flash/nor/stm32l4x : add structure containers to hold devices' information

This rework is inspired from the 'flash/nor/stm32h7x.c'
This rework will ease the support of new devices on top of this driver:
  for example: STM32WB have different flash base and size addresses

Notes:
 - stm32l4_probe modified in order to charge the correct part_info from
   the defined stm32l4_parts according to the device id
 - stm32l4_flash_bank.bank2_start is replaced by .part_info->bank1_sectors
 - STM32_FLASH_BASE is removed , part_info->flash_regs_base will be used instead
   based on that flash register addresses are changed to offsets,
   >> stm32l4_get_flash_reg was modified accordingly
 - stm32l4_read_option and stm32l4_write_option was modified to accept an
   offset instead of an absolute address, luckily this is the commands'
   argument by default
 - stm32l4_mass_erase modifications :
     - use MER2 only on top of dual bank devices
     - wait for BUSY bit before starting the mass erase

Change-Id: Ib35bfc3cbadc76bbeaaaba9005b82077b9e1e744
Signed-off-by: Tarek BOCHKATI <tarek.bouchkati@gmail.com>
Reviewed-on: http://openocd.zylin.com/4932
Tested-by: jenkins
Reviewed-by: Tomas Vanek <vanekt@fbl.cz>
Reviewed-by: Andreas Bolsch <hyphen0break@gmail.com>
This commit is contained in:
Tarek BOCHKATI 2020-01-05 23:19:41 +01:00 committed by Tomas Vanek
parent ed8fa09cff
commit cc85ebc5ac

View File

@ -1,7 +1,10 @@
/***************************************************************************
* Copyright (C) 2015 by Uwe Bonnes *
* bon@elektron.ikp.physik.tu-darmstadt.de *
*
* *
* Copyright (C) 2019 by Tarek Bochkati for STMicroelectronics *
* tarek.bouchkati@gmail.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
@ -24,6 +27,7 @@
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
#include "bits.h"
/* STM32L4xxx series for reference.
*
@ -60,36 +64,34 @@
#define FLASH_ERASE_TIMEOUT 250
#define STM32_FLASH_BASE 0x40022000
#define STM32_FLASH_ACR 0x40022000
#define STM32_FLASH_KEYR 0x40022008
#define STM32_FLASH_OPTKEYR 0x4002200c
#define STM32_FLASH_SR 0x40022010
#define STM32_FLASH_CR 0x40022014
#define STM32_FLASH_OPTR 0x40022020
#define STM32_FLASH_WRP1AR 0x4002202c
#define STM32_FLASH_WRP1BR 0x40022030
#define STM32_FLASH_WRP2AR 0x4002204c
#define STM32_FLASH_WRP2BR 0x40022050
/* Flash registers offsets */
#define STM32_FLASH_ACR 0x00
#define STM32_FLASH_KEYR 0x08
#define STM32_FLASH_OPTKEYR 0x0c
#define STM32_FLASH_SR 0x10
#define STM32_FLASH_CR 0x14
#define STM32_FLASH_OPTR 0x20
#define STM32_FLASH_WRP1AR 0x2c
#define STM32_FLASH_WRP1BR 0x30
#define STM32_FLASH_WRP2AR 0x4c
#define STM32_FLASH_WRP2BR 0x50
/* FLASH_CR register bits */
#define FLASH_PG (1 << 0)
#define FLASH_PER (1 << 1)
#define FLASH_MER1 (1 << 2)
#define FLASH_PAGE_SHIFT 3
#define FLASH_CR_BKER (1 << 11)
#define FLASH_MER2 (1 << 15)
#define FLASH_STRT (1 << 16)
#define FLASH_OPTSTRT (1 << 17)
#define FLASH_EOPIE (1 << 24)
#define FLASH_ERRIE (1 << 25)
#define FLASH_PG (1 << 0)
#define FLASH_PER (1 << 1)
#define FLASH_MER1 (1 << 2)
#define FLASH_PAGE_SHIFT 3
#define FLASH_CR_BKER (1 << 11)
#define FLASH_MER2 (1 << 15)
#define FLASH_STRT (1 << 16)
#define FLASH_OPTSTRT (1 << 17)
#define FLASH_EOPIE (1 << 24)
#define FLASH_ERRIE (1 << 25)
#define FLASH_OBLLAUNCH (1 << 27)
#define FLASH_OPTLOCK (1 << 30)
#define FLASH_LOCK (1 << 31)
#define FLASH_OPTLOCK (1 << 30)
#define FLASH_LOCK (1 << 31)
/* FLASH_SR register bits */
#define FLASH_BSY (1 << 16)
/* Fast programming not used => related errors not used*/
#define FLASH_PGSERR (1 << 7) /* Programming sequence error */
@ -99,16 +101,9 @@
#define FLASH_PROGERR (1 << 3) /* Programming error */
#define FLASH_OPERR (1 << 1) /* Operation error */
#define FLASH_EOP (1 << 0) /* End of operation */
