openocd/src/target/aarch64.c

3208 lines
86 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2015 by David Ung *
* *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "breakpoints.h"
#include "aarch64.h"
#include "a64_disassembler.h"
#include "register.h"
#include "target_request.h"
#include "target_type.h"
#include "armv8_opcodes.h"
#include "armv8_cache.h"
#include "arm_coresight.h"
#include "arm_semihosting.h"
#include "jtag/interface.h"
#include "smp.h"
#include <helper/time_support.h>
enum restart_mode {
RESTART_LAZY,
RESTART_SYNC,
};
enum halt_mode {
HALT_LAZY,
HALT_SYNC,
};
struct aarch64_private_config {
struct adiv5_private_config adiv5_config;
struct arm_cti *cti;
};
static int aarch64_poll(struct target *target);
static int aarch64_debug_entry(struct target *target);
static int aarch64_restore_context(struct target *target, bool bpwp);
static int aarch64_set_breakpoint(struct target *target,
struct breakpoint *breakpoint, uint8_t matchmode);
static int aarch64_set_context_breakpoint(struct target *target,
struct breakpoint *breakpoint, uint8_t matchmode);
static int aarch64_set_hybrid_breakpoint(struct target *target,
struct breakpoint *breakpoint);
static int aarch64_unset_breakpoint(struct target *target,
struct breakpoint *breakpoint);
static int aarch64_mmu(struct target *target, int *enabled);
static int aarch64_virt2phys(struct target *target,
target_addr_t virt, target_addr_t *phys);
static int aarch64_read_cpu_memory(struct target *target,
uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
static int aarch64_restore_system_control_reg(struct target *target)
{
enum arm_mode target_mode = ARM_MODE_ANY;
int retval = ERROR_OK;
uint32_t instr;
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = target_to_armv8(target);
if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
aarch64->system_control_reg_curr = aarch64->system_control_reg;
/* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
switch (armv8->arm.core_mode) {
case ARMV8_64_EL0T:
target_mode = ARMV8_64_EL1H;
/* fall through */
case ARMV8_64_EL1T:
case ARMV8_64_EL1H:
instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
break;
case ARMV8_64_EL2T:
case ARMV8_64_EL2H:
instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
break;
case ARMV8_64_EL3H:
case ARMV8_64_EL3T:
instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
break;
case ARM_MODE_SVC:
case ARM_MODE_ABT:
case ARM_MODE_FIQ:
case ARM_MODE_IRQ:
case ARM_MODE_HYP:
case ARM_MODE_UND:
case ARM_MODE_SYS:
instr = ARMV4_5_MCR(15, 0, 0, 1, 0, 0);
break;
default:
LOG_ERROR("cannot read system control register in this mode: (%s : 0x%x)",
armv8_mode_name(armv8->arm.core_mode), armv8->arm.core_mode);
return ERROR_FAIL;
}
if (target_mode != ARM_MODE_ANY)
armv8_dpm_modeswitch(&armv8->dpm, target_mode);
retval = armv8->dpm.instr_write_data_r0(&armv8->dpm, instr, aarch64->system_control_reg);
if (retval != ERROR_OK)
return retval;
if (target_mode != ARM_MODE_ANY)
armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
}
return retval;
}
/* modify system_control_reg in order to enable or disable mmu for :
* - virt2phys address conversion
* - read or write memory in phys or virt address */
static int aarch64_mmu_modify(struct target *target, int enable)
{
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = &aarch64->armv8_common;
int retval = ERROR_OK;
enum arm_mode target_mode = ARM_MODE_ANY;
uint32_t instr = 0;
if (enable) {
/* if mmu enabled at target stop and mmu not enable */
if (!(aarch64->system_control_reg & 0x1U)) {
LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
return ERROR_FAIL;
}
if (!(aarch64->system_control_reg_curr & 0x1U))
aarch64->system_control_reg_curr |= 0x1U;
} else {
if (aarch64->system_control_reg_curr & 0x4U) {
/* data cache is active */
aarch64->system_control_reg_curr &= ~0x4U;
/* flush data cache armv8 function to be called */
if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
}
if ((aarch64->system_control_reg_curr & 0x1U)) {
aarch64->system_control_reg_curr &= ~0x1U;
}
}
switch (armv8->arm.core_mode) {
case ARMV8_64_EL0T:
target_mode = ARMV8_64_EL1H;
/* fall through */
case ARMV8_64_EL1T:
case ARMV8_64_EL1H:
instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
break;
case ARMV8_64_EL2T:
case ARMV8_64_EL2H:
instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
break;
case ARMV8_64_EL3H:
case ARMV8_64_EL3T:
instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
break;
case ARM_MODE_SVC:
case ARM_MODE_ABT:
case ARM_MODE_FIQ:
case ARM_MODE_IRQ:
case ARM_MODE_HYP:
case ARM_MODE_UND:
case ARM_MODE_SYS:
instr = ARMV4_5_MCR(15, 0, 0, 1, 0, 0);
break;
default:
LOG_DEBUG("unknown cpu state 0x%x", armv8->arm.core_mode);
break;
}
if (target_mode != ARM_MODE_ANY)
armv8_dpm_modeswitch(&armv8->dpm, target_mode);
retval = armv8->dpm.instr_write_data_r0(&armv8->dpm, instr,
aarch64->system_control_reg_curr);
if (target_mode != ARM_MODE_ANY)
armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
return retval;
}
/*
* Basic debug access, very low level assumes state is saved
*/
static int aarch64_init_debug_access(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
int retval;
uint32_t dummy;
LOG_DEBUG("%s", target_name(target));
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_OSLAR, 0);
if (retval != ERROR_OK) {
LOG_DEBUG("Examine %s failed", "oslock");
return retval;
}
/* Clear Sticky Power Down status Bit in PRSR to enable access to
the registers in the Core Power Domain */
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
if (retval != ERROR_OK)
return retval;
/*
* Static CTI configuration:
* Channel 0 -> trigger outputs HALT request to PE
* Channel 1 -> trigger outputs Resume request to PE
* Gate all channel trigger events from entering the CTM
*/
/* Enable CTI */
retval = arm_cti_enable(armv8->cti, true);
/* By default, gate all channel events to and from the CTM */
if (retval == ERROR_OK)
retval = arm_cti_write_reg(armv8->cti, CTI_GATE, 0);
/* output halt requests to PE on channel 0 event */
if (retval == ERROR_OK)
retval = arm_cti_write_reg(armv8->cti, CTI_OUTEN0, CTI_CHNL(0));
/* output restart requests to PE on channel 1 event */
if (retval == ERROR_OK)
retval = arm_cti_write_reg(armv8->cti, CTI_OUTEN1, CTI_CHNL(1));
if (retval != ERROR_OK)
return retval;
/* Resync breakpoint registers */
return ERROR_OK;
}
/* Write to memory mapped registers directly with no cache or mmu handling */
static int aarch64_dap_write_memap_register_u32(struct target *target,
target_addr_t address,
uint32_t value)
{
int retval;
struct armv8_common *armv8 = target_to_armv8(target);
retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
return retval;
}
static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
{
struct arm_dpm *dpm = &a8->armv8_common.dpm;
int retval;
dpm->arm = &a8->armv8_common.arm;
dpm->didr = debug;
retval = armv8_dpm_setup(dpm);
if (retval == ERROR_OK)
retval = armv8_dpm_initialize(dpm);
return retval;
}
static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
{
struct armv8_common *armv8 = target_to_armv8(target);
return armv8_set_dbgreg_bits(armv8, CPUV8_DBG_DSCR, bit_mask, value);
}
static int aarch64_check_state_one(struct target *target,
uint32_t mask, uint32_t val, int *p_result, uint32_t *p_prsr)
{
struct armv8_common *armv8 = target_to_armv8(target);
uint32_t prsr;
int retval;
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_PRSR, &prsr);
if (retval != ERROR_OK)
return retval;
if (p_prsr)
*p_prsr = prsr;
if (p_result)
*p_result = (prsr & mask) == (val & mask);
return ERROR_OK;
}
static int aarch64_wait_halt_one(struct target *target)
{
int retval = ERROR_OK;
uint32_t prsr;
int64_t then = timeval_ms();
for (;;) {
int halted;
retval = aarch64_check_state_one(target, PRSR_HALT, PRSR_HALT, &halted, &prsr);
if (retval != ERROR_OK || halted)
break;
if (timeval_ms() > then + 1000) {
retval = ERROR_TARGET_TIMEOUT;
LOG_DEBUG("target %s timeout, prsr=0x%08"PRIx32, target_name(target), prsr);
break;
}
}
return retval;
}
static int aarch64_prepare_halt_smp(struct target *target, bool exc_target, struct target **p_first)
{
int retval = ERROR_OK;
struct target_list *head;
struct target *first = NULL;
LOG_DEBUG("target %s exc %i", target_name(target), exc_target);
foreach_smp_target(head, target->smp_targets) {
struct target *curr = head->target;
struct armv8_common *armv8 = target_to_armv8(curr);
if (exc_target && curr == target)
continue;
if (!target_was_examined(curr))
continue;
if (curr->state != TARGET_RUNNING)
continue;
/* HACK: mark this target as prepared for halting */
curr->debug_reason = DBG_REASON_DBGRQ;
/* open the gate for channel 0 to let HALT requests pass to the CTM */
retval = arm_cti_ungate_channel(armv8->cti, 0);
if (retval == ERROR_OK)
retval = aarch64_set_dscr_bits(curr, DSCR_HDE, DSCR_HDE);
if (retval != ERROR_OK)
break;
LOG_DEBUG("target %s prepared", target_name(curr));
if (!first)
first = curr;
}
if (p_first) {
if (exc_target && first)
*p_first = first;
else
*p_first = target;
}
return retval;
}
static int aarch64_halt_one(struct target *target, enum halt_mode mode)
{
int retval = ERROR_OK;
struct armv8_common *armv8 = target_to_armv8(target);
LOG_DEBUG("%s", target_name(target));
/* allow Halting Debug Mode */
retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
if (retval != ERROR_OK)
return retval;
/* trigger an event on channel 0, this outputs a halt request to the PE */
retval = arm_cti_pulse_channel(armv8->cti, 0);
if (retval != ERROR_OK)
return retval;
if (mode == HALT_SYNC) {
retval = aarch64_wait_halt_one(target);
if (retval != ERROR_OK) {
if (retval == ERROR_TARGET_TIMEOUT)
LOG_ERROR("Timeout waiting for target %s halt", target_name(target));
return retval;
}
}
return ERROR_OK;
}
static int aarch64_halt_smp(struct target *target, bool exc_target)
{
struct target *next = target;
int retval;
/* prepare halt on all PEs of the group */
retval = aarch64_prepare_halt_smp(target, exc_target, &next);
if (exc_target && next == target)
return retval;
/* halt the target PE */
if (retval == ERROR_OK)
retval = aarch64_halt_one(next, HALT_LAZY);
if (retval != ERROR_OK)
return retval;
/* wait for all PEs to halt */
int64_t then = timeval_ms();
for (;;) {
bool all_halted = true;
struct target_list *head;
struct target *curr;
foreach_smp_target(head, target->smp_targets) {
int halted;
curr = head->target;
if (!target_was_examined(curr))
continue;
retval = aarch64_check_state_one(curr, PRSR_HALT, PRSR_HALT, &halted, NULL);
if (retval != ERROR_OK || !halted) {
all_halted = false;
break;
}
}
if (all_halted)
break;
if (timeval_ms() > then + 1000) {
retval = ERROR_TARGET_TIMEOUT;
break;
}
/*
* HACK: on Hi6220 there are 8 cores organized in 2 clusters
* and it looks like the CTI's are not connected by a common
* trigger matrix. It seems that we need to halt one core in each
* cluster explicitly. So if we find that a core has not halted
* yet, we trigger an explicit halt for the second cluster.
