add Fujitsu FM3 Family flash support

Signed-off-by: Ronny Strutz <ronny@ewoks.de>
Signed-off-by: Spencer Oliver <ntfreak@users.sourceforge.net>
This commit is contained in:
Ronny Strutz 2011-07-26 21:14:47 +01:00 committed by Spencer Oliver
parent d6c42bf312
commit e872d2880e
3 changed files with 658 additions and 1 deletions

View File

@ -30,7 +30,8 @@ NOR_DRIVERS = \
str9x.c \
str9xpec.c \
tms470.c \
virtual.c
virtual.c \
fm3.c
# Disabled for now, it generates warnings
# dsp5680xx_flash.c

View File

@ -44,6 +44,7 @@ extern struct flash_driver virtual_flash;
extern struct flash_driver stmsmi_flash;
extern struct flash_driver em357_flash;
//extern struct flash_driver dsp5680xx_flash;
extern struct flash_driver fm3_flash;
/**
* The list of built-in flash drivers.
@ -74,6 +75,7 @@ static struct flash_driver *flash_drivers[] = {
&em357_flash,
// Disabled for now, it generates warnings
//&dsp5680xx_flash,
&fm3_flash,
NULL,
};

654
src/flash/nor/fm3.c Normal file
View File

@ -0,0 +1,654 @@
/***************************************************************************
* Copyright (C) 2011 by Marc Willam, Holger Wech *
* m.willam@gmx.eu *
* Copyright (C) 2011 Ronny Strutz *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
#define FLASH_DQ6 0x00000040 /* Data toggle flag bit (TOGG) position */
#define FLASH_DQ5 0x00000020 /* Time limit exceeding flag bit (TLOV) position */
enum fm3_variant
{
mb9bfxx1,
mb9bfxx2,
mb9bfxx3,
mb9bfxx4,
mb9bfxx5,
mb9bfxx6
};
struct fm3_flash_bank
{
struct working_area *write_algorithm;
enum fm3_variant variant;
int probed;
};
FLASH_BANK_COMMAND_HANDLER(fm3_flash_bank_command)
{
struct fm3_flash_bank *fm3_info;
if (CMD_ARGC < 6)
{
LOG_WARNING("incomplete flash_bank fm3 configuration");
return ERROR_FLASH_BANK_INVALID;
}
LOG_INFO("******HWE* FLASH CMD Parameter %s", CMD_ARGV[5]);
fm3_info = malloc(sizeof(struct fm3_flash_bank));
bank->driver_priv = fm3_info;
if (strcmp(CMD_ARGV[5], "mb9bfxx1.cpu") == 0)
{
fm3_info->variant = mb9bfxx1;
}
else if (strcmp(CMD_ARGV[5], "mb9bfxx2.cpu") == 0)
{
fm3_info->variant = mb9bfxx2;
}
else if (strcmp(CMD_ARGV[5], "mb9bfxx3.cpu") == 0)
{
fm3_info->variant = mb9bfxx3;
}
else if (strcmp(CMD_ARGV[5], "mb9bfxx4.cpu") == 0)
{
fm3_info->variant = mb9bfxx4;
}
else if (strcmp(CMD_ARGV[5], "mb9bfxx5.cpu") == 0)
{
fm3_info->variant = mb9bfxx5;
}
else if (strcmp(CMD_ARGV[5], "mb9bfxx6.cpu") == 0)
{
fm3_info->variant = mb9bfxx6;
LOG_INFO("******HWE* fm3 Variant set to: mb9bfxx6");
}
else
{
LOG_ERROR("unknown fm3 variant: %s", CMD_ARGV[5]);
free(fm3_info);
return ERROR_FLASH_BANK_INVALID;
}
fm3_info->write_algorithm = NULL;
fm3_info->probed = 0;
return ERROR_OK;
}
static int fm3_busy_wait(struct target *target, uint32_t offset, int timeout_ms)
{
int retval = ERROR_OK;
uint16_t state1, state2;
int ms = 0;
while(1) {
target_read_u16(target, offset, &state1); /* dummy-read - see flash manual */
target_read_u16(target, offset, &state1);
target_read_u16(target, offset, &state2);
