tcl: add memory testing functions for board diagnostics

This is a tcl implementation of public domain tests by Michael Barr,
http://www.barrgroup.com/Embedded-Systems/How-To/Memory-Test-Suite-C

The initial porting is done by Shane Volpe and posted to the mailing
list:
http://www.mail-archive.com/openocd-development@lists.berlios.de/msg16676.html

This patch includes some cosmetic amendments plus hardcodes 32bit word
size (as the code depends on memread32/memwrite32 anyway) which fixes
original code's issue of testing only the first quarter of the
specified nBytes.

Change-Id: I5f3a66f1f16fc4082c7a5a6aba338430646ed21c
Signed-off-by: Paul Fertser <fercerpav@gmail.com>
Reviewed-on: http://openocd.zylin.com/1455
Tested-by: jenkins
Reviewed-by: Spencer Oliver <spen@spen-soft.co.uk>
Reviewed-by: Mathias Küster <kesmtp@freenet.de>
This commit is contained in:
Paul Fertser 2013-06-22 01:16:41 +04:00 committed by Spencer Oliver
parent d4e195ad1b
commit b16a7f9f6e
2 changed files with 237 additions and 0 deletions

View File

@ -79,6 +79,7 @@ Free Documentation License''.
* Architecture and Core Commands:: Architecture and Core Commands
* JTAG Commands:: JTAG Commands
* Boundary Scan Commands:: Boundary Scan Commands
* Utility Commands:: Utility Commands
* TFTP:: TFTP
* GDB and OpenOCD:: Using GDB and OpenOCD
* Tcl Scripting API:: Tcl Scripting API
@ -7926,6 +7927,53 @@ If @emph{xsvfdump} shows a file is using those opcodes, it
probably will not be usable with other XSVF tools.
@node Utility Commands
@chapter Utility Commands
@cindex Utility Commands
@section RAM testing
@cindex RAM testing
There is often a need to stress-test random access memory (RAM) for
errors. OpenOCD comes with a Tcl implementation of well-known memory
testing procedures allowing to detect all sorts of issues with
electrical wiring, defective chips, PCB layout and other common
hardware problems.
To use them you usually need to initialise your RAM controller first,
consult your SoC's documentation to get the recommended list of
register operations and translate them to the corresponding
@command{mww}/@command{mwb} commands.
Load the memory testing functions with
@example
source [find tools/memtest.tcl]
@end example
to get access to the following facilities:
@deffn Command {memTestDataBus} address
Test the data bus wiring in a memory region by performing a walking
1's test at a fixed address within that region.
@end deffn
@deffn Command {memTestAddressBus} baseaddress size
Perform a walking 1's test on the relevant bits of the address and
check for aliasing. This test will find single-bit address failures
such as stuck-high, stuck-low, and shorted pins.
@end deffn
@deffn Command {memTestDevice} baseaddress size
Test the integrity of a physical memory device by performing an
increment/decrement test over the entire region. In the process every
storage bit in the device is tested as zero and as one.
@end deffn
@deffn Command {runAllMemTests} baseaddress size
Run all of the above tests over a specified memory region.
@end deffn
@node TFTP
@chapter TFTP
@cindex TFTP