*/
retval = aarch64_halt_one(curr, HALT_LAZY);
if (retval != ERROR_OK)
break;
}
return retval;
}
static int update_halt_gdb(struct target *target, enum target_debug_reason debug_reason)
{
struct target *gdb_target = NULL;
struct target_list *head;
struct target *curr;
if (debug_reason == DBG_REASON_NOTHALTED) {
LOG_DEBUG("Halting remaining targets in SMP group");
aarch64_halt_smp(target, true);
}
/* poll all targets in the group, but skip the target that serves GDB */
foreach_smp_target(head, target->smp_targets) {
curr = head->target;
/* skip calling context */
if (curr == target)
continue;
if (!target_was_examined(curr))
continue;
/* skip targets that were already halted */
if (curr->state == TARGET_HALTED)
continue;
/* remember the gdb_service->target */
if (curr->gdb_service)
gdb_target = curr->gdb_service->target;
/* skip it */
if (curr == gdb_target)
continue;
/* avoid recursion in aarch64_poll() */
curr->smp = 0;
aarch64_poll(curr);
curr->smp = 1;
}
/* after all targets were updated, poll the gdb serving target */
if (gdb_target && gdb_target != target)
aarch64_poll(gdb_target);
return ERROR_OK;
}
/*
* Aarch64 Run control
*/
static int aarch64_poll(struct target *target)
{
enum target_state prev_target_state;
int retval = ERROR_OK;
int halted;
retval = aarch64_check_state_one(target,
PRSR_HALT, PRSR_HALT, &halted, NULL);
if (retval != ERROR_OK)
return retval;
if (halted) {
prev_target_state = target->state;
if (prev_target_state != TARGET_HALTED) {
enum target_debug_reason debug_reason = target->debug_reason;
/* We have a halting debug event */
target->state = TARGET_HALTED;
LOG_DEBUG("Target %s halted", target_name(target));
retval = aarch64_debug_entry(target);
if (retval != ERROR_OK)
return retval;
if (target->smp)
update_halt_gdb(target, debug_reason);
if (arm_semihosting(target, &retval) != 0)
return retval;
switch (prev_target_state) {
case TARGET_RUNNING:
case TARGET_UNKNOWN:
case TARGET_RESET:
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
break;
case TARGET_DEBUG_RUNNING:
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
break;
default:
break;
}
}
} else
target->state = TARGET_RUNNING;
return retval;
}
static int aarch64_halt(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
armv8->last_run_control_op = ARMV8_RUNCONTROL_HALT;
if (target->smp)
return aarch64_halt_smp(target, false);
return aarch64_halt_one(target, HALT_SYNC);
}
static int aarch64_restore_one(struct target *target, int current,
uint64_t *address, int handle_breakpoints, int debug_execution)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm *arm = &armv8->arm;
int retval;
uint64_t resume_pc;
LOG_DEBUG("%s", target_name(target));
if (!debug_execution)
target_free_all_working_areas(target);
/* current = 1: continue on current pc, otherwise continue at <address> */
resume_pc = buf_get_u64(arm->pc->value, 0, 64);
if (!current)
resume_pc = *address;
else
*address = resume_pc;
/* Make sure that the Armv7 gdb thumb fixups does not
* kill the return address
*/
switch (arm->core_state) {
case ARM_STATE_ARM:
resume_pc &= 0xFFFFFFFC;
break;
case ARM_STATE_AARCH64:
resume_pc &= 0xFFFFFFFFFFFFFFFC;
break;
case ARM_STATE_THUMB:
case ARM_STATE_THUMB_EE:
/* When the return address is loaded into PC
* bit 0 must be 1 to stay in Thumb state
*/
resume_pc |= 0x1;
break;
case ARM_STATE_JAZELLE:
LOG_ERROR("How do I resume into Jazelle state??");
return ERROR_FAIL;
}
LOG_DEBUG("resume pc = 0x%016" PRIx64, resume_pc);
buf_set_u64(arm->pc->value, 0, 64, resume_pc);
arm->pc->dirty = true;
arm->pc->valid = true;
/* called it now before restoring context because it uses cpu
* register r0 for restoring system control register */
retval = aarch64_restore_system_control_reg(target);
if (retval == ERROR_OK)
retval = aarch64_restore_context(target, handle_breakpoints);
return retval;
}
/**
* prepare single target for restart
*
*
*/
static int aarch64_prepare_restart_one(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
int retval;
uint32_t dscr;
uint32_t tmp;
LOG_DEBUG("%s", target_name(target));
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
if (retval != ERROR_OK)
return retval;
if ((dscr & DSCR_ITE) == 0)
LOG_ERROR("DSCR.ITE must be set before leaving debug!");
if ((dscr & DSCR_ERR) != 0)
LOG_ERROR("DSCR.ERR must be cleared before leaving debug!");
/* acknowledge a pending CTI halt event */
retval = arm_cti_ack_events(armv8->cti, CTI_TRIG(HALT));
/*
* open the CTI gate for channel 1 so that the restart events
* get passed along to all PEs. Also close gate for channel 0
* to isolate the PE from halt events.
*/
if (retval == ERROR_OK)
retval = arm_cti_ungate_channel(armv8->cti, 1);
if (retval == ERROR_OK)
retval = arm_cti_gate_channel(armv8->cti, 0);
/* make sure that DSCR.HDE is set */
if (retval == ERROR_OK) {
dscr |= DSCR_HDE;
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, dscr);
}
if (retval == ERROR_OK) {
/* clear sticky bits in PRSR, SDR is now 0 */
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_PRSR, &tmp);
}
return retval;
}
static int aarch64_do_restart_one(struct target *target, enum restart_mode mode)
{
struct armv8_common *armv8 = target_to_armv8(target);
int retval;
LOG_DEBUG("%s", target_name(target));
/* trigger an event on channel 1, generates a restart request to the PE */
retval = arm_cti_pulse_channel(armv8->cti, 1);
if (retval != ERROR_OK)
return retval;
if (mode == RESTART_SYNC) {
int64_t then = timeval_ms();
for (;;) {
int resumed;
/*
* if PRSR.SDR is set now, the target did restart, even
* if it's now already halted again (e.g. due to breakpoint)
*/
retval = aarch64_check_state_one(target,
PRSR_SDR, PRSR_SDR, &resumed, NULL);
if (retval != ERROR_OK || resumed)
break;
if (timeval_ms() > then + 1000) {
LOG_ERROR("%s: Timeout waiting for resume"PRIx32, target_name(target));
retval = ERROR_TARGET_TIMEOUT;
break;
}
}
}
if (retval != ERROR_OK)
return retval;
target->debug_reason = DBG_REASON_NOTHALTED;
target->state = TARGET_RUNNING;
return ERROR_OK;
}
static int aarch64_restart_one(struct target *target, enum restart_mode mode)
{
int retval;
LOG_DEBUG("%s", target_name(target));
retval = aarch64_prepare_restart_one(target);
if (retval == ERROR_OK)
retval = aarch64_do_restart_one(target, mode);
return retval;
}
/*
* prepare all but the current target for restart
*/
static int aarch64_prep_restart_smp(struct target *target, int handle_breakpoints, struct target **p_first)
{
int retval = ERROR_OK;
struct target_list *head;
struct target *first = NULL;
uint64_t address;
foreach_smp_target(head, target->smp_targets) {
struct target *curr = head->target;
/* skip calling target */
if (curr == target)
continue;
if (!target_was_examined(curr))
continue;
if (curr->state != TARGET_HALTED)
continue;
/* resume at current address, not in step mode */
retval = aarch64_restore_one(curr, 1, &address, handle_breakpoints, 0);
if (retval == ERROR_OK)
retval = aarch64_prepare_restart_one(curr);
if (retval != ERROR_OK) {
LOG_ERROR("failed to restore target %s", target_name(curr));
break;
}
/* remember the first valid target in the group */
if (!first)
first = curr;
}
if (p_first)
*p_first = first;
return retval;
}
static int aarch64_step_restart_smp(struct target *target)
{
int retval = ERROR_OK;
struct target_list *head;
struct target *first = NULL;
LOG_DEBUG("%s", target_name(target));
retval = aarch64_prep_restart_smp(target, 0, &first);
if (retval != ERROR_OK)
return retval;
if (first)
retval = aarch64_do_restart_one(first, RESTART_LAZY);
if (retval != ERROR_OK) {
LOG_DEBUG("error restarting target %s", target_name(first));
return retval;
}
int64_t then = timeval_ms();
for (;;) {
struct target *curr = target;
bool all_resumed = true;
foreach_smp_target(head, target->smp_targets) {
uint32_t prsr;
int resumed;
curr = head->target;
if (curr == target)
continue;
if (!target_was_examined(curr))
continue;
retval = aarch64_check_state_one(curr,
PRSR_SDR, PRSR_SDR, &resumed, &prsr);
if (retval != ERROR_OK || (!resumed && (prsr & PRSR_HALT))) {
all_resumed = false;
break;
}
if (curr->state != TARGET_RUNNING) {
curr->state = TARGET_RUNNING;
curr->debug_reason = DBG_REASON_NOTHALTED;
target_call_event_callbacks(curr, TARGET_EVENT_RESUMED);
}
}
if (all_resumed)
break;
if (timeval_ms() > then + 1000) {
LOG_ERROR("%s: timeout waiting for target resume", __func__);
retval = ERROR_TARGET_TIMEOUT;
break;
}
/*
* HACK: on Hi6220 there are 8 cores organized in 2 clusters
* and it looks like the CTI's are not connected by a common
* trigger matrix. It seems that we need to halt one core in each
* cluster explicitly. So if we find that a core has not halted
* yet, we trigger an explicit resume for the second cluster.