if ( (state1 & FLASH_DQ6) == (state2 & FLASH_DQ6) ) {
break;
}
else if (state1 & FLASH_DQ5) {
target_read_u16(target, offset, &state1);
target_read_u16(target, offset, &state2);
if ( (state1 & FLASH_DQ6) != (state2 & FLASH_DQ6) )
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
usleep(1000);
++ms;
if (ms > timeout_ms) {
LOG_ERROR("toggle bit reading timed out!");
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
}
if (retval == ERROR_OK)
LOG_DEBUG("fm3_busy_wait(%x) needs about %d ms", offset, ms);
return retval;
}
static int fm3_erase(struct flash_bank *bank, int first, int last)
{
struct target *target = bank->target;
int retval = ERROR_OK;
uint32_t u32DummyRead;
int sector, odd;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
LOG_INFO("Fujitsu MB9Bxxx: Sector Erase ... (%d to %d)", first, last);
target_write_u32(target, 0x40000000, 0x0001); /* FASZR = 0x01, Enables CPU Programming Mode */
target_read_u32(target, 0x40000000, &u32DummyRead); /* dummy read of FASZR */
for (sector = first ; sector <= last ; sector++) {
uint32_t offset = bank->sectors[sector].offset;
for (odd = 0; odd < 2 ; odd++) {
if (odd)
offset += 4;
target_write_u16(target, 0x1550, 0x00AA);
target_write_u16(target, 0x0AA8, 0x0055);
target_write_u16(target, 0x1550, 0x0080);
target_write_u16(target, 0x1550, 0x00AA);
target_write_u16(target, 0x0AA8, 0x0055);
target_write_u16(target, offset, 0x0030);
retval = fm3_busy_wait(target, offset, 500);
if (retval != ERROR_OK)
break;
}
bank->sectors[sector].is_erased = 1;
}
target_write_u32(target, 0x40000000, 0x0002);
target_read_u32(target, 0x40000000, &u32DummyRead); /* dummy read of FASZR */
return retval;
}
static int fm3_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
{
struct fm3_flash_bank *fm3_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t buffer_size = 8192;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[4];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
/* RAMCODE used for fm3 Flash programming: */
/* R0 keeps source start address (u32Source) */
/* R1 keeps target start address (u32Target) */
/* R2 keeps number of halfwords to write (u32Count) */
/* R3 returns result value (u32FlashResult) */
const uint8_t fm3_flash_write_code[] = {
/* fm3_FLASH_IF->FASZ &= 0xFFFD; */
0x00, 0xBF, /* NOP */
0x5F, 0xF0, 0x80, 0x43, /* MOVS.W R3, #(fm3_FLASH_IF->FASZ) */
0x1B, 0x68, /* LDR R3, [R3] */
0x4F, 0xF6, 0xFD, 0x74, /* MOVW R4, #0xFFFD */
0x23, 0x40, /* ANDS R3, R3, R4 */
0x5F, 0xF0, 0x80, 0x44, /* MOVS.W R4, #(fm3_FLASH_IF->FASZ) */
0x23, 0x60, /* STR R3, [R4] */
/* fm3_FLASH_IF->FASZ |= 1; */
0x5F, 0xF0, 0x80, 0x43, /* MOVS.W R3, #(fm3_FLASH_IF->FASZ) */
0x1B, 0x68, /* LDR R3, [R3] */
0x53, 0xF0, 0x01, 0x03, /* ORRS.W R3, R3, #1 */
0x5F, 0xF0, 0x80, 0x44, /* MOVS.W R4, #(fm3_FLASH_IF->FASZ) */
0x23, 0x60, /* STR R3, [R4] */
/* u32DummyRead = fm3_FLASH_IF->FASZ; */
0x2B, 0x4B, /* LDR.N R3, ??u32DummyRead */
0x5F, 0xF0, 0x80, 0x44, /* MOVS.W R4, #(fm3_FLASH_IF->FASZ) */