#define FLASH_ERROR (FLASH_PGSERR | FLASH_PGSERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
/* STM32_FLASH_OBR bit definitions (reading) */
#define OPT_DBANK_LE_1M (1 << 21) /* dual bank for devices up to 1M flash */
#define OPT_DBANK_GE_2M (1 << 22) /* dual bank for devices with 2M flash */
/* register unlock keys */
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
@ -123,15 +118,107 @@
/* other registers */
#define DBGMCU_IDCODE 0xE0042000
#define FLASH_SIZE_REG 0x1FFF75E0
struct stm32l4_flash_bank {
uint16_t bank2_start;
int probed;
struct stm32l4_rev {
const uint16_t rev;
const char *str;
};
/* flash bank stm32l4x <base> <size> 0 0 <target#>
*/
struct stm32l4_part_info {
uint16_t id;
const char *device_str;
const struct stm32l4_rev *revs;
const size_t num_revs;
const uint16_t max_flash_size_kb;
const bool has_dual_bank;
const uint32_t flash_regs_base;
const uint32_t fsize_addr;
};
struct stm32l4_flash_bank {
int probed;
uint32_t idcode;
int bank1_sectors;
bool dual_bank_mode;
int hole_sectors;
const struct stm32l4_part_info *part_info;
};
static const struct stm32l4_rev stm32_415_revs[] = {
{ 0x1000, "1" }, { 0x1001, "2" }, { 0x1003, "3" }, { 0x1007, "4" }
};
static const struct stm32l4_rev stm32_435_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
};
static const struct stm32l4_rev stm32_461_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" },
};
static const struct stm32l4_rev stm32_462_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
};
static const struct stm32l4_rev stm32_470_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x100F, "W" },
};
static const struct stm32l4_part_info stm32l4_parts[] = {
{
.id = 0x415,
.revs = stm32_415_revs,
.num_revs = ARRAY_SIZE(stm32_415_revs),
.device_str = "STM32L47/L48xx",
.max_flash_size_kb = 1024,
.has_dual_bank = true,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x435,
.revs = stm32_435_revs,
.num_revs = ARRAY_SIZE(stm32_435_revs),
.device_str = "STM32L43/L44xx",
.max_flash_size_kb = 256,
.has_dual_bank = false,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x461,
.revs = stm32_461_revs,
.num_revs = ARRAY_SIZE(stm32_461_revs),
.device_str = "STM32L49/L4Axx",
.max_flash_size_kb = 1024,
.has_dual_bank = true,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x462,
.revs = stm32_462_revs,
.num_revs = ARRAY_SIZE(stm32_462_revs),
.device_str = "STM32L45/L46xx",
.max_flash_size_kb = 512,
.has_dual_bank = false,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x470,
.revs = stm32_470_revs,
.num_revs = ARRAY_SIZE(stm32_470_revs),
.device_str = "STM32L4R/L4Sxx",
.max_flash_size_kb = 2048,
.has_dual_bank = true,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
},
};
/* flash bank stm32l4x <base> <size> 0 0 <target#> */
FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
{
struct stm32l4_flash_bank *stm32l4_info;
@ -149,27 +236,30 @@ FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
return ERROR_OK;
}
static inline int stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg)
static inline uint32_t stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg_offset)
{
return reg;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return stm32l4_info->part_info->flash_regs_base + reg_offset;
}
static inline int stm32l4_get_flash_status(struct flash_bank *bank, uint32_t *status)
static inline int stm32l4_read_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t *value)
{
struct target *target = bank->target;
return target_read_u32(
target, stm32l4_get_flash_reg(bank, STM32_FLASH_SR), status);
return target_read_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
}
static inline int stm32l4_write_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
{
return target_write_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
}
static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