*/
retval = aarch64_do_restart_one(curr, RESTART_LAZY);
if (retval != ERROR_OK)
break;
}
return retval;
}
static int aarch64_resume(struct target *target, int current,
target_addr_t address, int handle_breakpoints, int debug_execution)
{
int retval = 0;
uint64_t addr = address;
struct armv8_common *armv8 = target_to_armv8(target);
armv8->last_run_control_op = ARMV8_RUNCONTROL_RESUME;
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
/*
* If this target is part of a SMP group, prepare the others
* targets for resuming. This involves restoring the complete
* target register context and setting up CTI gates to accept
* resume events from the trigger matrix.
*/
if (target->smp) {
retval = aarch64_prep_restart_smp(target, handle_breakpoints, NULL);
if (retval != ERROR_OK)
return retval;
}
/* all targets prepared, restore and restart the current target */
retval = aarch64_restore_one(target, current, &addr, handle_breakpoints,
debug_execution);
if (retval == ERROR_OK)
retval = aarch64_restart_one(target, RESTART_SYNC);
if (retval != ERROR_OK)
return retval;
if (target->smp) {
int64_t then = timeval_ms();
for (;;) {
struct target *curr = target;
struct target_list *head;
bool all_resumed = true;
foreach_smp_target(head, target->smp_targets) {
uint32_t prsr;
int resumed;
curr = head->target;
if (curr == target)
continue;
if (!target_was_examined(curr))
continue;
retval = aarch64_check_state_one(curr,
PRSR_SDR, PRSR_SDR, &resumed, &prsr);
if (retval != ERROR_OK || (!resumed && (prsr & PRSR_HALT))) {
all_resumed = false;
break;
}
if (curr->state != TARGET_RUNNING) {
curr->state = TARGET_RUNNING;
curr->debug_reason = DBG_REASON_NOTHALTED;
target_call_event_callbacks(curr, TARGET_EVENT_RESUMED);
}
}
if (all_resumed)
break;
if (timeval_ms() > then + 1000) {
LOG_ERROR("%s: timeout waiting for target %s to resume", __func__, target_name(curr));
retval = ERROR_TARGET_TIMEOUT;
break;
}
/*
* HACK: on Hi6220 there are 8 cores organized in 2 clusters
* and it looks like the CTI's are not connected by a common
* trigger matrix. It seems that we need to halt one core in each
* cluster explicitly. So if we find that a core has not halted
* yet, we trigger an explicit resume for the second cluster.
*/
retval = aarch64_do_restart_one(curr, RESTART_LAZY);
if (retval != ERROR_OK)
break;
}
}
if (retval != ERROR_OK)
return retval;
target->debug_reason = DBG_REASON_NOTHALTED;
if (!debug_execution) {
target->state = TARGET_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
} else {
target->state = TARGET_DEBUG_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
}
return ERROR_OK;
}
static int aarch64_debug_entry(struct target *target)
{
int retval = ERROR_OK;
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = &armv8->dpm;
enum arm_state core_state;
uint32_t dscr;
/* make sure to clear all sticky errors */
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
if (retval == ERROR_OK)
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
if (retval == ERROR_OK)
retval = arm_cti_ack_events(armv8->cti, CTI_TRIG(HALT));
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("%s dscr = 0x%08" PRIx32, target_name(target), dscr);
dpm->dscr = dscr;
core_state = armv8_dpm_get_core_state(dpm);
armv8_select_opcodes(armv8, core_state == ARM_STATE_AARCH64);
armv8_select_reg_access(armv8, core_state == ARM_STATE_AARCH64);
/* close the CTI gate for all events */
if (retval == ERROR_OK)
retval = arm_cti_write_reg(armv8->cti, CTI_GATE, 0);
/* discard async exceptions */
if (retval == ERROR_OK)
retval = dpm->instr_cpsr_sync(dpm);
if (retval != ERROR_OK)
return retval;
/* Examine debug reason */
armv8_dpm_report_dscr(dpm, dscr);
/* save the memory address that triggered the watchpoint */
if (target->debug_reason == DBG_REASON_WATCHPOINT) {
uint32_t tmp;
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_EDWAR0, &tmp);
if (retval != ERROR_OK)
return retval;
target_addr_t edwar = tmp;
/* EDWAR[63:32] has unknown content in aarch32 state */
if (core_state == ARM_STATE_AARCH64) {
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_EDWAR1, &tmp);
if (retval != ERROR_OK)
return retval;
edwar |= ((target_addr_t)tmp) << 32;
}
armv8->dpm.wp_addr = edwar;
}
retval = armv8_dpm_read_current_registers(&armv8->dpm);
if (retval == ERROR_OK && armv8->post_debug_entry)
retval = armv8->post_debug_entry(target);
return retval;
}
static int aarch64_post_debug_entry(struct target *target)
{
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = &aarch64->armv8_common;
int retval;
enum arm_mode target_mode = ARM_MODE_ANY;
uint32_t instr;
switch (armv8->arm.core_mode) {
case ARMV8_64_EL0T:
target_mode = ARMV8_64_EL1H;
/* fall through */
case ARMV8_64_EL1T:
case ARMV8_64_EL1H:
instr = ARMV8_MRS(SYSTEM_SCTLR_EL1, 0);
break;
case ARMV8_64_EL2T:
case ARMV8_64_EL2H:
instr = ARMV8_MRS(SYSTEM_SCTLR_EL2, 0);
break;
case ARMV8_64_EL3H:
case ARMV8_64_EL3T:
instr = ARMV8_MRS(SYSTEM_SCTLR_EL3, 0);
break;
case ARM_MODE_SVC:
case ARM_MODE_ABT:
case ARM_MODE_FIQ:
case ARM_MODE_IRQ:
case ARM_MODE_HYP:
case ARM_MODE_UND:
case ARM_MODE_SYS:
instr = ARMV4_5_MRC(15, 0, 0, 1, 0, 0);
break;
default:
LOG_ERROR("cannot read system control register in this mode: (%s : 0x%x)",
armv8_mode_name(armv8->arm.core_mode), armv8->arm.core_mode);
return ERROR_FAIL;
}
if (target_mode != ARM_MODE_ANY)
armv8_dpm_modeswitch(&armv8->dpm, target_mode);
retval = armv8->dpm.instr_read_data_r0(&armv8->dpm, instr, &aarch64->system_control_reg);
if (retval != ERROR_OK)
return retval;
if (target_mode != ARM_MODE_ANY)
armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
aarch64->system_control_reg_curr = aarch64->system_control_reg;
if (armv8->armv8_mmu.armv8_cache.info == -1) {
armv8_identify_cache(armv8);
armv8_read_mpidr(armv8);
}
armv8->armv8_mmu.mmu_enabled =
(aarch64->system_control_reg & 0x1U) ? 1 : 0;
armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
(aarch64->system_control_reg & 0x4U) ? 1 : 0;
armv8->armv8_mmu.armv8_cache.i_cache_enabled =
(aarch64->system_control_reg & 0x1000U) ? 1 : 0;
return ERROR_OK;
}
/*
* single-step a target
*/
static int aarch64_step(struct target *target, int current, target_addr_t address,
int handle_breakpoints)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct aarch64_common *aarch64 = target_to_aarch64(target);
int saved_retval = ERROR_OK;
int retval;
uint32_t edecr;
armv8->last_run_control_op = ARMV8_RUNCONTROL_STEP;
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
/* make sure EDECR.SS is not set when restoring the register */
if (retval == ERROR_OK) {
edecr &= ~0x4;
/* set EDECR.SS to enter hardware step mode */
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
}
/* disable interrupts while stepping */
if (retval == ERROR_OK && aarch64->isrmasking_mode == AARCH64_ISRMASK_ON)
retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
/* bail out if stepping setup has failed */
if (retval != ERROR_OK)
return retval;
if (target->smp && (current == 1)) {
/*
* isolate current target so that it doesn't get resumed
* together with the others
*/
retval = arm_cti_gate_channel(armv8->cti, 1);
/* resume all other targets in the group */
if (retval == ERROR_OK)
retval = aarch64_step_restart_smp(target);
if (retval != ERROR_OK) {
LOG_ERROR("Failed to restart non-stepping targets in SMP group");
return retval;
}
LOG_DEBUG("Restarted all non-stepping targets in SMP group");
}
/* all other targets running, restore and restart the current target */
retval = aarch64_restore_one(target, current, &address, 0, 0);
if (retval == ERROR_OK)
retval = aarch64_restart_one(target, RESTART_LAZY);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("target step-resumed at 0x%" PRIx64, address);
if (!handle_breakpoints)
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
int64_t then = timeval_ms();
for (;;) {
int stepped;
uint32_t prsr;
retval = aarch64_check_state_one(target,
PRSR_SDR|PRSR_HALT, PRSR_SDR|PRSR_HALT, &stepped, &prsr);
if (retval != ERROR_OK || stepped)
break;
if (timeval_ms() > then + 100) {
LOG_ERROR("timeout waiting for target %s halt after step",
target_name(target));
retval = ERROR_TARGET_TIMEOUT;
break;
}
}
/*
* At least on one SoC (Renesas R8A7795) stepping over a WFI instruction
* causes a timeout. The core takes the step but doesn't complete it and so
* debug state is never entered. However, you can manually halt the core
* as an external debug even is also a WFI wakeup event.
