target/board: Add Ampere QS|MQ config files

Add Ampere Altra ("Quicksilver") and Ampere Altra Max ("Mystique")
target/board configuration files.

The target configuration file supports silicon and emulation.
The board configuration files support 1 and 2 socket platforms.

Tested on Ampere emulation and silicon

Change-Id: I036c798a50624e30ab51ccd2895b6f60c40be096
Signed-off-by: Daniel Goehring <dgoehrin@os.amperecomputing.com>
Reviewed-on: https://review.openocd.org/c/openocd/+/5591
Reviewed-by: Antonio Borneo <borneo.antonio@gmail.com>
Tested-by: jenkins
This commit is contained in:
Daniel Goehring 2020-04-03 19:28:03 -04:00 committed by Antonio Borneo
parent c28ae626a2
commit 52fbb85d2e
3 changed files with 597 additions and 0 deletions

View File

@ -0,0 +1,100 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# OpenOCD Board Configuration for Ampere Altra ("Quicksilver") and
# Ampere Altra Max ("Mystique") processors
#
# Copyright (c) 2019-2021, Ampere Computing LLC
# Argument Description
#
# JTAGFREQ
# Set the JTAG clock frequency
# Syntax: -c "set JTAGFREQ {freq_in_khz}"
#
# SYSNAME
# Set the system name
# If not specified, defaults to "qs"
# Syntax: -c "set SYSNAME {qs}"
#
# Life-Cycle State (LCS)
# If not specified, defaults to "Secure LCS"
# LCS=0, "Secure LCS"
# LCS=1, "Chip Manufacturing LCS"
# Syntax: -c "set LCS {0}"
# Syntax: -c "set LCS {1}"
#
# CORELIST_S0
# Specify available physical cores by number
# Example syntax to connect to physical cores 16 and 17 for S0
# Syntax: -c "set CORELIST_S0 {16 17}"
#
# COREMASK_S0_LO
# Specify available physical cores 0-63 by mask
# Example syntax to connect to physical cores 16 and 17 for S0
# Syntax: -c "set COREMASK_S0_LO {0x0000000000030000}"
#
# COREMASK_S0_HI
# Specify available physical cores 64 and above by mask
# Example syntax to connect to physical cores 94 and 95 for S0
# Syntax: -c "set COREMASK_S0_HI {0x00000000C0000000}"
#
# PHYS_IDX
# Enable OpenOCD ARMv8 core target physical indexing
# If not specified, defaults to OpenOCD ARMv8 core target logical indexing
# Syntax: -c "set PHYS_IDX {}"
#
# Configure JTAG speed
#
if { [info exists JTAGFREQ] } {
adapter speed $JTAGFREQ
} else {
adapter speed 100
}
#
# Set the system name
#
if { [info exists SYSNAME] } {
set _SYSNAME $SYSNAME
} else {
set _SYSNAME qs
}
#
# Configure Resets
#
jtag_ntrst_delay 100
reset_config trst_only
#
# Configure Targets
#
if { [info exists CORELIST_S0] || [info exists COREMASK_S0_LO] || [info exists COREMASK_S0_HI] } {
set CHIPNAME ${_SYSNAME}0
if { [info exists CORELIST_S0] } {
set CORELIST $CORELIST_S0
} else {
if { [info exists COREMASK_S0_LO] } {
set COREMASK_LO $COREMASK_S0_LO
} else {
set COREMASK_LO 0x0
}
if { [info exists COREMASK_S0_HI] } {
set COREMASK_HI $COREMASK_S0_HI
} else {
set COREMASK_HI 0x0
}
}
} else {
set CHIPNAME ${_SYSNAME}0
set COREMASK_LO 0x1
set COREMASK_HI 0x0
}
source [find target/ampere_qs_mq.cfg]