{
struct target *target = bank->target;
uint32_t status;
int retval = ERROR_OK;
/* wait for busy to clear */
for (;;) {
retval = stm32l4_get_flash_status(bank, &status);
retval = stm32l4_read_flash_reg(bank, STM32_FLASH_SR, &status);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("status: 0x%" PRIx32 "", status);
@ -195,20 +285,20 @@ static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
/* If this operation fails, we ignore it and report the original
* retval
*/
target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_SR),
status & FLASH_ERROR);
stm32l4_write_flash_reg(bank, STM32_FLASH_SR, status & FLASH_ERROR);
}
return retval;
}
static int stm32l4_unlock_reg(struct target *target)
static int stm32l4_unlock_reg(struct flash_bank *bank)
{
uint32_t ctrl;
/* first check if not already unlocked
* otherwise writing on STM32_FLASH_KEYR will fail
*/
int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
int retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
@ -216,15 +306,15 @@ static int stm32l4_unlock_reg(struct target *target)
return ERROR_OK;
/* unlock flash registers */
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_KEYR, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_KEYR, KEY2);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
@ -236,11 +326,11 @@ static int stm32l4_unlock_reg(struct target *target)
return ERROR_OK;
}
static int stm32l4_unlock_option_reg(struct target *target)
static int stm32l4_unlock_option_reg(struct flash_bank *bank)
{
uint32_t ctrl;
int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
int retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
@ -248,15 +338,15 @@ static int stm32l4_unlock_option_reg(struct target *target)
return ERROR_OK;
/* unlock option registers */
retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_OPTKEYR, OPTKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_OPTKEYR, OPTKEY2);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
@ -268,36 +358,29 @@ static int stm32l4_unlock_option_reg(struct target *target)
return ERROR_OK;
}
static int stm32l4_read_option(struct flash_bank *bank, uint32_t address, uint32_t* value)
static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset, uint32_t value, uint32_t mask)
{
struct target *target = bank->target;
return target_read_u32(target, address, value);
}
static int stm32l4_write_option(struct flash_bank *bank, uint32_t address, uint32_t value, uint32_t mask)
{
struct target *target = bank->target;
uint32_t optiondata;
int retval = target_read_u32(target, address, &optiondata);
int retval = stm32l4_read_flash_reg(bank, reg_offset, &optiondata);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_unlock_reg(target);
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_unlock_option_reg(target);
retval = stm32l4_unlock_option_reg(bank);
if (retval != ERROR_OK)
return retval;
optiondata = (optiondata & ~mask) | (value & mask);
retval = target_write_u32(target, address, optiondata);
retval = stm32l4_write_flash_reg(bank, reg_offset, optiondata);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_OPTSTRT);
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_OPTSTRT);
if (retval != ERROR_OK)
return retval;
@ -311,11 +394,12 @@ static int stm32l4_write_option(struct flash_bank *bank, uint32_t address, uint3
static int stm32l4_protect_check(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
uint32_t wrp1ar, wrp1br, wrp2ar, wrp2br;
stm32l4_read_option(bank, STM32_FLASH_WRP1AR, &wrp1ar);
stm32l4_read_option(bank, STM32_FLASH_WRP1BR, &wrp1br);
stm32l4_read_option(bank, STM32_FLASH_WRP2AR, &wrp2ar);
stm32l4_read_option(bank, STM32_FLASH_WRP2BR, &wrp2br);
stm32l4_read_flash_reg(bank, STM32_FLASH_WRP1AR, &wrp1ar);
stm32l4_read_flash_reg(bank, STM32_FLASH_WRP1BR, &wrp1br);
