dap $_CHIPNAME.dap -ap-num 1 \
-baseaddr [lindex $R5_CTIBASE $_core]
# inactive core examination will fail - wait till startup of additional core
target create $_TARGETNAME.r5.$_core cortex_r4 -dap $_CHIPNAME.dap \
-dbgbase [lindex $R5_DBGBASE $_core] -ap-num 1 -defer-examine
}
if { $_mcu_r5_cores != 0 } {
proc mcu_r5_up { args } {
foreach { _core } [set args] {
set _core [expr {$_core + $::_mcu_base_core_id}]
$::_TARGETNAME.r5.$_core arp_examine
$::_TARGETNAME.r5.$_core cortex_r4 dbginit
}
}
}
if { $_main0_r5_cores != 0 } {
proc main0_r5_up { args } {
foreach { _core } [set args] {
set _core [expr {$_core + $::_main0_base_core_id}]
$::_TARGETNAME.r5.$_core arp_examine
$::_TARGETNAME.r5.$_core cortex_r4 dbginit
}
}
}
if { $_main1_r5_cores != 0 } {
proc main1_r5_up { args } {
foreach { _core } [set args] {
set _core [expr {$_core + $::_main1_base_core_id}]
$::_TARGETNAME.r5.$_core arp_examine
$::_TARGETNAME.r5.$_core cortex_r4 dbginit
}
}
}
if { $_mcu_m4_cores != 0 } {
cti create $_CTINAME.m4 -dap $_CHIPNAME.dap -ap-num 8 -baseaddr [lindex $CM4_CTIBASE 0]
target create $_TARGETNAME.m4 cortex_m -dap $_CHIPNAME.dap -ap-num 8 -defer-examine
$_TARGETNAME.m4 configure -event reset-assert { }
proc m4_up { args } {
# To access M4, we need to enable the JTAG access for the same.
# Ensure Power-AP unlocked
$::_CHIPNAME.dap apreg 3 [lindex $::_m4_ap_unlock_offsets 0] 0x00190000
$::_CHIPNAME.dap apreg 3 [lindex $::_m4_ap_unlock_offsets 1] 0x00102098
$::_TARGETNAME.m4 arp_examine
}
}