0x24, 0x68, /* LDR R4, [R4] */
0x1C, 0x60, /* STR R4, [R3] */
/* u32FlashResult = FLASH_WRITE_NO_RESULT */
0x2A, 0x4B, /* LDR.N R3, ??u32FlashResult */
0x00, 0x24, /* MOVS R4, #0 */
0x1C, 0x60, /* STR R4, [R3] */
/* while ((u32Count > 0 ) && (u32FlashResult */
/* == FLASH_WRITE_NO_RESULT)) */
0x01, 0x2A, /* L0: CMP R2, #1 */
0x32, 0xDB, /* BLT.N L1 */
0x27, 0x4B, /* LDR.N R3, ??u32FlashResult */
0x1B, 0x68, /* LDR R3, [R3] */
0x00, 0x2B, /* CMP R3, #0 */
0x2E, 0xD1, /* BNE.N L1 */
/* *(FLASH_SEQ_1550) = FLASH_WRITE_1; */
0x41, 0xF2, 0x50, 0x53, /* MOVW R3, #0x1550 */
0xAA, 0x24, /* MOVS R4. #0xAA */
0x1C, 0x80, /* STRH R4, [R3] */
/* *(FLASH_SEQ_0AA8) = FLASH_WRITE_2; */
0x40, 0xF6, 0xA8, 0x23, /* MOVW R3, #0x0AA8 */
0x55, 0x24, /* MOVS R4. #0x55 */
0x1C, 0x80, /* STRH R4, [R3] */
/* *(FLASH_SEQ_1550) = FLASH_WRITE_3; */
0x41, 0xF2, 0x50, 0x53, /* MOVW R3, #0x1550 */
0xA0, 0x24, /* MOVS R4. #0xA0 */
0x1C, 0x80, /* STRH R4, [R3] */
/* *(volatile uint16_t*)u32Target */
/* = *(volatile uint16_t*)u32Source; */
0x03, 0x88, /* LDRH R3, [R0] */
0x0B, 0x80, /* STRH R3, [R1] */
/* while (u32FlashResult == FLASH_WRITE_NO_RESTULT) */
0x1E, 0x4B, /* L2: LDR.N R3, ??u32FlashResult */
0x1B, 0x68, /* LDR R3, [R3] */
0x00, 0x2B, /* CMP R3, #0 */
0x11, 0xD1, /* BNE.N L3 */
/* if ((*(volatile uint16_t*)u32Target & FLASH_DQ5) */
/* == FLASH_DQ5) */
0x0B, 0x88, /* LDRH R3, [R1] */
0x9B, 0x06, /* LSLS R3, R3, #0x1A */
0x02, 0xD5, /* BPL.N L4 */
/* u32FlashResult = FLASH_WRITE_TIMEOUT */
0x1B, 0x4B, /* LDR.N R3, ??u32FlashResult */
0x02, 0x24, /* MOVS R4, #2 */
0x1C, 0x60, /* STR R4, [R3] */
/* if ((*(volatile uint16_t *)u32Target & FLASH_DQ7) */
/* == (*(volatile uint16_t*)u32Source & FLASH_DQ7)) */
0x0B, 0x88, /* L4: LDRH R3, [R1] */
0x13, 0xF0, 0x80, 0x03, /* ANDS.W R3, R3, #0x80 */
0x04, 0x88, /* LDRH R4, [R0] */
0x14, 0xF0, 0x80, 0x04, /* ANDS.W R4, R4, #0x80 */
0xA3, 0x42, /* CMP R3, R4 */
0xED, 0xD1, /* BNE.N L2 */
/* u32FlashResult = FLASH_WRITE_OKAY */
0x15, 0x4B, /* LDR.N R3, ??u32FlashResult */
0x01, 0x24, /* MOVS R4, #1 */
0x1C, 0x60, /* STR R4, [R3] */
0xE9, 0xE7, /* B.N L2 */
/* if (u32FlashResult != FLASH_WRITE_TIMEOUT) */
0x13, 0x4B, /* LDR.N R3, ??u32FlashResult */
0x1B, 0x68, /* LDR R3, [R3] */
0x02, 0x2B, /* CMP R3, #2 */
0x02, 0xD0, /* BEQ.N L5 */
/* u32FlashResult = FLASH_WRITE_NO_RESULT */
0x11, 0x4B, /* LDR.N R3, ??u32FlashResult */
0x00, 0x24, /* MOVS R4, #0 */
0x1C, 0x60, /* STR R4, [R3] */
/* u32Count--; */
0x52, 0x1E, /* L5: SUBS R2, R2, #1 */
/* u32Source += 2; */
0x80, 0x1C, /* ADDS R0, R0, #2 */
/* u32Target += 2; */
0x89, 0x1C, /* ADDS R1, R1, #2 */
0xCA, 0xE7, /* B.N L0 */
/* fm3_FLASH_IF->FASZ &= 0xFFFE; */
0x5F, 0xF0, 0x80, 0x43, /* L1: MOVS.W R3, #(fm3_FLASH_IF->FASZ) */
0x1B, 0x68, /* LDR R3, [R3] */
0x4F, 0xF6, 0xFE, 0x74, /* MOVW R4, #0xFFFE */
0x23, 0x40, /* ANDS R3, R3, R4 */
0x5F, 0xF0, 0x80, 0x44, /* MOVS.W R4, #(fm3_FLASH_IF->FASZ) */
0x23, 0x60, /* STR R3, [R4] */
