openocd/src/target/arm_adi_v5.h

760 lines
26 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2006 by Magnus Lundin *
* lundin@mlu.mine.nu *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2019-2021, Ampere Computing LLC *
***************************************************************************/
#ifndef OPENOCD_TARGET_ARM_ADI_V5_H
#define OPENOCD_TARGET_ARM_ADI_V5_H
/**
* @file
* This defines formats and data structures used to talk to ADIv5 entities.
* Those include a DAP, different types of Debug Port (DP), and memory mapped
* resources accessed through a MEM-AP.
*/
#include <helper/list.h>
#include "arm_jtag.h"
#include "helper/bits.h"
/* JEP106 ID for ARM */
#define ARM_ID 0x23B
/* three-bit ACK values for SWD access (sent LSB first) */
#define SWD_ACK_OK 0x1
#define SWD_ACK_WAIT 0x2
#define SWD_ACK_FAULT 0x4
#define DPAP_WRITE 0
#define DPAP_READ 1
#define BANK_REG(bank, reg) (((bank) << 4) | (reg))
/* A[3:0] for DP registers; A[1:0] are always zero.
* - JTAG accesses all of these via JTAG_DP_DPACC, except for
* IDCODE (JTAG_DP_IDCODE) and ABORT (JTAG_DP_ABORT).
* - SWD accesses these directly, sometimes needing SELECT.DPBANKSEL
*/
#define DP_DPIDR BANK_REG(0x0, 0x0) /* DPv1+: ro */
#define DP_ABORT BANK_REG(0x0, 0x0) /* DPv1+: SWD: wo */
#define DP_DPIDR1 BANK_REG(0x1, 0x0) /* DPv3: ro */
#define DP_BASEPTR0 BANK_REG(0x2, 0x0) /* DPv3: ro */
#define DP_BASEPTR1 BANK_REG(0x3, 0x0) /* DPv3: ro */
#define DP_CTRL_STAT BANK_REG(0x0, 0x4) /* DPv0+: rw */
#define DP_DLCR BANK_REG(0x1, 0x4) /* DPv1+: SWD: rw */
#define DP_TARGETID BANK_REG(0x2, 0x4) /* DPv2: ro */
#define DP_DLPIDR BANK_REG(0x3, 0x4) /* DPv2: ro */
#define DP_EVENTSTAT BANK_REG(0x4, 0x4) /* DPv2: ro */
#define DP_SELECT1 BANK_REG(0x5, 0x4) /* DPv3: ro */
#define DP_RESEND BANK_REG(0x0, 0x8) /* DPv1+: SWD: ro */
#define DP_SELECT BANK_REG(0x0, 0x8) /* DPv0+: JTAG: rw; SWD: wo */
#define DP_RDBUFF BANK_REG(0x0, 0xC) /* DPv0+: ro */
#define DP_TARGETSEL BANK_REG(0x0, 0xC) /* DPv2: SWD: wo */
#define DLCR_TO_TRN(dlcr) ((uint32_t)(1 + ((3 & (dlcr)) >> 8))) /* 1..4 clocks */
/* Fields of DP_DPIDR register */
#define DP_DPIDR_VERSION_SHIFT 12
#define DP_DPIDR_VERSION_MASK (0xFUL << DP_DPIDR_VERSION_SHIFT)
/* Fields of the DP's AP ABORT register */
#define DAPABORT (1UL << 0)
#define STKCMPCLR (1UL << 1) /* SWD-only */
#define STKERRCLR (1UL << 2) /* SWD-only */
#define WDERRCLR (1UL << 3) /* SWD-only */
#define ORUNERRCLR (1UL << 4) /* SWD-only */
/* Fields of register DP_DPIDR1 */
#define DP_DPIDR1_ASIZE_MASK (0x7F)
#define DP_DPIDR1_ERRMODE BIT(7)
/* Fields of register DP_BASEPTR0 */
#define DP_BASEPTR0_VALID BIT(0)
/* Fields of the DP's CTRL/STAT register */