View File

@ -0,0 +1,164 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# OpenOCD Board Configuration for Ampere Altra ("Quicksilver") and
# Ampere Altra Max ("Mystique") processors
#
# Copyright (c) 2019-2021, Ampere Computing LLC
# Argument Description
#
# JTAGFREQ
# Set the JTAG clock frequency
# Syntax: -c "set JTAGFREQ {freq_in_khz}"
#
# SYSNAME
# Set the system name
# If not specified, defaults to "qs"
# Syntax: -c "set SYSNAME {qs}"
#
# Life-Cycle State (LCS)
# If not specified, defaults to "Secure LCS"
# LCS=0, "Secure LCS"
# LCS=1, "Chip Manufacturing LCS"
# Syntax: -c "set LCS {0}"
# Syntax: -c "set LCS {1}"
#
# CORELIST_S0, CORELIST_S1
# Specify available physical cores by number
# Example syntax to connect to physical cores 16 and 17 for S0 and S1
# Syntax: -c "set CORELIST_S0 {16 17}"
# Syntax: -c "set CORELIST_S1 {16 17}"
#
# COREMASK_S0_LO, COREMASK_S1_LO
# Specify available physical cores 0-63 by mask
# Example syntax to connect to physical cores 16 and 17 for S0 and S1
# Syntax: -c "set COREMASK_S0_LO {0x0000000000030000}"
# Syntax: -c "set COREMASK_S1_LO {0x0000000000030000}"
#
# COREMASK_S0_HI, COREMASK_S1_HI
# Specify available physical cores 64 and above by mask
# Example syntax to connect to physical cores 94 and 95 for S0 and S1
# Syntax: -c "set COREMASK_S0_HI {0x00000000C0000000}"
# Syntax: -c "set COREMASK_S1_HI {0x00000000C0000000}"
#
# SPLITSMP
# Group all ARMv8 cores per socket into individual SMP sessions
# If not specified, group ARMv8 cores from both sockets into one SMP session
# Syntax: -c "set SPLITSMP {}"
#
# PHYS_IDX
# Enable OpenOCD ARMv8 core target physical indexing
# If not specified, defaults to OpenOCD ARMv8 core target logical indexing
# Syntax: -c "set PHYS_IDX {}"
#
# Configure JTAG speed
#
if { [info exists JTAGFREQ] } {
adapter speed $JTAGFREQ
} else {
adapter speed 100
}
#
# Set the system name
#
if { [info exists SYSNAME] } {
set _SYSNAME $SYSNAME
} else {
set _SYSNAME qs
}
#
# Configure Board level SMP configuration if necessary
#
if { ![info exists SPLITSMP] } {
# Group dual chip into a single SMP configuration
set SMP_STR "target smp"
set CORE_INDEX_OFFSET 0
set DUAL_SOCKET_SMP_ENABLED ""
}
#
# Configure Resets
#
jtag_ntrst_delay 100
reset_config trst_only
#
# Configure Targets
#
if { [info exists CORELIST_S0] || [info exists COREMASK_S0_LO] || [info exists COREMASK_S0_HI] || \
[info exists CORELIST_S1] || [info exists COREMASK_S1_LO] || [info exists COREMASK_S1_HI] } {
set CHIPNAME ${_SYSNAME}1
if { [info exists CORELIST_S1] } {
set CORELIST $CORELIST_S1
} else {
if { [info exists COREMASK_S1_LO] } {
set COREMASK_LO $COREMASK_S1_LO
} else {
set COREMASK_LO 0x0
}
if { [info exists COREMASK_S1_HI] } {
set COREMASK_HI $COREMASK_S1_HI
} else {
set COREMASK_HI 0x0
}
}
source [find target/ampere_qs_mq.cfg]
if { [info exists DUAL_SOCKET_SMP_ENABLED] && [info exists PHYS_IDX]} {
if { [info exists MQ_ENABLE] } {
set CORE_INDEX_OFFSET 128
} else {
set CORE_INDEX_OFFSET 80
}
}
set CHIPNAME ${_SYSNAME}0
if { [info exists CORELIST_S0] } {
set CORELIST $CORELIST_S0
} else {
if { [info exists COREMASK_S0_LO] } {
set COREMASK_LO $COREMASK_S0_LO
} else {
set COREMASK_LO 0x0
}
if { [info exists COREMASK_S0_HI] } {
set COREMASK_HI $COREMASK_S0_HI
} else {
set COREMASK_HI 0x0
}
}
source [find target/ampere_qs_mq.cfg]
} else {
set CHIPNAME ${_SYSNAME}1
set COREMASK_LO 0x0
set COREMASK_HI 0x0
source [find target/ampere_qs_mq.cfg]
if { [info exists DUAL_SOCKET_SMP_ENABLED] && [info exists PHYS_IDX]} {
if { [info exists MQ_ENABLE] } {
set CORE_INDEX_OFFSET 128
} else {
set CORE_INDEX_OFFSET 80
}
}
set CHIPNAME ${_SYSNAME}0
set COREMASK_LO 0x1
set COREMASK_HI 0x0
source [find target/ampere_qs_mq.cfg]
}
if { [info exists DUAL_SOCKET_SMP_ENABLED] } {
# For dual socket SMP configuration, evaluate the string
eval $SMP_STR
}

