tcl/target/atheros_ar9331: add documentation and extra helpers

Sync it with experience gathered on Qualcomm QCA4531 SoC. This
chips are in many ways similar.

Change-Id: I06b9c85e5985a09a9be3cb6cc0ce3b37695d2e54
Signed-off-by: Oleksij Rempel <linux@rempel-privat.de>
Reviewed-on: http://openocd.zylin.com/4423
Tested-by: jenkins
Reviewed-by: Paul Fertser <fercerpav@gmail.com>
This commit is contained in:
Oleksij Rempel 2017-12-02 19:55:11 +01:00 committed by Paul Fertser
parent bfdccf4c8a
commit bebdbe8b73
1 changed files with 85 additions and 7 deletions

View File

@ -1,20 +1,98 @@
# The Atheros AR9331 is a highly integrated and cost effective
# IEEE 802.11n 1x1 2.4 GHz System- on-a-Chip (SoC) for wireless
# local area network (WLAN) AP and router platforms.
#
# Notes:
# - MIPS Processor ID (PRId): 0x00019374
# - 24Kc MIPS processor with 64 KB I-Cache and 32 KB D-Cache,
# operating at up to 400 MHz
# - External 16-bit DDR1, DDR2, or SDRAM memory interface
# - TRST is not available.
# - EJTAG PrRst signal is not supported
# - RESET_L pin A72 on the SoC will reset internal JTAG logic.
#
# Pins related for debug and bootstrap:
# Name Pin Description
# JTAG
# JTAG_TCK GPIO0, (A27) Software configurable, default JTAG
# JTAG_TDI GPIO6, (B46) Software configurable, default JTAG
# JTAG_TDO GPIO7, (A54) Software configurable, default JTAG
# JTAG_TMS GPIO8, (A52) Software configurable, default JTAG
# Reset
# RESET_L -, (A72) Input only
# SYS_RST_L ???????? Output reset request or GPIO
# Bootstrap
# MEM_TYPE[1] GPIO28, (A74) 0 - SDRAM, 1 - DDR1 RAM, 2 - DDR2 RAM
# MEM_TYPE[0] GPIO12, (A56)
# FW_DOWNLOAD GPIO16, (A75) Used if BOOT_FROM_SPI = 0. 0 - boot from USB
# 1 - boot from MDIO.
# JTAG_MODE(JS) GPIO11, (B48) 0 - JTAG (Default); 1 - EJTAG
# BOOT_FROM_SPI GPIO1, (A77) 0 - ROM boot; 1 - SPI boot
# SEL_25M_40M GPIO0, (A78) 0 - 25MHz; 1 - 40MHz
# UART
# UART0_SOUT GPIO10, (A79)
# UART0_SIN GPIO9, (B68)
# Per default we need to use "none" variant to be able properly "reset init"
# or "reset halt" the CPU.
reset_config none srst_pulls_trst
# For SRST based variant we still need proper timings.
# For ETH part the reset should be asserted at least for 10ms
# Since there is no other information let's take 100ms to be sure.
adapter_nsrst_assert_width 100
# according to the SoC documentation it should take at least 5ms from
# reset end till bootstrap end. In the practice we need 8ms to get JTAG back
# to live.
adapter_nsrst_delay 8
if { [info exists CHIPNAME] } {
set _CHIPNAME $_CHIPNAME
} else {
set _CHIPNAME ar9331
}
if { [info exists CPUTAPID] } {
set _CPUTAPID $CPUTAPID
} else {
set _CPUTAPID 0x00000001
}
jtag newtap $_CHIPNAME cpu -irlen 5 -expected-id $_CPUTAPID
jtag newtap $_CHIPNAME cpu -irlen 5 -expected-id 0x00000001
set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME mips_m4k -endian big -chain-position $_TARGETNAME
# provide watchdog helper.
proc disable_watchdog { } {
mww 0xb8060008 0x0
}
$_TARGETNAME configure -event halted { disable_watchdog }
# Since PrRst is not supported and SRST will reset complete chip
# with JTAG engine, we need to reset CPU from CPU itself.
$_TARGETNAME configure -event reset-assert-pre {
halt
}
$_TARGETNAME configure -event reset-assert {
catch "mww 0xb806001C 0x01000000"
}
# To be able to trigger complete chip reset, in case JTAG is blocked
# or CPU not responding, we still can use this helper.
proc full_reset { } {
reset_config srst_only
reset
halt
reset_config none
}
proc disable_watchdog { } {
;# disable watchdog
mww 0xb8060008 0x0
}
$_TARGETNAME configure -event reset-end { disable_watchdog }
# Section with helpers which can be used by boards
proc ar9331_25mhz_pll_init {} {
mww 0xb8050008 0x00018004 ;# bypass PLL; AHB_POST_DIV - ratio 4
mww 0xb8050004 0x00000352 ;# 34000(ns)/40ns(25MHz) = 0x352 (850)