#define CORUNDETECT (1UL << 0)
#define SSTICKYORUN (1UL << 1)
/* 3:2 - transaction mode (e.g. pushed compare) */
#define SSTICKYCMP (1UL << 4)
#define SSTICKYERR (1UL << 5)
#define READOK (1UL << 6) /* SWD-only */
#define WDATAERR (1UL << 7) /* SWD-only */
/* 11:8 - mask lanes for pushed compare or verify ops */
/* 21:12 - transaction counter */
#define CDBGRSTREQ (1UL << 26)
#define CDBGRSTACK (1UL << 27)
#define CDBGPWRUPREQ (1UL << 28)
#define CDBGPWRUPACK (1UL << 29)
#define CSYSPWRUPREQ (1UL << 30)
#define CSYSPWRUPACK (1UL << 31)
#define DP_DLPIDR_PROTVSN 1u
#define DP_SELECT_APSEL 0xFF000000
#define DP_SELECT_APBANK 0x000000F0
#define DP_SELECT_DPBANK 0x0000000F
#define DP_SELECT_INVALID 0x00FFFF00 /* Reserved bits one */
#define DP_APSEL_MAX (255) /* for ADIv5 only */
#define DP_APSEL_INVALID 0xF00 /* more than DP_APSEL_MAX and not ADIv6 aligned 4k */
#define DP_TARGETSEL_INVALID 0xFFFFFFFFU
#define DP_TARGETSEL_DPID_MASK 0x0FFFFFFFU
#define DP_TARGETSEL_INSTANCEID_MASK 0xF0000000U
#define DP_TARGETSEL_INSTANCEID_SHIFT 28
/* MEM-AP register addresses */
#define ADIV5_MEM_AP_REG_CSW (0x00)
#define ADIV5_MEM_AP_REG_TAR (0x04)
#define ADIV5_MEM_AP_REG_TAR64 (0x08) /* RW: Large Physical Address Extension */
#define ADIV5_MEM_AP_REG_DRW (0x0C) /* RW: Data Read/Write register */
#define ADIV5_MEM_AP_REG_BD0 (0x10) /* RW: Banked Data register 0-3 */
#define ADIV5_MEM_AP_REG_BD1 (0x14)
#define ADIV5_MEM_AP_REG_BD2 (0x18)
#define ADIV5_MEM_AP_REG_BD3 (0x1C)
#define ADIV5_MEM_AP_REG_MBT (0x20) /* --: Memory Barrier Transfer register */
#define ADIV5_MEM_AP_REG_BASE64 (0xF0) /* RO: Debug Base Address (LA) register */
#define ADIV5_MEM_AP_REG_CFG (0xF4) /* RO: Configuration register */
#define ADIV5_MEM_AP_REG_BASE (0xF8) /* RO: Debug Base Address register */
#define ADIV6_MEM_AP_REG_CSW (0xD00 + ADIV5_MEM_AP_REG_CSW)
#define ADIV6_MEM_AP_REG_TAR (0xD00 + ADIV5_MEM_AP_REG_TAR)
#define ADIV6_MEM_AP_REG_TAR64 (0xD00 + ADIV5_MEM_AP_REG_TAR64)
#define ADIV6_MEM_AP_REG_DRW (0xD00 + ADIV5_MEM_AP_REG_DRW)
#define ADIV6_MEM_AP_REG_BD0 (0xD00 + ADIV5_MEM_AP_REG_BD0)
#define ADIV6_MEM_AP_REG_BD1 (0xD00 + ADIV5_MEM_AP_REG_BD1)
#define ADIV6_MEM_AP_REG_BD2 (0xD00 + ADIV5_MEM_AP_REG_BD2)
#define ADIV6_MEM_AP_REG_BD3 (0xD00 + ADIV5_MEM_AP_REG_BD3)
#define ADIV6_MEM_AP_REG_MBT (0xD00 + ADIV5_MEM_AP_REG_MBT)
#define ADIV6_MEM_AP_REG_BASE64 (0xD00 + ADIV5_MEM_AP_REG_BASE64)
#define ADIV6_MEM_AP_REG_CFG (0xD00 + ADIV5_MEM_AP_REG_CFG)
#define ADIV6_MEM_AP_REG_BASE (0xD00 + ADIV5_MEM_AP_REG_BASE)
#define MEM_AP_REG_CSW(dap) (is_adiv6(dap) ? ADIV6_MEM_AP_REG_CSW : ADIV5_MEM_AP_REG_CSW)
#define MEM_AP_REG_TAR(dap) (is_adiv6(dap) ? ADIV6_MEM_AP_REG_TAR : ADIV5_MEM_AP_REG_TAR)