stm32l4_read_flash_reg(bank, STM32_FLASH_WRP2AR, &wrp2ar);
stm32l4_read_flash_reg(bank, STM32_FLASH_WRP2BR, &wrp2br);
const uint8_t wrp1a_start = wrp1ar & 0xFF;
const uint8_t wrp1a_end = (wrp1ar >> 16) & 0xFF;
@ -327,7 +411,7 @@ static int stm32l4_protect_check(struct flash_bank *bank)
const uint8_t wrp2b_end = (wrp2br >> 16) & 0xFF;
for (int i = 0; i < bank->num_sectors; i++) {
if (i < stm32l4_info->bank2_start) {
if (i < stm32l4_info->bank1_sectors) {
if (((i >= wrp1a_start) &&
(i <= wrp1a_end)) ||
((i >= wrp1b_start) &&
@ -337,7 +421,7 @@ static int stm32l4_protect_check(struct flash_bank *bank)
bank->sectors[i].is_protected = 0;
} else {
uint8_t snb;
snb = i - stm32l4_info->bank2_start;
snb = i - stm32l4_info->bank1_sectors;
if (((snb >= wrp2a_start) &&
(snb <= wrp2a_end)) ||
((snb >= wrp2b_start) &&
@ -352,8 +436,9 @@ static int stm32l4_protect_check(struct flash_bank *bank)
static int stm32l4_erase(struct flash_bank *bank, int first, int last)
{
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
int i;
int retval;
assert(first < bank->num_sectors);
assert(last < bank->num_sectors);
@ -363,8 +448,7 @@ static int stm32l4_erase(struct flash_bank *bank, int first, int last)
return ERROR_TARGET_NOT_HALTED;
}
int retval;
retval = stm32l4_unlock_reg(target);
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
return retval;
@ -378,20 +462,18 @@ static int stm32l4_erase(struct flash_bank *bank, int first, int last)
3. Set the STRT bit in the FLASH_CR register
4. Wait for the BSY bit to be cleared
*/
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
for (i = first; i <= last; i++) {
uint32_t erase_flags;
erase_flags = FLASH_PER | FLASH_STRT;
if (i >= stm32l4_info->bank2_start) {
if (i >= stm32l4_info->bank1_sectors) {
uint8_t snb;
snb = i - stm32l4_info->bank2_start;
snb = i - stm32l4_info->bank1_sectors;
erase_flags |= snb << FLASH_PAGE_SHIFT | FLASH_CR_BKER;
} else
erase_flags |= i << FLASH_PAGE_SHIFT;
retval = target_write_u32(target,
stm32l4_get_flash_reg(bank, STM32_FLASH_CR), erase_flags);
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, erase_flags);
if (retval != ERROR_OK)
return retval;
@ -402,8 +484,7 @@ static int stm32l4_erase(struct flash_bank *bank, int first, int last)
bank->sectors[i].is_erased = 1;
}
retval = target_write_u32(
target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
@ -423,9 +504,9 @@ static int stm32l4_protect(struct flash_bank *bank, int set, int first, int last
int ret = ERROR_OK;
/* Bank 2 */
uint32_t reg_value = 0xFF; /* Default to bank un-protected */
if (last >= stm32l4_info->bank2_start) {
if (last >= stm32l4_info->bank1_sectors) {
if (set == 1) {
uint8_t begin = first > stm32l4_info->bank2_start ? first : 0x00;
uint8_t begin = first > stm32l4_info->bank1_sectors ? first : 0x00;
reg_value = ((last & 0xFF) << 16) | begin;
}
@ -433,9 +514,9 @@ static int stm32l4_protect(struct flash_bank *bank, int set, int first, int last
}
/* Bank 1 */
reg_value = 0xFF; /* Default to bank un-protected */
if (first < stm32l4_info->bank2_start) {
if (first < stm32l4_info->bank1_sectors) {
if (set == 1) {
uint8_t end = last >= stm32l4_info->bank2_start ? 0xFF : last;
uint8_t end = last >= stm32l4_info->bank1_sectors ? 0xFF : last;
reg_value = (end << 16) | (first & 0xFF);
}
@ -450,6 +531,7 @@ static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
uint32_t buffer_size = 16384;
struct working_area *write_algorithm;
struct working_area *source;
@ -503,7 +585,7 @@ static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[2].value, 0, 32, address);
buf_set_u32(reg_params[3].value, 0, 32, count / 4);
buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
buf_set_u32(reg_params[4].value, 0, 32, stm32l4_info->part_info->flash_regs_base);
retval = target_run_flash_async_algorithm(target, buffer, count, 2,