/* fm3_FLASH_IF->FASZ |= 2; */
0x5F, 0xF0, 0x80, 0x43, /* MOVS.W R3, #(fm3_FLASH_IF->FASZ) */
0x1B, 0x68, /* LDR R3, [R3] */
0x53, 0xF0, 0x02, 0x03, /* ORRS.W R3, R3, #2 */
0x5F, 0xF0, 0x80, 0x44, /* MOVS.W R4, #(fm3_FLASH_IF->FASZ) */
0x23, 0x60, /* STR R4, [R3] */
/* u32DummyRead = fm3_FLASH_IF->FASZ; */
0x04, 0x4B, /* LDR.N R3, ??u32DummyRead */
0x5F, 0xF0, 0x80, 0x44, /* MOVS.W R4, #(fm3_FLASH_IF->FASZ) */
0x24, 0x68, /* LDR R4, [R4] */
0x1C, 0x60, /* STR R4, [R3] */
/* copy u32FlashResult to R3 for return value */
0xDF, 0xF8, 0x0C, 0x30, /* LDR.W R3, ??u32FlashResult */
0x1B, 0x68, /* LDR R3, [R3] */
/* Breakpoint here */
0x00, 0xBE, /* Breakpoint #0 */
0x00, 0x00, /* alignment padding bytes */
0x00, 0x80, 0xFF, 0x1F, /* u32DummyRead address in RAM (0x1FFF8000) */
0x04, 0x80, 0xFF, 0x1F /* u32FlashResult address in RAM (0x1FFF8004) */
};
LOG_INFO("Fujitsu MB9B500: FLASH Write ...");
/* disable HW watchdog */
target_write_u32(target, 0x40011C00, 0x1ACCE551);
target_write_u32(target, 0x40011C00, 0xE5331AAE);
target_write_u32(target, 0x40011008, 0x00000000);
count = count / 2; /* number bytes -> number halfwords */
/* check code alignment */
if (offset & 0x1)
{
LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
/* allocate working area with flash programming code */
if (target_alloc_working_area(target, sizeof(fm3_flash_write_code),
&fm3_info->write_algorithm) != ERROR_OK)
{
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = target_write_buffer(target, fm3_info->write_algorithm->address,
sizeof(fm3_flash_write_code), fm3_flash_write_code);
if (retval != ERROR_OK)
return retval;
/* memory buffer */
while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK)
{
buffer_size /= 2;
if (buffer_size <= 256)
{
/* free working area, if write algorithm already allocated */
if (fm3_info->write_algorithm)
{
target_free_working_area(target, fm3_info->write_algorithm);
}
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARMV7M_MODE_ANY;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT); // source start address
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); // target start address
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); // number of halfwords to program
init_reg_param(&reg_params[3], "r3", 32, PARAM_IN); // result
/* write code buffer and use Flash programming code within fm3 */
/* Set breakpoint to 0 with time-out of 1000 ms */
while (count > 0)
{
uint32_t thisrun_count = (count > (buffer_size / 2)) ? (buffer_size / 2) : count;
/* for some reason the first 8 byte of code are corrupt when target_run_algorithm() returns */
/* need some more investigation on this */
retval = target_write_buffer(target,
fm3_info->write_algorithm->address, 8, fm3_flash_write_code);
if (retval != ERROR_OK)
return retval;
retval = target_write_buffer(target,
source->address, thisrun_count * 2, buffer);
if (retval != ERROR_OK)
break;
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