#define MEM_AP_REG_TAR64(dap) (is_adiv6(dap) ? ADIV6_MEM_AP_REG_TAR64 : ADIV5_MEM_AP_REG_TAR64)
#define MEM_AP_REG_DRW(dap) (is_adiv6(dap) ? ADIV6_MEM_AP_REG_DRW : ADIV5_MEM_AP_REG_DRW)
#define MEM_AP_REG_BD0(dap) (is_adiv6(dap) ? ADIV6_MEM_AP_REG_BD0 : ADIV5_MEM_AP_REG_BD0)
#define MEM_AP_REG_BD1(dap) (is_adiv6(dap) ? ADIV6_MEM_AP_REG_BD1 : ADIV5_MEM_AP_REG_BD1)
#define MEM_AP_REG_BD2(dap) (is_adiv6(dap) ? ADIV6_MEM_AP_REG_BD2 : ADIV5_MEM_AP_REG_BD2)
#define MEM_AP_REG_BD3(dap) (is_adiv6(dap) ? ADIV6_MEM_AP_REG_BD3 : ADIV5_MEM_AP_REG_BD3)
#define MEM_AP_REG_MBT(dap) (is_adiv6(dap) ? ADIV6_MEM_AP_REG_MBT : ADIV5_MEM_AP_REG_MBT)
#define MEM_AP_REG_BASE64(dap) (is_adiv6(dap) ? ADIV6_MEM_AP_REG_BASE64 : ADIV5_MEM_AP_REG_BASE64)
#define MEM_AP_REG_CFG(dap) (is_adiv6(dap) ? ADIV6_MEM_AP_REG_CFG : ADIV5_MEM_AP_REG_CFG)
#define MEM_AP_REG_BASE(dap) (is_adiv6(dap) ? ADIV6_MEM_AP_REG_BASE : ADIV5_MEM_AP_REG_BASE)
/* Generic AP register address */
#define ADIV5_AP_REG_IDR (0xFC) /* RO: Identification Register */
#define ADIV6_AP_REG_IDR (0xD00 + ADIV5_AP_REG_IDR)
#define AP_REG_IDR(dap) (is_adiv6(dap) ? ADIV6_AP_REG_IDR : ADIV5_AP_REG_IDR)
/* Fields of the MEM-AP's CSW register */
#define CSW_SIZE_MASK 7
#define CSW_8BIT 0
#define CSW_16BIT 1
#define CSW_32BIT 2
#define CSW_ADDRINC_MASK (3UL << 4)
#define CSW_ADDRINC_OFF 0UL
#define CSW_ADDRINC_SINGLE (1UL << 4)
#define CSW_ADDRINC_PACKED (2UL << 4)
#define CSW_DEVICE_EN (1UL << 6)
#define CSW_TRIN_PROG (1UL << 7)
/* All fields in bits 12 and above are implementation-defined
* Defaults for AHB/AXI in "Standard Memory Access Port Definitions" from ADI
* Some bits are shared between buses
*/
#define CSW_SPIDEN (1UL << 23)
#define CSW_DBGSWENABLE (1UL << 31)
/* AHB: Privileged */
#define CSW_AHB_HPROT1 (1UL << 25)
/* AHB: set HMASTER signals to AHB-AP ID */
#define CSW_AHB_MASTER_DEBUG (1UL << 29)
/* AHB5: non-secure access via HNONSEC
* AHB3: SBO, UNPREDICTABLE if zero */
#define CSW_AHB_SPROT (1UL << 30)
/* AHB: initial value of csw_default */
#define CSW_AHB_DEFAULT (CSW_AHB_HPROT1 | CSW_AHB_MASTER_DEBUG | CSW_DBGSWENABLE)
/* AXI: Privileged */
#define CSW_AXI_ARPROT0_PRIV (1UL << 28)
/* AXI: Non-secure */
#define CSW_AXI_ARPROT1_NONSEC (1UL << 29)
/* AXI: initial value of csw_default */
#define CSW_AXI_DEFAULT (CSW_AXI_ARPROT0_PRIV | CSW_AXI_ARPROT1_NONSEC | CSW_DBGSWENABLE)
/* APB: initial value of csw_default */
#define CSW_APB_DEFAULT (CSW_DBGSWENABLE)
/* Fields of the MEM-AP's CFG register */
#define MEM_AP_REG_CFG_BE BIT(0)
#define MEM_AP_REG_CFG_LA BIT(1)
#define MEM_AP_REG_CFG_LD BIT(2)
#define MEM_AP_REG_CFG_INVALID 0xFFFFFFF8
/* Fields of the MEM-AP's IDR register */