0, NULL,
@ -523,7 +605,7 @@ static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
if (error != 0) {
LOG_ERROR("flash write failed = %08" PRIx32, error);
/* Clear but report errors */
target_write_u32(target, STM32_FLASH_SR, error);
stm32l4_write_flash_reg(bank, STM32_FLASH_SR, error);
retval = ERROR_FAIL;
}
}
@ -543,7 +625,6 @@ static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
int retval;
if (bank->target->state != TARGET_HALTED) {
@ -570,7 +651,7 @@ static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
*/
}
retval = stm32l4_unlock_reg(target);
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
return retval;
@ -579,60 +660,69 @@ static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
if (retval != ERROR_OK) {
LOG_WARNING("block write failed");
return retval;
}
}
LOG_WARNING("block write succeeded");
return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
return stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
}
static int stm32l4_read_idcode(struct flash_bank *bank, uint32_t *id)
{
int retval = target_read_u32(bank->target, DBGMCU_IDCODE, id);
if (retval != ERROR_OK)
return retval;
return retval;
}
static int stm32l4_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
const struct stm32l4_part_info *part_info;
int i;
uint16_t flash_size_in_kb = 0xffff;
uint16_t max_flash_size_in_kb;
uint32_t device_id;
uint32_t options;
uint32_t base_address = 0x08000000;
stm32l4_info->probed = 0;
/* read stm32 device id register */
int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
int retval = stm32l4_read_idcode(bank, &stm32l4_info->idcode);
if (retval != ERROR_OK)
return retval;
LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
/* set max flash size depending on family */
switch (device_id & 0xfff) {
case 0x470:
max_flash_size_in_kb = 2048;
break;
case 0x461:
case 0x415:
max_flash_size_in_kb = 1024;
break;
case 0x462:
max_flash_size_in_kb = 512;
break;
case 0x435:
max_flash_size_in_kb = 256;
break;
default:
device_id = stm32l4_info->idcode & 0xFFF;
for (unsigned int n = 0; n < ARRAY_SIZE(stm32l4_parts); n++) {
if (device_id == stm32l4_parts[n].id)
stm32l4_info->part_info = &stm32l4_parts[n];
}
if (!stm32l4_info->part_info) {
LOG_WARNING("Cannot identify target as an STM32L4 family device.");
return ERROR_FAIL;
}
part_info = stm32l4_info->part_info;
char device_info[1024];
retval = bank->driver->info(bank, device_info, sizeof(device_info));
if (retval != ERROR_OK)
return retval;
LOG_INFO("device idcode = 0x%08" PRIx32 " (%s)", stm32l4_info->idcode, device_info);
/* get flash size from target. */
retval = target_read_u16(target, FLASH_SIZE_REG, &flash_size_in_kb);
retval = target_read_u16(target, part_info->fsize_addr, &flash_size_in_kb);
/* failed reading flash size or flash size invalid (early silicon),
* default to max target family */
if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0
|| flash_size_in_kb > part_info->max_flash_size_kb) {
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
max_flash_size_in_kb);
flash_size_in_kb = max_flash_size_in_kb;
part_info->max_flash_size_kb);
flash_size_in_kb = part_info->max_flash_size_kb;
}
LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
@ -640,91 +730,106 @@ static int stm32l4_probe(struct flash_bank *bank)
/* did we assign a flash size? */
assert((flash_size_in_kb != 0xffff) && flash_size_in_kb);
/* get options for DUAL BANK. */
retval = target_read_u32(target, STM32_FLASH_OPTR, &options);
/* read flash option register */
retval = stm32l4_read_flash_reg(bank, STM32_FLASH_OPTR, &options);
if (retval != ERROR_OK)
return retval;
stm32l4_info->bank1_sectors = 0;
stm32l4_info->hole_sectors = 0;
int num_pages = 0;
int page_size = 0;
switch (device_id & 0xfff) {
case 0x470:
/* L4R/S have 1M or 2M FLASH and dual/single bank mode.