333
tcl/target/ampere_qs_mq.cfg Normal file
View File

@ -0,0 +1,333 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# OpenOCD Target Configuration for Ampere Altra ("Quicksilver") and
# Ampere Altra Max ("Mystique") processors
#
# Copyright (c) 2019-2022, Ampere Computing LLC
# Command Line Argument Description
#
# SPLITSMP
# Only used for dual socket systems. Do not use for a single socket setup.
# Option pertains to the ARMv8 target core naming in a dual socket setup.
# If specified, name all ARMv8 cores per socket as individual SMP sessions.
# If not specified, name ARMv8 cores from both sockets as one SMP session.
# This option is used in conjunction with the SMP_STR board file option.
# Syntax: -c "set SPLITSMP {}"
#
# PHYS_IDX
# Enable OpenOCD ARMv8 core target physical indexing.
# If not specified, defaults to OpenOCD ARMv8 core target logical indexing.
# Syntax: -c "set PHYS_IDX {}"
#
# CHIPNAME
# Specifies the name of the chip.
# Will typically be either qs, qs0, qs1, mq, mq0 or mq1.
# If not specified, defaults to qs.
# Syntax: -c "set CHIPNAME {qs}"
#
# SYSNAME
# Specifies the name of the system.
# Will typically be either qs or mq.
# If not specified, defaults to qs.
# Syntax: -c "set SYSNAME {qs}"
#
# Life-Cycle State (LCS)
# If not specified, defaults to "Secure LCS".
# LCS=0, "Secure LCS"
# LCS=1, "Chip Manufacturing LCS"
# Syntax: -c "set LCS {0}"
# Syntax: -c "set LCS {1}"
#
# CORELIST
# Specify available physical cores by number.
# Example syntax to connect to physical cores 16 and 17.
# Syntax: -c "set CORELIST {16 17}"
#
# COREMASK_LO
# Specify available physical cores 0-63 by mask.
# Example syntax to connect to physical cores 16 and 17.
# Syntax: -c "set COREMASK_LO {0x0000000000030000}"
#
# COREMASK_HI
# Specify available physical cores 64 and above by mask.
# Example syntax to connect to physical cores 94 and 95.
# Syntax: -c "set COREMASK_HI {0x00000000C0000000}"
#
# ARMV8_TAPID
# Can override the ARMV8 TAPID default value if necessary.
# Experimental Use. Most users will not use this option.
# Syntax: -c "set ARMV8_TAPID {0x3BA06477}"
#
# SMPMPRO_TAPID
# Can override the SMPMPRO TAPID default value if necessary.
# Experimental Use. Most users will not use this option.
# Syntax: -c "set SMPMPRO_TAPID {0x4BA00477}"
#
#
# Board File Argument Description
# These optional arguments are defined in the board file and
# referenced by the target file. See the corresponding board
# files for examples of their use.
#
# SMP_STR
# This option is used primarily for a dual socket system and it is not
# recommended for a single socket setup. This option configures whether
# the SMP ARMv8 core grouping is maintained at the board or target cfg level.
# Specify the option if the SMP core grouping is defined at the board level.
# Do not specify if the SMP core grouping is defined at the chip level.
# If not specified, defaults to SMP core grouping defined per socket.
# If specified, "SMP_STR=target smp", the SMP core grouping is maintained
# at the board cfg level.
# Used in conjunction with the SPLITSMP option to group two chips into
# a single SMP configuration or maintain as two separate SMP sessions.
#
# CORE_INDEX_OFFSET
# Specifies the starting logical core index value.
# Used for dual-socket systems.
# For socket #0, set to 0.
# For socket #1, set the starting logical core based from
# the last logical core on socket #0.
# If not specified, defaults to 0.
#
#
# Configure defaults for target.
# Can be overridden in board configuration file.
#
if { [info exists SMP_STR] } {