#define AP_REG_IDR_REVISION_MASK (0xF0000000)
#define AP_REG_IDR_REVISION_SHIFT (28)
#define AP_REG_IDR_DESIGNER_MASK (0x0FFE0000)
#define AP_REG_IDR_DESIGNER_SHIFT (17)
#define AP_REG_IDR_CLASS_MASK (0x0001E000)
#define AP_REG_IDR_CLASS_SHIFT (13)
#define AP_REG_IDR_VARIANT_MASK (0x000000F0)
#define AP_REG_IDR_VARIANT_SHIFT (4)
#define AP_REG_IDR_TYPE_MASK (0x0000000F)
#define AP_REG_IDR_TYPE_SHIFT (0)
#define AP_REG_IDR_CLASS_NONE (0x0)
#define AP_REG_IDR_CLASS_COM (0x1)
#define AP_REG_IDR_CLASS_MEM_AP (0x8)
#define AP_REG_IDR_VALUE(d, c, t) (\
(((d) << AP_REG_IDR_DESIGNER_SHIFT) & AP_REG_IDR_DESIGNER_MASK) | \
(((c) << AP_REG_IDR_CLASS_SHIFT) & AP_REG_IDR_CLASS_MASK) | \
(((t) << AP_REG_IDR_TYPE_SHIFT) & AP_REG_IDR_TYPE_MASK) \
)
#define AP_TYPE_MASK (AP_REG_IDR_DESIGNER_MASK | AP_REG_IDR_CLASS_MASK | AP_REG_IDR_TYPE_MASK)
/* FIXME: not SWD specific; should be renamed, e.g. adiv5_special_seq */
enum swd_special_seq {
LINE_RESET,
JTAG_TO_SWD,
JTAG_TO_DORMANT,
SWD_TO_JTAG,
SWD_TO_DORMANT,
DORMANT_TO_SWD,
DORMANT_TO_JTAG,
};
/**
* This represents an ARM Debug Interface (v5) Access Port (AP).
* Most common is a MEM-AP, for memory access.
*/
struct adiv5_ap {
/**
* DAP this AP belongs to.
*/
struct adiv5_dap *dap;
/**
* ADIv5: Number of this AP (0~255)
* ADIv6: Base address of this AP (4k aligned)
* TODO: to be more coherent, it should be renamed apsel
*/
uint64_t ap_num;
/**
* Default value for (MEM-AP) AP_REG_CSW register.
*/
uint32_t csw_default;
/**
* Cache for (MEM-AP) AP_REG_CSW register value. This is written to
* configure an access mode, such as autoincrementing AP_REG_TAR during
* word access. "-1" indicates no cached value.
*/
uint32_t csw_value;
/**
* Cache for (MEM-AP) AP_REG_TAR register value This is written to
* configure the address being read or written
* "-1" indicates no cached value.
*/
target_addr_t tar_value;
/**
* Configures how many extra tck clocks are added after starting a
* MEM-AP access before we try to read its status (and/or result).
*/
uint32_t memaccess_tck;
/* Size of TAR autoincrement block, ARM ADI Specification requires at least 10 bits */
uint32_t tar_autoincr_block;
/* true if packed transfers are supported by the MEM-AP */
bool packed_transfers;
/* true if unaligned memory access is not supported by the MEM-AP */
bool unaligned_access_bad;
/* true if tar_value is in sync with TAR register */
bool tar_valid;
/* MEM AP configuration register indicating LPAE support */
uint32_t cfg_reg;
/* references counter */
unsigned int refcount;
/* AP referenced during config. Never put it, even when refcount reaches zero */
bool config_ap_never_release;
};
/**
* This represents an ARM Debug Interface (v5) Debug Access Port (DAP).