*/
if (retval == ERROR_TARGET_TIMEOUT)
saved_retval = aarch64_halt_one(target, HALT_SYNC);
/* restore EDECR */
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_EDECR, edecr);
if (retval != ERROR_OK)
return retval;
/* restore interrupts */
if (aarch64->isrmasking_mode == AARCH64_ISRMASK_ON) {
retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
if (retval != ERROR_OK)
return ERROR_OK;
}
if (saved_retval != ERROR_OK)
return saved_retval;
return ERROR_OK;
}
static int aarch64_restore_context(struct target *target, bool bpwp)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm *arm = &armv8->arm;
int retval;
LOG_DEBUG("%s", target_name(target));
if (armv8->pre_restore_context)
armv8->pre_restore_context(target);
retval = armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
if (retval == ERROR_OK) {
/* registers are now invalid */
register_cache_invalidate(arm->core_cache);
register_cache_invalidate(arm->core_cache->next);
}
return retval;
}
/*
* Cortex-A8 Breakpoint and watchpoint functions
*/
/* Setup hardware Breakpoint Register Pair */
static int aarch64_set_breakpoint(struct target *target,
struct breakpoint *breakpoint, uint8_t matchmode)
{
int retval;
int brp_i = 0;
uint32_t control;
uint8_t byte_addr_select = 0x0F;
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = &aarch64->armv8_common;
struct aarch64_brp *brp_list = aarch64->brp_list;
if (breakpoint->is_set) {
LOG_WARNING("breakpoint already set");
return ERROR_OK;
}
if (breakpoint->type == BKPT_HARD) {
int64_t bpt_value;
while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
brp_i++;
if (brp_i >= aarch64->brp_num) {
LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
breakpoint_hw_set(breakpoint, brp_i);
if (breakpoint->length == 2)
byte_addr_select = (3 << (breakpoint->address & 0x02));
control = ((matchmode & 0x7) << 20)
| (1 << 13)
| (byte_addr_select << 5)
| (3 << 1) | 1;
brp_list[brp_i].used = 1;
brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
brp_list[brp_i].control = control;
bpt_value = brp_list[brp_i].value;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
(uint32_t)(bpt_value & 0xFFFFFFFF));
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
(uint32_t)(bpt_value >> 32));
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
brp_list[brp_i].control);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
brp_list[brp_i].control,
brp_list[brp_i].value);
} else if (breakpoint->type == BKPT_SOFT) {
uint32_t opcode;
uint8_t code[4];
if (armv8_dpm_get_core_state(&armv8->dpm) == ARM_STATE_AARCH64) {
opcode = ARMV8_HLT(11);
if (breakpoint->length != 4)
LOG_ERROR("bug: breakpoint length should be 4 in AArch64 mode");
} else {
/**
* core_state is ARM_STATE_ARM
* in that case the opcode depends on breakpoint length:
* - if length == 4 => A32 opcode
* - if length == 2 => T32 opcode
* - if length == 3 => T32 opcode (refer to gdb doc : ARM-Breakpoint-Kinds)
* in that case the length should be changed from 3 to 4 bytes
**/
opcode = (breakpoint->length == 4) ? ARMV8_HLT_A1(11) :
(uint32_t) (ARMV8_HLT_T1(11) | ARMV8_HLT_T1(11) << 16);
if (breakpoint->length == 3)
breakpoint->length = 4;
}
buf_set_u32(code, 0, 32, opcode);
retval = target_read_memory(target,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
breakpoint->length, 1,
breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
armv8_cache_d_inner_flush_virt(armv8,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
breakpoint->length);
retval = target_write_memory(target,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
breakpoint->length, 1, code);
if (retval != ERROR_OK)
return retval;
armv8_cache_d_inner_flush_virt(armv8,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
breakpoint->length);
armv8_cache_i_inner_inval_virt(armv8,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
breakpoint->length);
breakpoint->is_set = true;
}
/* Ensure that halting debug mode is enable */
retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
if (retval != ERROR_OK) {
LOG_DEBUG("Failed to set DSCR.HDE");
return retval;
}
return ERROR_OK;
}
static int aarch64_set_context_breakpoint(struct target *target,
struct breakpoint *breakpoint, uint8_t matchmode)
{
int retval = ERROR_FAIL;
int brp_i = 0;
uint32_t control;
uint8_t byte_addr_select = 0x0F;
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = &aarch64->armv8_common;
struct aarch64_brp *brp_list = aarch64->brp_list;
if (breakpoint->is_set) {
LOG_WARNING("breakpoint already set");
return retval;
}
/*check available context BRPs*/
while ((brp_list[brp_i].used ||
(brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
brp_i++;
if (brp_i >= aarch64->brp_num) {
LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
return ERROR_FAIL;
}
breakpoint_hw_set(breakpoint, brp_i);
control = ((matchmode & 0x7) << 20)
| (1 << 13)
| (byte_addr_select << 5)
| (3 << 1) | 1;
brp_list[brp_i].used = 1;
brp_list[brp_i].value = (breakpoint->asid);
brp_list[brp_i].control = control;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
brp_list[brp_i].value);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
brp_list[brp_i].control);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
brp_list[brp_i].control,
brp_list[brp_i].value);
return ERROR_OK;
}
static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
int retval = ERROR_FAIL;
int brp_1 = 0; /* holds the contextID pair */
int brp_2 = 0; /* holds the IVA pair */
uint32_t control_ctx, control_iva;
uint8_t ctx_byte_addr_select = 0x0F;
uint8_t iva_byte_addr_select = 0x0F;
uint8_t ctx_machmode = 0x03;
uint8_t iva_machmode = 0x01;
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = &aarch64->armv8_common;
struct aarch64_brp *brp_list = aarch64->brp_list;
if (breakpoint->is_set) {
LOG_WARNING("breakpoint already set");
return retval;
}
/*check available context BRPs*/
while ((brp_list[brp_1].used ||
(brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
brp_1++;
LOG_DEBUG("brp(CTX) found num: %d", brp_1);
if (brp_1 >= aarch64->brp_num) {
LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
return ERROR_FAIL;
}
while ((brp_list[brp_2].used ||
(brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
brp_2++;
LOG_DEBUG("brp(IVA) found num: %d", brp_2);
if (brp_2 >= aarch64->brp_num) {
LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
return ERROR_FAIL;
}
breakpoint_hw_set(breakpoint, brp_1);
breakpoint->linked_brp = brp_2;
control_ctx = ((ctx_machmode & 0x7) << 20)
| (brp_2 << 16)
| (0 << 14)
| (ctx_byte_addr_select << 5)
| (3 << 1) | 1;
brp_list[brp_1].used = 1;
brp_list[brp_1].value = (breakpoint->asid);
brp_list[brp_1].control = control_ctx;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].brpn,
brp_list[brp_1].value);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].brpn,
brp_list[brp_1].control);
if (retval != ERROR_OK)
return retval;
control_iva = ((iva_machmode & 0x7) << 20)
| (brp_1 << 16)
| (1 << 13)
| (iva_byte_addr_select << 5)
| (3 << 1) | 1;
brp_list[brp_2].used = 1;
brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
brp_list[brp_2].control = control_iva;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].brpn,
brp_list[brp_2].value & 0xFFFFFFFF);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].brpn,
brp_list[brp_2].value >> 32);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].brpn,
brp_list[brp_2].control);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
int retval;
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = &aarch64->armv8_common;
struct aarch64_brp *brp_list = aarch64->brp_list;
if (!breakpoint->is_set) {
LOG_WARNING("breakpoint not set");
return ERROR_OK;
}
if (breakpoint->type == BKPT_HARD) {
if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
int brp_i = breakpoint->number;
int brp_j = breakpoint->linked_brp;
if (brp_i >= aarch64->brp_num) {
LOG_DEBUG("Invalid BRP number in breakpoint");
return ERROR_OK;
}
LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
brp_list[brp_i].control, brp_list[brp_i].value);
brp_list[brp_i].used = 0;
brp_list[brp_i].value = 0;
brp_list[brp_i].control = 0;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
brp_list[brp_i].control);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
(uint32_t)brp_list[brp_i].value);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
(uint32_t)brp_list[brp_i].value);
if (retval != ERROR_OK)
return retval;
if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
LOG_DEBUG("Invalid BRP number in breakpoint");
return ERROR_OK;
}
LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
brp_list[brp_j].control, brp_list[brp_j].value);
brp_list[brp_j].used = 0;
brp_list[brp_j].value = 0;
brp_list[brp_j].control = 0;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].brpn,
brp_list[brp_j].control);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].brpn,
(uint32_t)brp_list[brp_j].value);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].brpn,
(uint32_t)brp_list[brp_j].value);
if (retval != ERROR_OK)
return retval;
breakpoint->linked_brp = 0;
breakpoint->is_set = false;
return ERROR_OK;
} else {
int brp_i = breakpoint->number;
if (brp_i >= aarch64->brp_num) {
LOG_DEBUG("Invalid BRP number in breakpoint");
return ERROR_OK;
}
LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
brp_list[brp_i].control, brp_list[brp_i].value);
brp_list[brp_i].used = 0;
brp_list[brp_i].value = 0;
brp_list[brp_i].control = 0;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
brp_list[brp_i].control);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