* Page size is 4K or 8K.*/
if (flash_size_in_kb == 2048) {
stm32l4_info->bank2_start = 256;
if (options & OPT_DBANK_GE_2M) {
page_size = 4096;
num_pages = 512;
} else {
page_size = 8192;
num_pages = 256;
}
break;
}
if (flash_size_in_kb == 1024) {
stm32l4_info->bank2_start = 128;
if (options & OPT_DBANK_LE_1M) {
page_size = 4096;
num_pages = 256;
} else {
page_size = 8192;
num_pages = 128;
}
break;
}
/* Invalid FLASH size for this device. */
LOG_WARNING("Invalid flash size for STM32L4+ family device.");
return ERROR_FAIL;
case 0x461:
case 0x415:
/* These are dual-bank devices, we need to check the OPT_DBANK_LE_1M bit here */
page_size = 2048;
num_pages = flash_size_in_kb / 2;
/* check that calculation result makes sense */
assert(num_pages > 0);
if ((flash_size_in_kb == 1024) || !(options & OPT_DBANK_LE_1M))
stm32l4_info->bank2_start = 256;
else
stm32l4_info->bank2_start = num_pages / 2;
break;
case 0x462:
case 0x435:
default:
/* These are single-bank devices */
page_size = 2048;
num_pages = flash_size_in_kb / 2;
/* check that calculation result makes sense */
assert(num_pages > 0);
stm32l4_info->bank2_start = UINT16_MAX;
break;
stm32l4_info->dual_bank_mode = false;
switch (device_id) {
case 0x415:
case 0x461:
/* if flash size is max (1M) the device is always dual bank
* 0x415: has variants with 512K
* 0x461: has variants with 512 and 256
* for these variants:
* if DUAL_BANK = 0 -> single bank
* else -> dual bank without gap
* note: the page size is invariant
*/
page_size = 2048;
num_pages = flash_size_in_kb / 2;
stm32l4_info->bank1_sectors = num_pages;
/* check DUAL_BANK bit[21] if the flash is less than 1M */
if (flash_size_in_kb == 1024 || (options & BIT(21))) {
stm32l4_info->dual_bank_mode = true;
stm32l4_info->bank1_sectors = num_pages / 2;
}
break;
case 0x435:
case 0x462:
/* single bank flash */
page_size = 2048;
num_pages = flash_size_in_kb / 2;
stm32l4_info->bank1_sectors = num_pages;
break;
case 0x470:
/* STM32L4R/S can be single/dual bank:
* if size = 2M check DBANK bit(22)
* if size = 1M check DB1M bit(21)
* in single bank configuration the page size is 8K
* else (dual bank) the page size is 4K without gap between banks
*/
page_size = 8192;
num_pages = flash_size_in_kb / 8;
stm32l4_info->bank1_sectors = num_pages;
if ((flash_size_in_kb == 2048 && (options & BIT(22))) ||
(flash_size_in_kb == 1024 && (options & BIT(21)))) {
stm32l4_info->dual_bank_mode = true;
page_size = 4096;
num_pages = flash_size_in_kb / 4;
stm32l4_info->bank1_sectors = num_pages / 2;
}
break;
default:
LOG_ERROR("unsupported device");
return ERROR_FAIL;
}
LOG_INFO("flash mode : %s-bank", stm32l4_info->dual_bank_mode ? "dual" : "single");
const int gap_size = stm32l4_info->hole_sectors * page_size;
if (stm32l4_info->dual_bank_mode & gap_size) {
LOG_INFO("gap detected starting from %0x08" PRIx32 " to %0x08" PRIx32,
0x8000000 + stm32l4_info->bank1_sectors * page_size,
0x8000000 + stm32l4_info->bank1_sectors * page_size + gap_size);
}
/* Release sector table if allocated. */
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
/* Set bank configuration and construct sector table. */
bank->base = base_address;