* A DAP has two types of component: one Debug Port (DP), which is a
* transport agent; and at least one Access Port (AP), controlling
* resource access.
*
* There are two basic DP transports: JTAG, and ARM's low pin-count SWD.
* Accordingly, this interface is responsible for hiding the transport
* differences so upper layer code can largely ignore them.
*
* When the chip is implemented with JTAG-DP or SW-DP, the transport is
* fixed as JTAG or SWD, respectively. Chips incorporating SWJ-DP permit
* a choice made at board design time (by only using the SWD pins), or
* as part of setting up a debug session (if all the dual-role JTAG/SWD
* signals are available).
*/
struct adiv5_dap {
const struct dap_ops *ops;
/* dap transaction list for WAIT support */
struct list_head cmd_journal;
/* pool for dap_cmd objects */
struct list_head cmd_pool;
/* number of dap_cmd objects in the pool */
size_t cmd_pool_size;
struct jtag_tap *tap;
/* Control config */
uint32_t dp_ctrl_stat;
struct adiv5_ap ap[DP_APSEL_MAX + 1];
/* The current manually selected AP by the "dap apsel" command */
uint64_t apsel;
/**
* Cache for DP_SELECT register. A value of DP_SELECT_INVALID
* indicates no cached value and forces rewrite of the register.
*/
uint64_t select;
/* information about current pending SWjDP-AHBAP transaction */
uint8_t ack;
/**
* Holds the pointer to the destination word for the last queued read,
* for use with posted AP read sequence optimization.
*/
uint32_t *last_read;
/* The TI TMS470 and TMS570 series processors use a BE-32 memory ordering
* despite lack of support in the ARMv7 architecture. Memory access through
* the AHB-AP has strange byte ordering these processors, and we need to
* swizzle appropriately. */
bool ti_be_32_quirks;
/* The Nuvoton NPCX M4 has an issue with writing to non-4-byte-aligned mmios.
* The work around is to repeat the data in all 4 bytes of DRW */
bool nu_npcx_quirks;
/**
* STLINK adapter need to know if last AP operation was read or write, and
* in case of write has to flush it with a dummy read from DP_RDBUFF
*/
bool stlink_flush_ap_write;
/**
* Signals that an attempt to reestablish communication afresh
* should be performed before the next access.
*/
bool do_reconnect;
/** Flag saying whether to ignore the syspwrupack flag in DAP. Some devices
* do not set this bit until later in the bringup sequence */
bool ignore_syspwrupack;
/** Value to select DP in SWD multidrop mode or DP_TARGETSEL_INVALID */
uint32_t multidrop_targetsel;
/** TPARTNO and TDESIGNER fields of multidrop_targetsel have been configured */
bool multidrop_dp_id_valid;
/** TINSTANCE field of multidrop_targetsel has been configured */
bool multidrop_instance_id_valid;
/**
* Record if enter in SWD required passing through DORMANT
*/
bool switch_through_dormant;
/** Indicates ADI version (5, 6 or 0 for unknown) being used */
unsigned int adi_version;
/* ADIv6 only field indicating ROM Table address size */
unsigned int asize;
};
/**
* Transport-neutral representation of queued DAP transactions, supporting
* both JTAG and SWD transports. All submitted transactions are logically
* queued, until the queue is executed by run(). Some implementations might
* execute transactions as soon as they're submitted, but no status is made
* available until run().