retval = target_run_algorithm(target, 0, NULL, 4, reg_params,
fm3_info->write_algorithm->address, 0, 1000, &armv7m_info);
if (retval != ERROR_OK)
{
LOG_ERROR("error executing fm3 Flash programming algorithm");
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
#if 0
/* debug the corrupted 8 bytes */
unsigned char buf[256];
retval = target_read_buffer(target, fm3_info->write_algorithm->address, 256, buf);
if (retval != ERROR_OK)
printf("cannot read buffer\n");
unsigned int i;
for ( i = 0; i < sizeof(fm3_flash_write_code); i++)
if (buf[i] != fm3_flash_write_code[i])
printf("broken: %d %02x != %02x\n", i, buf[i], fm3_flash_write_code[i]);
#endif
if (buf_get_u32(reg_params[3].value, 0, 32) != ERROR_OK)
{
LOG_ERROR("Fujitsu MB9B500: FLASH programming ERROR (Timeout) -> Reg R3: %x",
buf_get_u32(reg_params[3].value, 0, 32));
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
buffer += thisrun_count * 2;
address += thisrun_count * 2;
count -= thisrun_count;
}
target_free_working_area(target, source);
target_free_working_area(target, fm3_info->write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
return retval;
}
static int fm3_probe(struct flash_bank *bank)
{
struct fm3_flash_bank *fm3_info = bank->driver_priv;
uint16_t num_pages;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
num_pages = 6; /* max number of Flash pages for malloc */
fm3_info->probed = 0;
bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
bank->base = 0x00000000;
num_pages = 2; /* start with smallest Flash pages number */
bank->size = 32 * 1024; /* bytes */
bank->sectors[0].offset = 0;
bank->sectors[0].size = 16 * 1024;
bank->sectors[0].is_erased = -1;
bank->sectors[0].is_protected = -1;
bank->sectors[1].offset = 0x4000;
bank->sectors[1].size = 16 * 1024;
bank->sectors[1].is_erased = -1;
bank->sectors[1].is_protected = -1;
if (fm3_info->variant == mb9bfxx1)
{
num_pages = 3;
bank->size = 64 * 1024; /* bytes */
bank->num_sectors = num_pages;
bank->sectors[2].offset = 0x8000;
bank->sectors[2].size = 32 * 1024;
bank->sectors[2].is_erased = -1;
bank->sectors[2].is_protected = -1;
}
if ( (fm3_info->variant == mb9bfxx2)
|| (fm3_info->variant == mb9bfxx4)
|| (fm3_info->variant == mb9bfxx5)
|| (fm3_info->variant == mb9bfxx6))
{
num_pages = 3;
bank->size = 128 * 1024; // bytes
bank->num_sectors = num_pages;
bank->sectors[2].offset = 0x8000;
bank->sectors[2].size = 96 * 1024;
bank->sectors[2].is_erased = -1;
bank->sectors[2].is_protected = -1;
}
if ( (fm3_info->variant == mb9bfxx4)
|| (fm3_info->variant == mb9bfxx5)
|| (fm3_info->variant == mb9bfxx6))
{
num_pages = 4;
bank->size = 256 * 1024; // bytes
bank->num_sectors = num_pages;
bank->sectors[3].offset = 0x20000;
bank->sectors[3].size = 128 * 1024;
bank->sectors[3].is_erased = -1;
bank->sectors[3].is_protected = -1;
}
if ( (fm3_info->variant == mb9bfxx5)
|| (fm3_info->variant == mb9bfxx6))
{
num_pages = 5;
bank->size = 384 * 1024; // bytes
bank->num_sectors = num_pages;