bank->size = num_pages * page_size;
bank->size = flash_size_in_kb * 1024 + gap_size;
bank->base = 0x08000000;
bank->num_sectors = num_pages;
bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
if (!bank->sectors)
return ERROR_FAIL; /* Checkme: What better error to use?*/
bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
if (bank->sectors == NULL) {
LOG_ERROR("failed to allocate bank sectors");
return ERROR_FAIL;
}
for (i = 0; i < num_pages; i++) {
for (i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].offset = i * page_size;
/* in dual bank configuration, if there is a gap between banks
* we fix up the sector offset to consider this gap */
if (i >= stm32l4_info->bank1_sectors && stm32l4_info->hole_sectors)
bank->sectors[i].offset += gap_size;
bank->sectors[i].size = page_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
stm32l4_info->probed = 1;
return ERROR_OK;
}
@ -733,87 +838,70 @@ static int stm32l4_auto_probe(struct flash_bank *bank)
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (stm32l4_info->probed)
return ERROR_OK;
return stm32l4_probe(bank);
}
static int get_stm32l4_info(struct flash_bank *bank, char *buf, int buf_size)
{
struct target *target = bank->target;
uint32_t dbgmcu_idcode;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
/* read stm32 device id register */
int retval = target_read_u32(target, DBGMCU_IDCODE, &dbgmcu_idcode);
if (retval != ERROR_OK)
return retval;
if (part_info) {
const char *rev_str = NULL;
uint16_t rev_id = stm32l4_info->idcode >> 16;
for (unsigned int i = 0; i < part_info->num_revs; i++) {
if (rev_id == part_info->revs[i].rev) {
rev_str = part_info->revs[i].str;
uint16_t device_id = dbgmcu_idcode & 0xfff;
uint8_t rev_id = dbgmcu_idcode >> 28;
uint8_t rev_minor = 0;
int i;
if (rev_str != NULL) {
snprintf(buf, buf_size, "%s - Rev: %s",
part_info->device_str, rev_str);
return ERROR_OK;
}
}
}
for (i = 16; i < 28; i++) {
if (dbgmcu_idcode & (1 << i))
rev_minor++;
else
break;
}
const char *device_str;
switch (device_id) {
case 0x470:
device_str = "STM32L4R/4Sxx";
break;
case 0x461:
device_str = "STM32L496/4A6";
break;
case 0x415:
device_str = "STM32L475/476/486";
break;
case 0x462:
device_str = "STM32L45x/46x";
break;
case 0x435:
device_str = "STM32L43x/44x";
break;
default:
snprintf(buf, buf_size, "Cannot identify target as a STM32L4\n");
snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)",
part_info->device_str, rev_id);
return ERROR_OK;
} else {
snprintf(buf, buf_size, "Cannot identify target as a STM32L4x device");
return ERROR_FAIL;
}
snprintf(buf, buf_size, "%s - Rev: %1d.%02d",
device_str, rev_id, rev_minor);
return ERROR_OK;
}
static int stm32l4_mass_erase(struct flash_bank *bank, uint32_t action)
static int stm32l4_mass_erase(struct flash_bank *bank)
{
int retval;
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
uint32_t action = FLASH_MER1;
if (stm32l4_info->part_info->has_dual_bank)
action |= FLASH_MER2;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32l4_unlock_reg(target);
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
return retval;
/* mass erase flash memory */
retval = target_write_u32(