*/
struct dap_ops {
/** connect operation for SWD */
int (*connect)(struct adiv5_dap *dap);
/** send a sequence to the DAP */
int (*send_sequence)(struct adiv5_dap *dap, enum swd_special_seq seq);
/** DP register read. */
int (*queue_dp_read)(struct adiv5_dap *dap, unsigned reg,
uint32_t *data);
/** DP register write. */
int (*queue_dp_write)(struct adiv5_dap *dap, unsigned reg,
uint32_t data);
/** AP register read. */
int (*queue_ap_read)(struct adiv5_ap *ap, unsigned reg,
uint32_t *data);
/** AP register write. */
int (*queue_ap_write)(struct adiv5_ap *ap, unsigned reg,
uint32_t data);
/** AP operation abort. */
int (*queue_ap_abort)(struct adiv5_dap *dap, uint8_t *ack);
/** Executes all queued DAP operations. */
int (*run)(struct adiv5_dap *dap);
/** Executes all queued DAP operations but doesn't check
* sticky error conditions */
int (*sync)(struct adiv5_dap *dap);
/** Optional; called at OpenOCD exit */
void (*quit)(struct adiv5_dap *dap);
};
/*
* Access Port types
*/
enum ap_type {
AP_TYPE_JTAG_AP = AP_REG_IDR_VALUE(ARM_ID, AP_REG_IDR_CLASS_NONE, 0), /* JTAG-AP */
AP_TYPE_COM_AP = AP_REG_IDR_VALUE(ARM_ID, AP_REG_IDR_CLASS_COM, 0), /* COM-AP */
AP_TYPE_AHB3_AP = AP_REG_IDR_VALUE(ARM_ID, AP_REG_IDR_CLASS_MEM_AP, 1), /* AHB3 Memory-AP */
AP_TYPE_APB_AP = AP_REG_IDR_VALUE(ARM_ID, AP_REG_IDR_CLASS_MEM_AP, 2), /* APB2 or APB3 Memory-AP */
AP_TYPE_AXI_AP = AP_REG_IDR_VALUE(ARM_ID, AP_REG_IDR_CLASS_MEM_AP, 4), /* AXI3 or AXI4 Memory-AP */
AP_TYPE_AHB5_AP = AP_REG_IDR_VALUE(ARM_ID, AP_REG_IDR_CLASS_MEM_AP, 5), /* AHB5 Memory-AP */
AP_TYPE_APB4_AP = AP_REG_IDR_VALUE(ARM_ID, AP_REG_IDR_CLASS_MEM_AP, 6), /* APB4 Memory-AP */
AP_TYPE_AXI5_AP = AP_REG_IDR_VALUE(ARM_ID, AP_REG_IDR_CLASS_MEM_AP, 7), /* AXI5 Memory-AP */
AP_TYPE_AHB5H_AP = AP_REG_IDR_VALUE(ARM_ID, AP_REG_IDR_CLASS_MEM_AP, 8), /* AHB5 with enhanced HPROT Memory-AP */
};
/* Check the ap->cfg_reg Long Address field (bit 1)
*
* 0b0: The AP only supports physical addresses 32 bits or smaller
* 0b1: The AP supports physical addresses larger than 32 bits
*
* @param ap The AP used for reading.
*
* @return true for 64 bit, false for 32 bit
*/
static inline bool is_64bit_ap(struct adiv5_ap *ap)
{
return (ap->cfg_reg & MEM_AP_REG_CFG_LA) != 0;
}
/**
* Check if DAP is ADIv6
*
* @param dap The DAP to test
*
* @return true for ADIv6, false for either ADIv5 or unknown version
*/
static inline bool is_adiv6(const struct adiv5_dap *dap)
{
return dap->adi_version == 6;
}
/**
* Send an adi-v5 sequence to the DAP.
*
* @param dap The DAP used for reading.
* @param seq The sequence to send.
*
* @return ERROR_OK for success, else a fault code.
*/
static inline int dap_send_sequence(struct adiv5_dap *dap,
enum swd_special_seq seq)
{
assert(dap->ops);
return dap->ops->send_sequence(dap, seq);
}
/**
* Queue a DP register read.
* Note that not all DP registers are readable; also, that JTAG and SWD
* have slight differences in DP register support.
*
* @param dap The DAP used for reading.
* @param reg The two-bit number of the DP register being read.
* @param data Pointer saying where to store the register's value
* (in host endianness).
*
* @return ERROR_OK for success, else a fault code.
*/
static inline int dap_queue_dp_read(struct adiv5_dap *dap,
unsigned reg, uint32_t *data)
{
assert(dap->ops);
return dap->ops->queue_dp_read(dap, reg, data);
}
/**
* Queue a DP register write.