brp_list[brp_i].value);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
(uint32_t)brp_list[brp_i].value);
if (retval != ERROR_OK)
return retval;
breakpoint->is_set = false;
return ERROR_OK;
}
} else {
/* restore original instruction (kept in target endianness) */
armv8_cache_d_inner_flush_virt(armv8,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
breakpoint->length);
if (breakpoint->length == 4) {
retval = target_write_memory(target,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
4, 1, breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
} else {
retval = target_write_memory(target,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
2, 1, breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
}
armv8_cache_d_inner_flush_virt(armv8,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
breakpoint->length);
armv8_cache_i_inner_inval_virt(armv8,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
breakpoint->length);
}
breakpoint->is_set = false;
return ERROR_OK;
}
static int aarch64_add_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
struct aarch64_common *aarch64 = target_to_aarch64(target);
if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
LOG_INFO("no hardware breakpoint available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (breakpoint->type == BKPT_HARD)
aarch64->brp_num_available--;
return aarch64_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
}
static int aarch64_add_context_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
struct aarch64_common *aarch64 = target_to_aarch64(target);
if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
LOG_INFO("no hardware breakpoint available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (breakpoint->type == BKPT_HARD)
aarch64->brp_num_available--;
return aarch64_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
}
static int aarch64_add_hybrid_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
struct aarch64_common *aarch64 = target_to_aarch64(target);
if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
LOG_INFO("no hardware breakpoint available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (breakpoint->type == BKPT_HARD)
aarch64->brp_num_available--;
return aarch64_set_hybrid_breakpoint(target, breakpoint); /* ??? */
}
static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
struct aarch64_common *aarch64 = target_to_aarch64(target);
#if 0
/* It is perfectly possible to remove breakpoints while the target is running */
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
#endif
if (breakpoint->is_set) {
aarch64_unset_breakpoint(target, breakpoint);
if (breakpoint->type == BKPT_HARD)
aarch64->brp_num_available++;
}
return ERROR_OK;
}
/* Setup hardware Watchpoint Register Pair */
static int aarch64_set_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
int retval;
int wp_i = 0;
uint32_t control, offset, length;
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = &aarch64->armv8_common;
struct aarch64_brp *wp_list = aarch64->wp_list;
if (watchpoint->is_set) {
LOG_WARNING("watchpoint already set");
return ERROR_OK;
}
while (wp_list[wp_i].used && (wp_i < aarch64->wp_num))
wp_i++;
if (wp_i >= aarch64->wp_num) {
LOG_ERROR("ERROR Can not find free Watchpoint Register Pair");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
control = (1 << 0) /* enable */
| (3 << 1) /* both user and privileged access */
| (1 << 13); /* higher mode control */
switch (watchpoint->rw) {
case WPT_READ:
control |= 1 << 3;
break;
case WPT_WRITE:
control |= 2 << 3;
break;
case WPT_ACCESS:
control |= 3 << 3;
break;
}
/* Match up to 8 bytes. */
offset = watchpoint->address & 7;
length = watchpoint->length;
if (offset + length > sizeof(uint64_t)) {
length = sizeof(uint64_t) - offset;
LOG_WARNING("Adjust watchpoint match inside 8-byte boundary");
}
for (; length > 0; offset++, length--)
control |= (1 << offset) << 5;
wp_list[wp_i].value = watchpoint->address & 0xFFFFFFFFFFFFFFF8ULL;
wp_list[wp_i].control = control;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_WVR_BASE + 16 * wp_list[wp_i].brpn,
(uint32_t)(wp_list[wp_i].value & 0xFFFFFFFF));
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_WVR_BASE + 4 + 16 * wp_list[wp_i].brpn,
(uint32_t)(wp_list[wp_i].value >> 32));
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_WCR_BASE + 16 * wp_list[wp_i].brpn,
control);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("wp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, wp_i,
wp_list[wp_i].control, wp_list[wp_i].value);
/* Ensure that halting debug mode is enable */
retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
if (retval != ERROR_OK) {
LOG_DEBUG("Failed to set DSCR.HDE");
return retval;
}
wp_list[wp_i].used = 1;
watchpoint_set(watchpoint, wp_i);
return ERROR_OK;
}
/* Clear hardware Watchpoint Register Pair */
static int aarch64_unset_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
int retval;
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = &aarch64->armv8_common;
struct aarch64_brp *wp_list = aarch64->wp_list;
if (!watchpoint->is_set) {
LOG_WARNING("watchpoint not set");
return ERROR_OK;
}
int wp_i = watchpoint->number;
if (wp_i >= aarch64->wp_num) {
LOG_DEBUG("Invalid WP number in watchpoint");
return ERROR_OK;
}
LOG_DEBUG("rwp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, wp_i,
wp_list[wp_i].control, wp_list[wp_i].value);
wp_list[wp_i].used = 0;
wp_list[wp_i].value = 0;
wp_list[wp_i].control = 0;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_WCR_BASE + 16 * wp_list[wp_i].brpn,
wp_list[wp_i].control);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_WVR_BASE + 16 * wp_list[wp_i].brpn,
wp_list[wp_i].value);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_WVR_BASE + 4 + 16 * wp_list[wp_i].brpn,
(uint32_t)wp_list[wp_i].value);
if (retval != ERROR_OK)
return retval;
watchpoint->is_set = false;
return ERROR_OK;
}
static int aarch64_add_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
int retval;
struct aarch64_common *aarch64 = target_to_aarch64(target);
if (aarch64->wp_num_available < 1) {
LOG_INFO("no hardware watchpoint available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = aarch64_set_watchpoint(target, watchpoint);
if (retval == ERROR_OK)
aarch64->wp_num_available--;
return retval;
}
static int aarch64_remove_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
struct aarch64_common *aarch64 = target_to_aarch64(target);
if (watchpoint->is_set) {
aarch64_unset_watchpoint(target, watchpoint);
aarch64->wp_num_available++;
}
return ERROR_OK;
}
/**
* find out which watchpoint hits
* get exception address and compare the address to watchpoints
*/
int aarch64_hit_watchpoint(struct target *target,
struct watchpoint **hit_watchpoint)
{
if (target->debug_reason != DBG_REASON_WATCHPOINT)
return ERROR_FAIL;
struct armv8_common *armv8 = target_to_armv8(target);
target_addr_t exception_address;
struct watchpoint *wp;
exception_address = armv8->dpm.wp_addr;
if (exception_address == 0xFFFFFFFF)
return ERROR_FAIL;
for (wp = target->watchpoints; wp; wp = wp->next)
if (exception_address >= wp->address && exception_address < (wp->address + wp->length)) {
*hit_watchpoint = wp;
return ERROR_OK;
}
return ERROR_FAIL;
}
/*
* Cortex-A8 Reset functions
*/
static int aarch64_enable_reset_catch(struct target *target, bool enable)
{
struct armv8_common *armv8 = target_to_armv8(target);
uint32_t edecr;
int retval;
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
LOG_DEBUG("EDECR = 0x%08" PRIx32 ", enable=%d", edecr, enable);
if (retval != ERROR_OK)
return retval;
if (enable)
edecr |= ECR_RCE;
else
edecr &= ~ECR_RCE;
return mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_EDECR, edecr);
}
static int aarch64_clear_reset_catch(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
uint32_t edesr;
int retval;
bool was_triggered;
/* check if Reset Catch debug event triggered as expected */
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_EDESR, &edesr);
if (retval != ERROR_OK)
return retval;
was_triggered = !!(edesr & ESR_RC);
LOG_DEBUG("Reset Catch debug event %s",
was_triggered ? "triggered" : "NOT triggered!");
if (was_triggered) {
/* clear pending Reset Catch debug event */
edesr &= ~ESR_RC;
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_EDESR, edesr);
if (retval != ERROR_OK)
return retval;
}
return ERROR_OK;
}
static int aarch64_assert_reset(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
enum reset_types reset_config = jtag_get_reset_config();
int retval;
LOG_DEBUG(" ");
/* Issue some kind of warm reset. */
if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
else if (reset_config & RESET_HAS_SRST) {
bool srst_asserted = false;
if (target->reset_halt && !(reset_config & RESET_SRST_PULLS_TRST)) {
if (target_was_examined(target)) {
if (reset_config & RESET_SRST_NO_GATING) {
/*
* SRST needs to be asserted *before* Reset Catch
* debug event can be set up.
*/
adapter_assert_reset();
srst_asserted = true;
}
/* make sure to clear all sticky errors */
mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
/* set up Reset Catch debug event to halt the CPU after reset */
retval = aarch64_enable_reset_catch(target, true);
if (retval != ERROR_OK)
LOG_WARNING("%s: Error enabling Reset Catch debug event; the CPU will not halt immediately after reset!",
target_name(target));
} else {
LOG_WARNING("%s: Target not examined, will not halt immediately after reset!",
target_name(target));
}
}
/* REVISIT handle "pulls" cases, if there's
* hardware that needs them to work.