target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), action);
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT / 10);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(
target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR),
action | FLASH_STRT);
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, action);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, action | FLASH_STRT);
if (retval != ERROR_OK)
return retval;
@ -821,8 +909,7 @@ static int stm32l4_mass_erase(struct flash_bank *bank, uint32_t action)
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(
target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
@ -832,7 +919,6 @@ static int stm32l4_mass_erase(struct flash_bank *bank, uint32_t action)
COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
{
int i;
uint32_t action;
if (CMD_ARGC < 1) {
command_print(CMD, "stm32l4x mass_erase <STM32L4 bank>");
@ -844,8 +930,7 @@ COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
if (ERROR_OK != retval)
return retval;
action = FLASH_MER1 | FLASH_MER2;
retval = stm32l4_mass_erase(bank, action);
retval = stm32l4_mass_erase(bank);
if (retval == ERROR_OK) {
/* set all sectors as erased */
for (i = 0; i < bank->num_sectors; i++)
@ -871,12 +956,13 @@ COMMAND_HANDLER(stm32l4_handle_option_read_command)
if (ERROR_OK != retval)
return retval;
uint32_t reg_addr = STM32_FLASH_BASE;
uint32_t reg_offset, reg_addr;
uint32_t value = 0;
reg_addr += strtoul(CMD_ARGV[1], NULL, 16);
reg_offset = strtoul(CMD_ARGV[1], NULL, 16);
reg_addr = stm32l4_get_flash_reg(bank, reg_offset);
retval = stm32l4_read_option(bank, reg_addr, &value);
retval = stm32l4_read_flash_reg(bank, reg_offset, &value);
if (ERROR_OK != retval)
return retval;
@ -897,11 +983,11 @@ COMMAND_HANDLER(stm32l4_handle_option_write_command)
if (ERROR_OK != retval)
return retval;
uint32_t reg_addr = STM32_FLASH_BASE;
uint32_t reg_offset;
uint32_t value = 0;
uint32_t mask = 0xFFFFFFFF;
reg_addr += strtoul(CMD_ARGV[1], NULL, 16);
reg_offset = strtoul(CMD_ARGV[1], NULL, 16);
value = strtoul(CMD_ARGV[2], NULL, 16);
if (CMD_ARGC > 3)
mask = strtoul(CMD_ARGV[3], NULL, 16);
@ -910,7 +996,7 @@ COMMAND_HANDLER(stm32l4_handle_option_write_command)
"INFO: a reset or power cycle is required "
"for the new settings to take effect.", bank->driver->name);
retval = stm32l4_write_option(bank, reg_addr, value, mask);
retval = stm32l4_write_option(bank, reg_offset, value, mask);
return retval;
}
@ -924,18 +1010,16 @@ COMMAND_HANDLER(stm32l4_handle_option_load_command)
if (ERROR_OK != retval)
return retval;
struct target *target = bank->target;
retval = stm32l4_unlock_reg(target);
retval = stm32l4_unlock_reg(bank);
if (ERROR_OK != retval)
return retval;
retval = stm32l4_unlock_option_reg(target);
retval = stm32l4_unlock_option_reg(bank);
if (ERROR_OK != retval)
return retval;
/* Write the OBLLAUNCH bit in CR -> Cause device "POR" and option bytes reload */
retval = target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_OBLLAUNCH);
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_OBLLAUNCH);
command_print(CMD, "stm32l4x option load (POR) completed.");
return retval;