* Note that not all DP registers are writable; also, that JTAG and SWD
* have slight differences in DP register support.
*
* @param dap The DAP used for writing.
* @param reg The two-bit number of the DP register being written.
* @param data Value being written (host endianness)
*
* @return ERROR_OK for success, else a fault code.
*/
static inline int dap_queue_dp_write(struct adiv5_dap *dap,
unsigned reg, uint32_t data)
{
assert(dap->ops);
return dap->ops->queue_dp_write(dap, reg, data);
}
/**
* Queue an AP register read.
*
* @param ap The AP used for reading.
* @param reg The number of the AP register being read.
* @param data Pointer saying where to store the register's value
* (in host endianness).
*
* @return ERROR_OK for success, else a fault code.
*/
static inline int dap_queue_ap_read(struct adiv5_ap *ap,
unsigned reg, uint32_t *data)
{
assert(ap->dap->ops);
if (ap->refcount == 0) {
ap->refcount = 1;
LOG_ERROR("BUG: refcount AP#0x%" PRIx64 " used without get", ap->ap_num);
}
return ap->dap->ops->queue_ap_read(ap, reg, data);
}
/**
* Queue an AP register write.
*
* @param ap The AP used for writing.
* @param reg The number of the AP register being written.
* @param data Value being written (host endianness)
*
* @return ERROR_OK for success, else a fault code.
*/
static inline int dap_queue_ap_write(struct adiv5_ap *ap,
unsigned reg, uint32_t data)
{
assert(ap->dap->ops);
if (ap->refcount == 0) {
ap->refcount = 1;
LOG_ERROR("BUG: refcount AP#0x%" PRIx64 " used without get", ap->ap_num);
}
return ap->dap->ops->queue_ap_write(ap, reg, data);
}
/**
* Queue an AP abort operation. The current AP transaction is aborted,
* including any update of the transaction counter. The AP is left in
* an unknown state (so it must be re-initialized). For use only after
* the AP has reported WAIT status for an extended period.
*
* @param dap The DAP used for writing.
* @param ack Pointer to where transaction status will be stored.
*
* @return ERROR_OK for success, else a fault code.
*/
static inline int dap_queue_ap_abort(struct adiv5_dap *dap, uint8_t *ack)
{
assert(dap->ops);
return dap->ops->queue_ap_abort(dap, ack);
}
/**
* Perform all queued DAP operations, and clear any errors posted in the
* CTRL_STAT register when they are done. Note that if more than one AP
* operation will be queued, one of the first operations in the queue
* should probably enable CORUNDETECT in the CTRL/STAT register.
*
* @param dap The DAP used.
*
* @return ERROR_OK for success, else a fault code.
*/
static inline int dap_run(struct adiv5_dap *dap)
{
assert(dap->ops);
return dap->ops->run(dap);
}
static inline int dap_sync(struct adiv5_dap *dap)
{
assert(dap->ops);
if (dap->ops->sync)
return dap->ops->sync(dap);
return ERROR_OK;
}
static inline int dap_dp_read_atomic(struct adiv5_dap *dap, unsigned reg,
uint32_t *value)
{
int retval;
retval = dap_queue_dp_read(dap, reg, value);
if (retval != ERROR_OK)
return retval;
return dap_run(dap);
}
static inline int dap_dp_poll_register(struct adiv5_dap *dap, unsigned reg,
uint32_t mask, uint32_t value, int timeout)
{
assert(timeout > 0);
assert((value & mask) == value);
int ret;
uint32_t regval;
LOG_DEBUG("DAP: poll %x, mask 0x%08" PRIx32 ", value 0x%08" PRIx32,
reg, mask, value);
do {
ret = dap_dp_read_atomic(dap, reg, &regval);
if (ret != ERROR_OK)
return ret;
if ((regval & mask) == value)
break;
alive_sleep(10);
} while (--timeout);
if (!timeout) {
LOG_DEBUG("DAP: poll %x timeout", reg);
return ERROR_WAIT;
} else {
return ERROR_OK;
}
}
/* Queued MEM-AP memory mapped single word transfers. */