189
tcl/tools/memtest.tcl Normal file
View File

@ -0,0 +1,189 @@
# Algorithms by Michael Barr, released into public domain
# Ported to OpenOCD by Shane Volpe, additional fixes by Paul Fertser
set CPU_MAX_ADDRESS 0xFFFFFFFF
source [find bitsbytes.tcl]
source [find memory.tcl]
proc runAllMemTests { baseAddress nBytes } {
memTestDataBus $baseAddress
memTestAddressBus $baseAddress $nBytes
memTestDevice $baseAddress $nBytes
}
#***********************************************************************************
# *
# * Function: memTestDataBus()
# *
# * Description: Test the data bus wiring in a memory region by
# * performing a walking 1's test at a fixed address
# * within that region. The address (and hence the
# * memory region) is selected by the caller.
# * Ported from:
# * http://www.netrino.com/Embedded-Systems/How-To/Memory-Test-Suite-C
# * Notes:
# *
# * Returns: Empty string if the test succeeds.
# * A non-zero result is the first pattern that failed.
# *
#***********************************************************************************
proc memTestDataBus { address } {
echo "Running memTestDataBus"
for {set i 0} {$i < 32} {incr i} {
# Shift bit
set pattern [expr {1 << $i}]
# Write pattern to memory
memwrite32 $address $pattern
# Read pattern from memory
set data [memread32 $address]
if {$data != $pattern} {
echo "FAILED DATABUS: Address: $address, Pattern: $pattern, Returned: $data"
return $pattern
}
}
}
#***********************************************************************************
# *
# * Function: memTestAddressBus()
# *
# * Description: Perform a walking 1's test on the relevant bits
# * of the address and check for aliasing. This test
# * will find single-bit address failures such as stuck
# * -high, stuck-low, and shorted pins. The base address
# * and size of the region are selected by the caller.
# * Ported from:
# * http://www.netrino.com/Embedded-Systems/How-To/Memory-Test-Suite-C
# *
# * Notes: For best results, the selected base address should
# * have enough LSB 0's to guarantee single address bit
# * changes. For example, to test a 64-Kbyte region,
# * select a base address on a 64-Kbyte boundary. Also,
# * select the region size as a power-of-two--if at all
# * possible.
# *
# * Returns: Empty string if the test succeeds.
# * A non-zero result is the first address at which an
# * aliasing problem was uncovered. By examining the
# * contents of memory, it may be possible to gather
# * additional information about the problem.
# *
#***********************************************************************************
proc memTestAddressBus { baseAddress nBytes } {
set addressMask [expr $nBytes - 1]
set pattern 0xAAAAAAAA
set antipattern 0x55555555
echo "Running memTestAddressBus"
echo "addressMask: [convertToHex $addressMask]"
echo "memTestAddressBus: Writing the default pattern at each of the power-of-two offsets..."
for {set offset 32} {[expr $offset & $addressMask] != 0} {set offset [expr $offset << 1] } {
set addr [expr $baseAddress + $offset]
memwrite32 $addr $pattern
}
echo "memTestAddressBus: Checking for address bits stuck high..."
memwrite32 $baseAddress $antipattern
for {set offset 32} {[expr $offset & $addressMask] != 0} {set offset [expr $offset << 1]} {
set addr [expr $baseAddress + $offset]
set data [memread32 $addr]
if {$data != $pattern} {
echo "FAILED DATA_ADDR_BUS_SHIGH: Address: [convertToHex $addr], Pattern: [convertToHex $pattern], Returned: [convertToHex $data]"
return $pattern
}
}
echo "memTestAddressBus: Checking for address bits stuck low or shorted..."
memwrite32 $baseAddress $pattern
for {set testOffset 32} {[expr $testOffset & $addressMask] != 0} {set testOffset [expr $testOffset << 1] } {
set addr [expr $baseAddress + $testOffset]
memwrite32 $addr $antipattern
set data [memread32 $baseAddress]
if {$data != $pattern} {
echo "FAILED DATA_ADDR_BUS_SLOW: Address: [convertToHex $addr], Pattern: [convertToHex $pattern], Returned: [convertToHex $data]"
return $pattern
}
for {set offset 32} {[expr $offset & $addressMask] != 0} {set offset [expr $offset << 1]} {
set addr [expr $baseAddress + $offset]
set data [memread32 $baseAddress]
if {(($data != $pattern) && ($offset != $testOffset))} {
echo "FAILED DATA_ADDR_BUS_SLOW2: Address: [convertToHex $addr], Pattern: [convertToHex $pattern], Returned: [convertToHex $data], offset: [convertToHex $offset], testOffset [convertToHex $testOffset]"
return $pattern
}
}
set addr [expr $baseAddress + $testOffset]
memwrite32 $addr $pattern
}
}
#***********************************************************************************
# *
# * Function: memTestDevice()
# *
# * Description: Test the integrity of a physical memory device by
# * performing an increment/decrement test over the
# * entire region. In the process every storage bit
# * in the device is tested as zero and as one. The
# * base address and the size of the region are
# * selected by the caller.
# * Ported from:
# * http://www.netrino.com/Embedded-Systems/How-To/Memory-Test-Suite-C
# * Notes:
# *
# * Returns: Empty string if the test succeeds.
# * A non-zero result is the first address at which an
# * incorrect value was read back. By examining the
# * contents of memory, it may be possible to gather
# * additional information about the problem.
# *
#***********************************************************************************
proc memTestDevice { baseAddress nBytes } {
echo "Running memTestDevice"
echo "memTestDevice: Filling memory with a known pattern..."
for {set pattern 1; set offset 0} {$offset < $nBytes} {incr pattern; incr offset 32} {
memwrite32 [expr $baseAddress + $offset] $pattern
}
echo "memTestDevice: Checking each location and inverting it for the second pass..."
for {set pattern 1; set offset 0} {$offset < $nBytes} {incr pattern; incr offset 32} {
set addr [expr $baseAddress + $offset]
set data [memread32 $addr]
if {$data != $pattern} {
echo "FAILED memTestDevice_pattern: Address: [convertToHex $addr], Pattern: [convertToHex $pattern], Returned: [convertToHex $data], offset: [convertToHex $offset]"
return $pattern
}
set antiPattern [expr ~$pattern]
memwrite32 [expr $baseAddress + $offset] $antiPattern
}
echo "memTestDevice: Checking each location for the inverted pattern and zeroing it..."
for {set pattern 1; set offset 0} {$offset < $nBytes} {incr pattern; incr offset 32} {
set antiPattern [expr ~$pattern & ((1<<32) - 1)]
set addr [expr $baseAddress + $offset]
set data [memread32 $addr]
set dataHex [convertToHex $data]
set antiPatternHex [convertToHex $antiPattern]
if {[expr $dataHex != $antiPatternHex]} {
echo "FAILED memTestDevice_antipattern: Address: [convertToHex $addr], antiPattern: $antiPatternHex, Returned: $dataHex, offset: $offset"
return $pattern
}
}
}
proc convertToHex { value } {
format 0x%08x $value
}