# SMP configured at the dual socket board level
set _SMP_STR $SMP_STR
} else {
# SMP configured at the single socket target level
set _SMP_STR "target smp"
}
if { [info exists CHIPNAME] } {
set _CHIPNAME $CHIPNAME
} else {
set _CHIPNAME qs
}
if { [info exists SYSNAME] } {
set _SYSNAME $SYSNAME
} else {
set _SYSNAME qs
}
if { [info exists CORE_INDEX_OFFSET] } {
set _CORE_INDEX_OFFSET $CORE_INDEX_OFFSET
} else {
set _CORE_INDEX_OFFSET 0
}
if { [info exists ENDIAN] } {
set _ENDIAN $ENDIAN
} else {
set _ENDIAN little
}
if { [info exists ARMV8_TAPID] } {
set _ARMV8_TAPID $ARMV8_TAPID
} else {
if { [info exists MQ_ENABLE] } {
# Configure for Mystique
set _ARMV8_TAPID 0x3BA06477
set _MAX_CORE 128
} else {
# Configure for Quicksilver
set _ARMV8_TAPID 0x2BA06477
set _MAX_CORE 80
}
}
if { [info exists SMPMPRO_TAPID] } {
set _SMPMPRO_TAPID $SMPMPRO_TAPID
} else {
set _SMPMPRO_TAPID 0x4BA00477
}
if { [info exists CORELIST] } {
set _CORELIST $CORELIST
} else {
if { [info exists COREMASK_LO] } {
set _COREMASK_LO $COREMASK_LO
} else {
set _COREMASK_LO 0x0
}
if { [info exists COREMASK_HI] } {
set _COREMASK_HI $COREMASK_HI
} else {
set _COREMASK_HI 0x0
}
set _CORELIST {}
set _MASK 0x1
for {set i 0} {$i < 64} {incr i} {
if { [expr {$_COREMASK_LO & $_MASK}] != 0x0 } {
set _CORELIST "$_CORELIST $i"
}
set _MASK [expr {$_MASK << 0x1}]
}
set _MASK 0x1
for {} {$i < $_MAX_CORE} {incr i} {
if { [expr {$_COREMASK_HI & $_MASK}] != 0x0 } {
set _CORELIST "$_CORELIST $i"
}
set _MASK [expr {$_MASK << 0x1}]
}
}
#
# Definition of target names
#
set _TARGETNAME_PMPRO pmpro
set _TARGETNAME_SMPRO smpro
set _TARGETNAME_ARMV8 armv8
#
# Configure JTAG TAPs - TAP chain declaration order is important
#
jtag newtap $_CHIPNAME pmpro.tap -irlen 4 -ircapture 0x1 -irmask 0x3 -expected-id $_SMPMPRO_TAPID
set _TAPNAME_PMPRO $_CHIPNAME.$_TARGETNAME_PMPRO.tap
jtag newtap $_CHIPNAME smpro.tap -irlen 4 -ircapture 0x1 -irmask 0x3 -expected-id $_SMPMPRO_TAPID
set _TAPNAME_SMPRO $_CHIPNAME.$_TARGETNAME_SMPRO.tap
jtag newtap $_CHIPNAME armv8.tap -irlen 4 -ircapture 0x1 -irmask 0x3 -expected-id $_ARMV8_TAPID
set _TAPNAME_ARMV8 $_CHIPNAME.$_TARGETNAME_ARMV8.tap
set _DAPNAME_PMPRO $_CHIPNAME.$_TARGETNAME_PMPRO.dap
set _DAPNAME_SMPRO $_CHIPNAME.$_TARGETNAME_SMPRO.dap
set _DAPNAME_ARMV8 $_CHIPNAME.$_TARGETNAME_ARMV8.dap
set _AP_PMPRO_AHB 0
set _AP_SMPRO_AHB 0
set _AP_ARMV8_APB 0x00010000
set _AP_ARMV8_AXI 0x00020000
#
# Configure JTAG DAPs
#
dap create $_DAPNAME_PMPRO -chain-position $_TAPNAME_PMPRO -adiv5
dap create $_DAPNAME_SMPRO -chain-position $_TAPNAME_SMPRO -adiv5
dap create $_DAPNAME_ARMV8 -chain-position $_TAPNAME_ARMV8 -adiv6
if { [info exists LCS] && [expr {"$LCS"!="0"}] } {
#
# Create the DAP AHB-AP MEM-AP target for the PMPRO CPU
#
target create $_CHIPNAME.$_TARGETNAME_PMPRO.ahb mem_ap -endian $_ENDIAN -dap $_DAPNAME_PMPRO -ap-num $_AP_PMPRO_AHB
#
# Configure target PMPRO CPU
#
target create $_CHIPNAME.$_TARGETNAME_PMPRO cortex_m -endian $_ENDIAN -dap $_DAPNAME_PMPRO -ap-num $_AP_PMPRO_AHB