*/
if (!srst_asserted)
adapter_assert_reset();
} else {
LOG_ERROR("%s: how to reset?", target_name(target));
return ERROR_FAIL;
}
/* registers are now invalid */
if (target_was_examined(target)) {
register_cache_invalidate(armv8->arm.core_cache);
register_cache_invalidate(armv8->arm.core_cache->next);
}
target->state = TARGET_RESET;
return ERROR_OK;
}
static int aarch64_deassert_reset(struct target *target)
{
int retval;
LOG_DEBUG(" ");
/* be certain SRST is off */
adapter_deassert_reset();
if (!target_was_examined(target))
return ERROR_OK;
retval = aarch64_init_debug_access(target);
if (retval != ERROR_OK)
return retval;
retval = aarch64_poll(target);
if (retval != ERROR_OK)
return retval;
if (target->reset_halt) {
/* clear pending Reset Catch debug event */
retval = aarch64_clear_reset_catch(target);
if (retval != ERROR_OK)
LOG_WARNING("%s: Clearing Reset Catch debug event failed",
target_name(target));
/* disable Reset Catch debug event */
retval = aarch64_enable_reset_catch(target, false);
if (retval != ERROR_OK)
LOG_WARNING("%s: Disabling Reset Catch debug event failed",
target_name(target));
if (target->state != TARGET_HALTED) {
LOG_WARNING("%s: ran after reset and before halt ...",
target_name(target));
if (target_was_examined(target)) {
retval = aarch64_halt_one(target, HALT_LAZY);
if (retval != ERROR_OK)
return retval;
} else {
target->state = TARGET_UNKNOWN;
}
}
}
return ERROR_OK;
}
static int aarch64_write_cpu_memory_slow(struct target *target,
uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = &armv8->dpm;
struct arm *arm = &armv8->arm;
int retval;
armv8_reg_current(arm, 1)->dirty = true;
/* change DCC to normal mode if necessary */
if (*dscr & DSCR_MA) {
*dscr &= ~DSCR_MA;
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
if (retval != ERROR_OK)
return retval;
}
while (count) {
uint32_t data, opcode;
/* write the data to store into DTRRX */
if (size == 1)
data = *buffer;
else if (size == 2)
data = target_buffer_get_u16(target, buffer);
else
data = target_buffer_get_u32(target, buffer);
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DTRRX, data);
if (retval != ERROR_OK)
return retval;
if (arm->core_state == ARM_STATE_AARCH64)
retval = dpm->instr_execute(dpm, ARMV8_MRS(SYSTEM_DBG_DTRRX_EL0, 1));
else
retval = dpm->instr_execute(dpm, ARMV4_5_MRC(14, 0, 1, 0, 5, 0));
if (retval != ERROR_OK)
return retval;
if (size == 1)
opcode = armv8_opcode(armv8, ARMV8_OPC_STRB_IP);
else if (size == 2)
opcode = armv8_opcode(armv8, ARMV8_OPC_STRH_IP);
else
opcode = armv8_opcode(armv8, ARMV8_OPC_STRW_IP);
retval = dpm->instr_execute(dpm, opcode);
if (retval != ERROR_OK)
return retval;
/* Advance */
buffer += size;
--count;
}
return ERROR_OK;
}
static int aarch64_write_cpu_memory_fast(struct target *target,
uint32_t count, const uint8_t *buffer, uint32_t *dscr)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm *arm = &armv8->arm;
int retval;
armv8_reg_current(arm, 1)->dirty = true;
/* Step 1.d - Change DCC to memory mode */
*dscr |= DSCR_MA;
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
if (retval != ERROR_OK)
return retval;
/* Step 2.a - Do the write */
retval = mem_ap_write_buf_noincr(armv8->debug_ap,
buffer, 4, count, armv8->debug_base + CPUV8_DBG_DTRRX);
if (retval != ERROR_OK)
return retval;
/* Step 3.a - Switch DTR mode back to Normal mode */
*dscr &= ~DSCR_MA;
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int aarch64_write_cpu_memory(struct target *target,
uint64_t address, uint32_t size,
uint32_t count, const uint8_t *buffer)
{
/* write memory through APB-AP */
int retval = ERROR_COMMAND_SYNTAX_ERROR;
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = &armv8->dpm;
struct arm *arm = &armv8->arm;
uint32_t dscr;
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Mark register X0 as dirty, as it will be used
* for transferring the data.
* It will be restored automatically when exiting
* debug mode
*/
armv8_reg_current(arm, 0)->dirty = true;
/* This algorithm comes from DDI0487A.g, chapter J9.1 */
/* Read DSCR */
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
if (retval != ERROR_OK)
return retval;
/* Set Normal access mode */
dscr = (dscr & ~DSCR_MA);
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, dscr);
if (retval != ERROR_OK)
return retval;
if (arm->core_state == ARM_STATE_AARCH64) {
/* Write X0 with value 'address' using write procedure */
/* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
/* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
retval = dpm->instr_write_data_dcc_64(dpm,
ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address);
} else {
/* Write R0 with value 'address' using write procedure */
/* Step 1.a+b - Write the address for read access into DBGDTRRX */
/* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
retval = dpm->instr_write_data_dcc(dpm,
ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address);
}
if (retval != ERROR_OK)
return retval;
if (size == 4 && (address % 4) == 0)
retval = aarch64_write_cpu_memory_fast(target, count, buffer, &dscr);
else
retval = aarch64_write_cpu_memory_slow(target, size, count, buffer, &dscr);
if (retval != ERROR_OK) {
/* Unset DTR mode */
mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
dscr &= ~DSCR_MA;
mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, dscr);
}
/* Check for sticky abort flags in the DSCR */
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
if (retval != ERROR_OK)
return retval;
dpm->dscr = dscr;
if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
/* Abort occurred - clear it and exit */
LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
armv8_dpm_handle_exception(dpm, true);
return ERROR_FAIL;
}
/* Done */
return ERROR_OK;
}
static int aarch64_read_cpu_memory_slow(struct target *target,
uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = &armv8->dpm;
struct arm *arm = &armv8->arm;
int retval;
armv8_reg_current(arm, 1)->dirty = true;
/* change DCC to normal mode (if necessary) */
if (*dscr & DSCR_MA) {
*dscr &= DSCR_MA;
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
if (retval != ERROR_OK)
return retval;
}
while (count) {
uint32_t opcode, data;
if (size == 1)
opcode = armv8_opcode(armv8, ARMV8_OPC_LDRB_IP);
else if (size == 2)
opcode = armv8_opcode(armv8, ARMV8_OPC_LDRH_IP);
else
opcode = armv8_opcode(armv8, ARMV8_OPC_LDRW_IP);
retval = dpm->instr_execute(dpm, opcode);
if (retval != ERROR_OK)
return retval;
if (arm->core_state == ARM_STATE_AARCH64)
retval = dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DTRTX_EL0, 1));
else
retval = dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 1, 0, 5, 0));
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DTRTX, &data);
if (retval != ERROR_OK)
return retval;
if (size == 1)
*buffer = (uint8_t)data;
else if (size == 2)
target_buffer_set_u16(target, buffer, (uint16_t)data);
else
target_buffer_set_u32(target, buffer, data);
/* Advance */
buffer += size;
--count;
}
return ERROR_OK;
}
static int aarch64_read_cpu_memory_fast(struct target *target,
uint32_t count, uint8_t *buffer, uint32_t *dscr)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = &armv8->dpm;
struct arm *arm = &armv8->arm;
int retval;
uint32_t value;
/* Mark X1 as dirty */
armv8_reg_current(arm, 1)->dirty = true;
if (arm->core_state == ARM_STATE_AARCH64) {
/* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
retval = dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0));
} else {
/* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
retval = dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
}
if (retval != ERROR_OK)
return retval;
/* Step 1.e - Change DCC to memory mode */
*dscr |= DSCR_MA;
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
if (retval != ERROR_OK)
return retval;
/* Step 1.f - read DBGDTRTX and discard the value */
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DTRTX, &value);
if (retval != ERROR_OK)
return retval;
count--;
/* Read the data - Each read of the DTRTX register causes the instruction to be reissued
* Abort flags are sticky, so can be read at end of transactions
*
* This data is read in aligned to 32 bit boundary.
*/
if (count) {
/* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
* increments X0 by 4. */
retval = mem_ap_read_buf_noincr(armv8->debug_ap, buffer, 4, count,
armv8->debug_base + CPUV8_DBG_DTRTX);
if (retval != ERROR_OK)
return retval;
}
/* Step 3.a - set DTR access mode back to Normal mode */
*dscr &= ~DSCR_MA;
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
if (retval != ERROR_OK)
return retval;
/* Step 3.b - read DBGDTRTX for the final value */
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DTRTX, &value);
if (retval != ERROR_OK)
return retval;
target_buffer_set_u32(target, buffer + count * 4, value);
return retval;
}
static int aarch64_read_cpu_memory(struct target *target,
target_addr_t address, uint32_t size,
uint32_t count, uint8_t *buffer)
{
/* read memory through APB-AP */
int retval = ERROR_COMMAND_SYNTAX_ERROR;
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = &armv8->dpm;
struct arm *arm = &armv8->arm;
uint32_t dscr;
LOG_DEBUG("Reading CPU memory address 0x%016" PRIx64 " size %" PRIu32 " count %" PRIu32,
address, size, count);
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Mark register X0 as dirty, as it will be used
* for transferring the data.