int mem_ap_read_u32(struct adiv5_ap *ap,
target_addr_t address, uint32_t *value);
int mem_ap_write_u32(struct adiv5_ap *ap,
target_addr_t address, uint32_t value);
/* Synchronous MEM-AP memory mapped single word transfers. */
int mem_ap_read_atomic_u32(struct adiv5_ap *ap,
target_addr_t address, uint32_t *value);
int mem_ap_write_atomic_u32(struct adiv5_ap *ap,
target_addr_t address, uint32_t value);
/* Synchronous MEM-AP memory mapped bus block transfers. */
int mem_ap_read_buf(struct adiv5_ap *ap,
uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address);
int mem_ap_write_buf(struct adiv5_ap *ap,
const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address);
/* Synchronous, non-incrementing buffer functions for accessing fifos. */
int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address);
int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address);
/* Initialisation of the debug system, power domains and registers */
int dap_dp_init(struct adiv5_dap *dap);
int dap_dp_init_or_reconnect(struct adiv5_dap *dap);
int mem_ap_init(struct adiv5_ap *ap);
/* Invalidate cached DP select and cached TAR and CSW of all APs */
void dap_invalidate_cache(struct adiv5_dap *dap);
/* read ADIv6 baseptr register */
int adiv6_dap_read_baseptr(struct command_invocation *cmd, struct adiv5_dap *dap, target_addr_t *baseptr);
/* test if ap_num is valid, based on current knowledge of dap */
bool is_ap_num_valid(struct adiv5_dap *dap, uint64_t ap_num);
/* Probe Access Ports to find a particular type. Increment AP refcount */
int dap_find_get_ap(struct adiv5_dap *dap,
enum ap_type type_to_find,
struct adiv5_ap **ap_out);
/* Return AP with specified ap_num. Increment AP refcount */
struct adiv5_ap *dap_get_ap(struct adiv5_dap *dap, uint64_t ap_num);
/* Return AP with specified ap_num. Increment AP refcount and keep it non-zero */
struct adiv5_ap *dap_get_config_ap(struct adiv5_dap *dap, uint64_t ap_num);
/* Decrement AP refcount and release the AP when refcount reaches zero */
int dap_put_ap(struct adiv5_ap *ap);
/** Check if SWD multidrop configuration is valid */
static inline bool dap_is_multidrop(struct adiv5_dap *dap)
{
return dap->multidrop_dp_id_valid && dap->multidrop_instance_id_valid;
}
/* Lookup CoreSight component */
int dap_lookup_cs_component(struct adiv5_ap *ap,
uint8_t type, target_addr_t *addr, int32_t idx);
struct target;
/* Put debug link into SWD mode */
int dap_to_swd(struct adiv5_dap *dap);
/* Put debug link into JTAG mode */
int dap_to_jtag(struct adiv5_dap *dap);
extern const struct command_registration dap_instance_commands[];
struct arm_dap_object;
extern struct adiv5_dap *dap_instance_by_jim_obj(Jim_Interp *interp, Jim_Obj *o);
extern struct adiv5_dap *adiv5_get_dap(struct arm_dap_object *obj);
extern int dap_info_command(struct command_invocation *cmd,
struct adiv5_ap *ap);
extern int dap_register_commands(struct command_context *cmd_ctx);
extern const char *adiv5_dap_name(struct adiv5_dap *self);
extern const struct swd_driver *adiv5_dap_swd_driver(struct adiv5_dap *self);
extern int dap_cleanup_all(void);
struct adiv5_private_config {
uint64_t ap_num;
struct adiv5_dap *dap;
};
extern int adiv5_verify_config(struct adiv5_private_config *pc);
extern int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi);
struct adiv5_mem_ap_spot {
struct adiv5_dap *dap;
uint64_t ap_num;
uint32_t base;
};
extern int adiv5_mem_ap_spot_init(struct adiv5_mem_ap_spot *p);
extern int adiv5_jim_mem_ap_spot_configure(struct adiv5_mem_ap_spot *cfg,
struct jim_getopt_info *goi);
#endif /* OPENOCD_TARGET_ARM_ADI_V5_H */