bank->sectors[4].offset = 0x40000;
bank->sectors[4].size = 128 * 1024;
bank->sectors[4].is_erased = -1;
bank->sectors[4].is_protected = -1;
}
if (fm3_info->variant == mb9bfxx6)
{
num_pages = 6;
bank->size = 512 * 1024; // bytes
bank->num_sectors = num_pages;
bank->sectors[5].offset = 0x60000;
bank->sectors[5].size = 128 * 1024;
bank->sectors[5].is_erased = -1;
bank->sectors[5].is_protected = -1;
}
fm3_info->probed = 1;
return ERROR_OK;
}
static int fm3_auto_probe(struct flash_bank *bank)
{
struct fm3_flash_bank *fm3_info = bank->driver_priv;
if (fm3_info->probed)
return ERROR_OK;
return fm3_probe(bank);
}
static int fm3_info(struct flash_bank *bank, char *buf, int buf_size)
{
snprintf(buf, buf_size, "Fujitsu fm3 Device does not support Chip-ID (Type unknown)");
return ERROR_OK;
}
static int fm3_chip_erase(struct flash_bank *bank)
{
struct target *target = bank->target;
int retval = ERROR_OK;
uint32_t u32DummyRead;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
LOG_INFO("Fujitsu MB9Bxxx: Chip Erase ... (may take several seconds)");
/* Implement Flash chip erase (mass erase) completely on host */
target_write_u32(target, 0x40000000, 0x0001); /* FASZR = 0x01, Enables CPU Programming Mode (16-bit Flash access) */
target_read_u32(target, 0x40000000, &u32DummyRead); /* dummy read of FASZR */
target_write_u16(target, 0x00001550, 0x00AA); /* Flash unlock sequence */
target_write_u16(target, 0x00000AA8, 0x0055);
target_write_u16(target, 0x00001550, 0x0080);
target_write_u16(target, 0x00001550, 0x00AA);
target_write_u16(target, 0x00000AA8, 0x0055);
target_write_u16(target, 0x00001550, 0x0010); /* Chip Erase command */
retval = fm3_busy_wait(target, 0xAA8, 20000);
target_write_u32(target, 0x40000000, 0x0002);
target_read_u32(target, 0x40000000, &u32DummyRead); /* dummy read of FASZR */
return retval;
}
COMMAND_HANDLER(fm3_handle_chip_erase_command)
{
int i;
if (CMD_ARGC < 1)
{
command_print(CMD_CTX, "fm3 chip_erase <bank>");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
if (fm3_chip_erase(bank) == ERROR_OK)
{
/* set all sectors as erased */
for (i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
command_print(CMD_CTX, "fm3 chip erase complete");
}
else
{
command_print(CMD_CTX, "fm3 chip erase failed");
}
return ERROR_OK;
}
static const struct command_registration fm3_exec_command_handlers[] = {
{
.name = "chip_erase",
.handler = fm3_handle_chip_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire Flash device.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration fm3_command_handlers[] = {
{
.name = "fm3",
.mode = COMMAND_ANY,
.help = "fm3 Flash command group",
.chain = fm3_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver fm3_flash = {
.name = "fm3",
.commands = fm3_command_handlers,
.flash_bank_command = fm3_flash_bank_command,
.erase = fm3_erase,
.write = fm3_write_block,
.probe = fm3_probe,
.auto_probe = fm3_auto_probe,
.erase_check = default_flash_mem_blank_check,
.info = fm3_info,
};