* It will be restored automatically when exiting
* debug mode
*/
armv8_reg_current(arm, 0)->dirty = true;
/* Read DSCR */
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
if (retval != ERROR_OK)
return retval;
/* This algorithm comes from DDI0487A.g, chapter J9.1 */
/* Set Normal access mode */
dscr &= ~DSCR_MA;
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, dscr);
if (retval != ERROR_OK)
return retval;
if (arm->core_state == ARM_STATE_AARCH64) {
/* Write X0 with value 'address' using write procedure */
/* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
/* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
retval = dpm->instr_write_data_dcc_64(dpm,
ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address);
} else {
/* Write R0 with value 'address' using write procedure */
/* Step 1.a+b - Write the address for read access into DBGDTRRXint */
/* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
retval = dpm->instr_write_data_dcc(dpm,
ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address);
}
if (retval != ERROR_OK)
return retval;
if (size == 4 && (address % 4) == 0)
retval = aarch64_read_cpu_memory_fast(target, count, buffer, &dscr);
else
retval = aarch64_read_cpu_memory_slow(target, size, count, buffer, &dscr);
if (dscr & DSCR_MA) {
dscr &= ~DSCR_MA;
mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, dscr);
}
if (retval != ERROR_OK)
return retval;
/* Check for sticky abort flags in the DSCR */
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
if (retval != ERROR_OK)
return retval;
dpm->dscr = dscr;
if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
/* Abort occurred - clear it and exit */
LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
armv8_dpm_handle_exception(dpm, true);
return ERROR_FAIL;
}
/* Done */
return ERROR_OK;
}
static int aarch64_read_phys_memory(struct target *target,
target_addr_t address, uint32_t size,
uint32_t count, uint8_t *buffer)
{
int retval = ERROR_COMMAND_SYNTAX_ERROR;
if (count && buffer) {
/* read memory through APB-AP */
retval = aarch64_mmu_modify(target, 0);
if (retval != ERROR_OK)
return retval;
retval = aarch64_read_cpu_memory(target, address, size, count, buffer);
}
return retval;
}
static int aarch64_read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
int mmu_enabled = 0;
int retval;
/* determine if MMU was enabled on target stop */
retval = aarch64_mmu(target, &mmu_enabled);
if (retval != ERROR_OK)
return retval;
if (mmu_enabled) {
/* enable MMU as we could have disabled it for phys access */
retval = aarch64_mmu_modify(target, 1);
if (retval != ERROR_OK)
return retval;
}
return aarch64_read_cpu_memory(target, address, size, count, buffer);
}
static int aarch64_write_phys_memory(struct target *target,
target_addr_t address, uint32_t size,
uint32_t count, const uint8_t *buffer)
{
int retval = ERROR_COMMAND_SYNTAX_ERROR;
if (count && buffer) {
/* write memory through APB-AP */
retval = aarch64_mmu_modify(target, 0);
if (retval != ERROR_OK)
return retval;
return aarch64_write_cpu_memory(target, address, size, count, buffer);
}
return retval;
}
static int aarch64_write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
int mmu_enabled = 0;
int retval;
/* determine if MMU was enabled on target stop */
retval = aarch64_mmu(target, &mmu_enabled);
if (retval != ERROR_OK)
return retval;
if (mmu_enabled) {
/* enable MMU as we could have disabled it for phys access */
retval = aarch64_mmu_modify(target, 1);
if (retval != ERROR_OK)
return retval;
}
return aarch64_write_cpu_memory(target, address, size, count, buffer);
}
static int aarch64_handle_target_request(void *priv)
{
struct target *target = priv;
struct armv8_common *armv8 = target_to_armv8(target);
int retval;
if (!target_was_examined(target))
return ERROR_OK;
if (!target->dbg_msg_enabled)
return ERROR_OK;
if (target->state == TARGET_RUNNING) {
uint32_t request;
uint32_t dscr;
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
/* check if we have data */
while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DTRTX, &request);
if (retval == ERROR_OK) {
target_request(target, request);
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
}
}
}
return ERROR_OK;
}
static int aarch64_examine_first(struct target *target)
{
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = &aarch64->armv8_common;
struct adiv5_dap *swjdp = armv8->arm.dap;
struct aarch64_private_config *pc = target->private_config;
int i;
int retval = ERROR_OK;
uint64_t debug, ttypr;
uint32_t cpuid;
uint32_t tmp0, tmp1, tmp2, tmp3;
debug = ttypr = cpuid = 0;
if (!pc)
return ERROR_FAIL;
if (armv8->debug_ap) {
dap_put_ap(armv8->debug_ap);
armv8->debug_ap = NULL;
}
if (pc->adiv5_config.ap_num == DP_APSEL_INVALID) {
/* Search for the APB-AB */
retval = dap_find_get_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
if (retval != ERROR_OK) {
LOG_ERROR("Could not find APB-AP for debug access");
return retval;
}
} else {
armv8->debug_ap = dap_get_ap(swjdp, pc->adiv5_config.ap_num);
if (!armv8->debug_ap) {
LOG_ERROR("Cannot get AP");
return ERROR_FAIL;
}
}
retval = mem_ap_init(armv8->debug_ap);
if (retval != ERROR_OK) {
LOG_ERROR("Could not initialize the APB-AP");
return retval;
}
armv8->debug_ap->memaccess_tck = 10;
if (!target->dbgbase_set) {
/* Lookup Processor DAP */
retval = dap_lookup_cs_component(armv8->debug_ap, ARM_CS_C9_DEVTYPE_CORE_DEBUG,
&armv8->debug_base, target->coreid);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("Detected core %" PRId32 " dbgbase: " TARGET_ADDR_FMT,
target->coreid, armv8->debug_base);
} else
armv8->debug_base = target->dbgbase;
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_OSLAR, 0);
if (retval != ERROR_OK) {
LOG_DEBUG("Examine %s failed", "oslock");
return retval;
}
retval = mem_ap_read_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
if (retval != ERROR_OK) {
LOG_DEBUG("Examine %s failed", "CPUID");
return retval;
}
retval = mem_ap_read_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
retval += mem_ap_read_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
if (retval != ERROR_OK) {
LOG_DEBUG("Examine %s failed", "Memory Model Type");
return retval;
}
retval = mem_ap_read_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp2);
retval += mem_ap_read_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp3);
if (retval != ERROR_OK) {
LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
return retval;
}
retval = dap_run(armv8->debug_ap->dap);
if (retval != ERROR_OK) {
LOG_ERROR("%s: examination failed\n", target_name(target));
return retval;
}
ttypr |= tmp1;
ttypr = (ttypr << 32) | tmp0;
debug |= tmp3;
debug = (debug << 32) | tmp2;
LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
LOG_DEBUG("debug = 0x%08" PRIx64, debug);
if (!pc->cti) {
LOG_TARGET_ERROR(target, "CTI not specified");
return ERROR_FAIL;
}
armv8->cti = pc->cti;
retval = aarch64_dpm_setup(aarch64, debug);
if (retval != ERROR_OK)
return retval;
/* Setup Breakpoint Register Pairs */
aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
aarch64->brp_num_available = aarch64->brp_num;
aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
for (i = 0; i < aarch64->brp_num; i++) {
aarch64->brp_list[i].used = 0;
if (i < (aarch64->brp_num-aarch64->brp_num_context))
aarch64->brp_list[i].type = BRP_NORMAL;
else
aarch64->brp_list[i].type = BRP_CONTEXT;
aarch64->brp_list[i].value = 0;
aarch64->brp_list[i].control = 0;
aarch64->brp_list[i].brpn = i;
}
/* Setup Watchpoint Register Pairs */
aarch64->wp_num = (uint32_t)((debug >> 20) & 0x0F) + 1;
aarch64->wp_num_available = aarch64->wp_num;
aarch64->wp_list = calloc(aarch64->wp_num, sizeof(struct aarch64_brp));
for (i = 0; i < aarch64->wp_num; i++) {
aarch64->wp_list[i].used = 0;
aarch64->wp_list[i].type = BRP_NORMAL;
aarch64->wp_list[i].value = 0;
aarch64->wp_list[i].control = 0;
aarch64->wp_list[i].brpn = i;
}
LOG_DEBUG("Configured %i hw breakpoints, %i watchpoints",
aarch64->brp_num, aarch64->wp_num);
target->state = TARGET_UNKNOWN;
target->debug_reason = DBG_REASON_NOTHALTED;
aarch64->isrmasking_mode = AARCH64_ISRMASK_ON;
target_set_examined(target);
return ERROR_OK;
}
static int aarch64_examine(struct target *target)
{
int retval = ERROR_OK;
/* don't re-probe hardware after each reset */
if (!target_was_examined(target))
retval = aarch64_examine_first(target);
/* Configure core debug access */
if (retval == ERROR_OK)
retval = aarch64_init_debug_access(target);
return retval;
}
/*
* Cortex-A8 target creation and initialization
*/
static int aarch64_init_target(struct command_context *cmd_ctx,
struct target *target)
{
/* examine_first() does a bunch of this */
arm_semihosting_init(target);
return ERROR_OK;
}
static int aarch64_init_arch_info(struct target *target,
struct aarch64_common *aarch64, struct adiv5_dap *dap)
{
struct armv8_common *armv8 = &aarch64->armv8_common;
/* Setup struct aarch64_common */
aarch64->common_magic = AARCH64_COMMON_MAGIC;
armv8->arm.dap = dap;
/* register arch-specific functions */
armv8->examine_debug_reason = NULL;
armv8->post_debug_entry = aarch64_post_debug_entry;
armv8->pre_restore_context = NULL;
armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
armv8_init_arch_info(target, armv8);
target_register_timer_callback(aarch64_handle_target_request, 1,
TARGET_TIMER_TYPE_PERIODIC, target);
return ERROR_OK;
}
static int aarch64_target_create(struct target *target, Jim_Interp *interp)
{
struct aarch64_private_config *pc = target->private_config;
struct aarch64_common *aarch64;
if (adiv5_verify_config(&pc->adiv5_config) != ERROR_OK)
return ERROR_FAIL;
aarch64 = calloc(1, sizeof(struct aarch64_common));
if (!aarch64) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
return aarch64_init_arch_info(target, aarch64, pc->adiv5_config.dap);
}
static void aarch64_deinit_target(struct target *target)
{
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = &aarch64->armv8_common;
struct arm_dpm *dpm = &armv8->dpm;
if (armv8->debug_ap)
dap_put_ap(armv8->debug_ap);
armv8_free_reg_cache(target);
free(aarch64->brp_list);
free(dpm->dbp);
free(dpm->dwp);
free(target->private_config);
free(aarch64);
}
static int aarch64_mmu(struct target *target, int *enabled)
{
if (target->state != TARGET_HALTED) {
LOG_ERROR("%s: target %s not halted", __func__, target_name(target));
return ERROR_TARGET_INVALID;
}
*enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
return ERROR_OK;
}
static int aarch64_virt2phys(struct target *target, target_addr_t virt,
target_addr_t *phys)
{
return armv8_mmu_translate_va_pa(target, virt, phys, 1);
}
/*
* private target configuration items
*/
enum aarch64_cfg_param {
CFG_CTI,
};
static const struct jim_nvp nvp_config_opts[] = {
{ .name = "-cti", .value = CFG_CTI },
{ .name = NULL, .value = -1 }
};
static int aarch64_jim_configure(struct target *target, struct jim_getopt_info *goi)
{
struct aarch64_private_config *pc;
struct jim_nvp *n;
int e;
pc = (struct aarch64_private_config *)target->private_config;
if (!pc) {
pc = calloc(1, sizeof(struct aarch64_private_config));
pc->adiv5_config.ap_num = DP_APSEL_INVALID;
target->private_config = pc;
}
/*
* Call adiv5_jim_configure() to parse the common DAP options
* It will return JIM_CONTINUE if it didn't find any known
* options, JIM_OK if it correctly parsed the topmost option
* and JIM_ERR if an error occurred during parameter evaluation.
* For JIM_CONTINUE, we check our own params.
*
* adiv5_jim_configure() assumes 'private_config' to point to
* 'struct adiv5_private_config'. Override 'private_config'!