#
# Create the DAP AHB-AP MEM-AP target for the SMPRO CPU
#
target create $_CHIPNAME.$_TARGETNAME_SMPRO.ahb mem_ap -endian $_ENDIAN -dap $_DAPNAME_SMPRO -ap-num $_AP_SMPRO_AHB
#
# Configure target SMPRO CPU
#
target create $_CHIPNAME.$_TARGETNAME_SMPRO cortex_m -endian $_ENDIAN -dap $_DAPNAME_SMPRO -ap-num $_AP_SMPRO_AHB
}
# Create the DAP APB-AP MEM-AP target for the ARMV8 cores
target create $_CHIPNAME.$_TARGETNAME_ARMV8.apb mem_ap -endian $_ENDIAN -dap $_DAPNAME_ARMV8 -ap-num $_AP_ARMV8_APB
# Create the DAP AXI-AP MEM-AP target for the ARMV8 cores
target create $_CHIPNAME.$_TARGETNAME_ARMV8.axi mem_ap -endian $_ENDIAN -dap $_DAPNAME_ARMV8 -ap-num $_AP_ARMV8_AXI
# Set CSW register value default correctly for AXI accessible device memory:
# Select the correct Access Port Number
$_DAPNAME_ARMV8 apsel $_AP_ARMV8_AXI
# First set the CSW to OpenOCD's internal default
$_DAPNAME_ARMV8 apcsw default
# Set Domain[1:0]=b'11 (CSW[14:13]=b'11)
# Set Cache[3:0]=b'0000 (CSW[27:24]=b'0000)
# Porter Cfg registers require secure access, AxPROT[1] (CSW[29]) must be b'0'.
# Set AxPROT[2:0]=b'000 (CSW[30:28]=b'000) for an Unpriveleged, Secure, Data access.
$_DAPNAME_ARMV8 apcsw 0x00006000 0x7F006000
#
# Configure target CPUs
#
set logical_index $_CORE_INDEX_OFFSET
foreach physical_index $_CORELIST {
if { [info exists PHYS_IDX] } {
set logical_index [expr {$physical_index + $_CORE_INDEX_OFFSET}]
}
# Format a string to reference which CPU target to use
if { [info exists SPLITSMP] } {
eval "set _TARGETNAME $_CHIPNAME.${_TARGETNAME_ARMV8}_$logical_index"
} else {
eval "set _TARGETNAME $_SYSNAME.${_TARGETNAME_ARMV8}_$logical_index"
}
# Create and configure Cross Trigger Interface (CTI) - required for halt and resume
set _CTINAME $_TARGETNAME.cti
set _offset [expr {(0x00100000 * $physical_index) + (0x00200000 * ($physical_index>>1))}]
cti create $_CTINAME -dap $_DAPNAME_ARMV8 -ap-num $_AP_ARMV8_APB -baseaddr [expr {0xA0220000 + $_offset}]
# Create the target
target create $_TARGETNAME aarch64 -endian $_ENDIAN \
-dap $_DAPNAME_ARMV8 -ap-num $_AP_ARMV8_APB -dbgbase [expr {0xA0210000 + $_offset}] \
-rtos hwthread -cti $_CTINAME -coreid $logical_index
# Build string used to enable SMP mode for the ARMv8 CPU cores
set _SMP_STR "$_SMP_STR $_TARGETNAME"
# Clear CTI output/input enables that are not configured by OpenOCD for aarch64
$_TARGETNAME configure -event reset-init [subst {
$_CTINAME write INEN0 0x00000000
$_CTINAME write INEN1 0x00000000
$_CTINAME write INEN2 0x00000000
$_CTINAME write INEN3 0x00000000
$_CTINAME write INEN4 0x00000000
$_CTINAME write INEN5 0x00000000
$_CTINAME write INEN6 0x00000000
$_CTINAME write INEN7 0x00000000
$_CTINAME write INEN8 0x00000000
$_CTINAME write OUTEN0 0x00000000
$_CTINAME write OUTEN1 0x00000000
$_CTINAME write OUTEN2 0x00000000
$_CTINAME write OUTEN3 0x00000000
$_CTINAME write OUTEN4 0x00000000
$_CTINAME write OUTEN5 0x00000000
$_CTINAME write OUTEN6 0x00000000
$_CTINAME write OUTEN7 0x00000000
$_CTINAME write OUTEN8 0x00000000
}]
incr logical_index
}
if { [info exists SMP_STR] } {
# Return updated SMP configuration string back to board level
set SMP_STR $_SMP_STR
} else {
# For single socket per SMP configuration, evaluate the string
eval $_SMP_STR
}
if { [info exists CORE_INDEX_OFFSET] } {
# For multi-socket, return total number of cores back to board level
set CORE_INDEX_OFFSET $logical_index
}