*/
target->private_config = &pc->adiv5_config;
e = adiv5_jim_configure(target, goi);
target->private_config = pc;
if (e != JIM_CONTINUE)
return e;
/* parse config or cget options ... */
if (goi->argc > 0) {
Jim_SetEmptyResult(goi->interp);
/* check first if topmost item is for us */
e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
goi->argv[0], &n);
if (e != JIM_OK)
return JIM_CONTINUE;
e = jim_getopt_obj(goi, NULL);
if (e != JIM_OK)
return e;
switch (n->value) {
case CFG_CTI: {
if (goi->isconfigure) {
Jim_Obj *o_cti;
struct arm_cti *cti;
e = jim_getopt_obj(goi, &o_cti);
if (e != JIM_OK)
return e;
cti = cti_instance_by_jim_obj(goi->interp, o_cti);
if (!cti) {
Jim_SetResultString(goi->interp, "CTI name invalid!", -1);
return JIM_ERR;
}
pc->cti = cti;
} else {
if (goi->argc != 0) {
Jim_WrongNumArgs(goi->interp,
goi->argc, goi->argv,
"NO PARAMS");
return JIM_ERR;
}
if (!pc || !pc->cti) {
Jim_SetResultString(goi->interp, "CTI not configured", -1);
return JIM_ERR;
}
Jim_SetResultString(goi->interp, arm_cti_name(pc->cti), -1);
}
break;
}
default:
return JIM_CONTINUE;
}
}
return JIM_OK;
}
COMMAND_HANDLER(aarch64_handle_cache_info_command)
{
struct target *target = get_current_target(CMD_CTX);
struct armv8_common *armv8 = target_to_armv8(target);
return armv8_handle_cache_info_command(CMD,
&armv8->armv8_mmu.armv8_cache);
}
COMMAND_HANDLER(aarch64_handle_dbginit_command)
{
struct target *target = get_current_target(CMD_CTX);
if (!target_was_examined(target)) {
LOG_ERROR("target not examined yet");
return ERROR_FAIL;
}
return aarch64_init_debug_access(target);
}
COMMAND_HANDLER(aarch64_handle_disassemble_command)
{
struct target *target = get_current_target(CMD_CTX);
if (!target) {
LOG_ERROR("No target selected");
return ERROR_FAIL;
}
struct aarch64_common *aarch64 = target_to_aarch64(target);
if (aarch64->common_magic != AARCH64_COMMON_MAGIC) {
command_print(CMD, "current target isn't an AArch64");
return ERROR_FAIL;
}
int count = 1;
target_addr_t address;
switch (CMD_ARGC) {
case 2:
COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], count);
/* FALL THROUGH */
case 1:
COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
return a64_disassemble(CMD, target, address, count);
}
COMMAND_HANDLER(aarch64_mask_interrupts_command)
{
struct target *target = get_current_target(CMD_CTX);
struct aarch64_common *aarch64 = target_to_aarch64(target);
static const struct jim_nvp nvp_maskisr_modes[] = {
{ .name = "off", .value = AARCH64_ISRMASK_OFF },
{ .name = "on", .value = AARCH64_ISRMASK_ON },
{ .name = NULL, .value = -1 },
};
const struct jim_nvp *n;
if (CMD_ARGC > 0) {
n = jim_nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
if (!n->name) {
LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
aarch64->isrmasking_mode = n->value;
}
n = jim_nvp_value2name_simple(nvp_maskisr_modes, aarch64->isrmasking_mode);
command_print(CMD, "aarch64 interrupt mask %s", n->name);
return ERROR_OK;
}
static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
{
struct command *c = jim_to_command(interp);
struct command_context *context;
struct target *target;
struct arm *arm;
int retval;
bool is_mcr = false;
int arg_cnt = 0;
if (!strcmp(c->name, "mcr")) {
is_mcr = true;
arg_cnt = 7;
} else {
arg_cnt = 6;
}
context = current_command_context(interp);
assert(context);
target = get_current_target(context);
if (!target) {
LOG_ERROR("%s: no current target", __func__);
return JIM_ERR;
}
if (!target_was_examined(target)) {
LOG_ERROR("%s: not yet examined", target_name(target));
return JIM_ERR;
}
arm = target_to_arm(target);
if (!is_arm(arm)) {
LOG_ERROR("%s: not an ARM", target_name(target));
return JIM_ERR;
}
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
if (arm->core_state == ARM_STATE_AARCH64) {
LOG_ERROR("%s: not 32-bit arm target", target_name(target));
return JIM_ERR;
}
if (argc != arg_cnt) {
LOG_ERROR("%s: wrong number of arguments", __func__);
return JIM_ERR;
}
int cpnum;
uint32_t op1;
uint32_t op2;
uint32_t crn;
uint32_t crm;
uint32_t value;
long l;
/* NOTE: parameter sequence matches ARM instruction set usage:
* MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
* MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
* The "rX" is necessarily omitted; it uses Tcl mechanisms.
*/
retval = Jim_GetLong(interp, argv[1], &l);
if (retval != JIM_OK)
return retval;
if (l & ~0xf) {
LOG_ERROR("%s: %s %d out of range", __func__,
"coprocessor", (int) l);
return JIM_ERR;
}
cpnum = l;
retval = Jim_GetLong(interp, argv[2], &l);
if (retval != JIM_OK)
return retval;
if (l & ~0x7) {
LOG_ERROR("%s: %s %d out of range", __func__,
"op1", (int) l);
return JIM_ERR;
}
op1 = l;
retval = Jim_GetLong(interp, argv[3], &l);
if (retval != JIM_OK)
return retval;
if (l & ~0xf) {
LOG_ERROR("%s: %s %d out of range", __func__,
"CRn", (int) l);
return JIM_ERR;
}
crn = l;
retval = Jim_GetLong(interp, argv[4], &l);
if (retval != JIM_OK)
return retval;
if (l & ~0xf) {
LOG_ERROR("%s: %s %d out of range", __func__,
"CRm", (int) l);
return JIM_ERR;
}
crm = l;
retval = Jim_GetLong(interp, argv[5], &l);
if (retval != JIM_OK)
return retval;
if (l & ~0x7) {
LOG_ERROR("%s: %s %d out of range", __func__,
"op2", (int) l);
return JIM_ERR;
}
op2 = l;
value = 0;
if (is_mcr == true) {
retval = Jim_GetLong(interp, argv[6], &l);
if (retval != JIM_OK)
return retval;
value = l;
/* NOTE: parameters reordered! */
/* ARMV4_5_MCR(cpnum, op1, 0, crn, crm, op2) */
retval = arm->mcr(target, cpnum, op1, op2, crn, crm, value);
if (retval != ERROR_OK)
return JIM_ERR;
} else {
/* NOTE: parameters reordered! */
/* ARMV4_5_MRC(cpnum, op1, 0, crn, crm, op2) */
retval = arm->mrc(target, cpnum, op1, op2, crn, crm, &value);
if (retval != ERROR_OK)
return JIM_ERR;
Jim_SetResult(interp, Jim_NewIntObj(interp, value));
}
return JIM_OK;
}
static const struct command_registration aarch64_exec_command_handlers[] = {
{
.name = "cache_info",
.handler = aarch64_handle_cache_info_command,
.mode = COMMAND_EXEC,
.help = "display information about target caches",
.usage = "",
},
{
.name = "dbginit",
.handler = aarch64_handle_dbginit_command,
.mode = COMMAND_EXEC,
.help = "Initialize core debug",
.usage = "",
},
{
.name = "disassemble",
.handler = aarch64_handle_disassemble_command,
.mode = COMMAND_EXEC,
.help = "Disassemble instructions",
.usage = "address [count]",
},
{
.name = "maskisr",
.handler = aarch64_mask_interrupts_command,
.mode = COMMAND_ANY,
.help = "mask aarch64 interrupts during single-step",
.usage = "['on'|'off']",
},
{
.name = "mcr",
.mode = COMMAND_EXEC,
.jim_handler = jim_mcrmrc,
.help = "write coprocessor register",
.usage = "cpnum op1 CRn CRm op2 value",
},
{
.name = "mrc",
.mode = COMMAND_EXEC,
.jim_handler = jim_mcrmrc,
.help = "read coprocessor register",
.usage = "cpnum op1 CRn CRm op2",
},
{
.chain = smp_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration aarch64_command_handlers[] = {
{
.name = "arm",
.mode = COMMAND_ANY,
.help = "ARM Command Group",
.usage = "",
.chain = semihosting_common_handlers
},
{
.chain = armv8_command_handlers,
},
{
.name = "aarch64",
.mode = COMMAND_ANY,
.help = "Aarch64 command group",
.usage = "",
.chain = aarch64_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct target_type aarch64_target = {
.name = "aarch64",
.poll = aarch64_poll,
.arch_state = armv8_arch_state,
.halt = aarch64_halt,
.resume = aarch64_resume,
.step = aarch64_step,
.assert_reset = aarch64_assert_reset,
.deassert_reset = aarch64_deassert_reset,
/* REVISIT allow exporting VFP3 registers ... */
.get_gdb_arch = armv8_get_gdb_arch,
.get_gdb_reg_list = armv8_get_gdb_reg_list,
.read_memory = aarch64_read_memory,
.write_memory = aarch64_write_memory,
.add_breakpoint = aarch64_add_breakpoint,
.add_context_breakpoint = aarch64_add_context_breakpoint,
.add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
.remove_breakpoint = aarch64_remove_breakpoint,
.add_watchpoint = aarch64_add_watchpoint,
.remove_watchpoint = aarch64_remove_watchpoint,
.hit_watchpoint = aarch64_hit_watchpoint,
.commands = aarch64_command_handlers,
.target_create = aarch64_target_create,
.target_jim_configure = aarch64_jim_configure,
.init_target = aarch64_init_target,
.deinit_target = aarch64_deinit_target,
.examine = aarch64_examine,
.read_phys_memory = aarch64_read_phys_memory,
.write_phys_memory = aarch64_write_phys_memory,
.mmu = aarch64_mmu,
.virt2phys = aarch64_virt2phys,
};