openocd/src/target/armv8.c

1839 lines
58 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2015 by David Ung *
* *
* Copyright (C) 2018 by Liviu Ionescu *
* <ilg@livius.net> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <helper/replacements.h>
#include "armv8.h"
#include "arm_disassembler.h"
#include "register.h"
#include <helper/binarybuffer.h>
#include <helper/command.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "armv8_opcodes.h"
#include "target.h"
#include "target_type.h"
#include "semihosting_common.h"
static const char * const armv8_state_strings[] = {
"AArch32", "Thumb", "Jazelle", "ThumbEE", "AArch64",
};
static const struct {
const char *name;
unsigned psr;
} armv8_mode_data[] = {
{
.name = "USR",
.psr = ARM_MODE_USR,
},
{
.name = "FIQ",
.psr = ARM_MODE_FIQ,
},
{
.name = "IRQ",
.psr = ARM_MODE_IRQ,
},
{
.name = "SVC",
.psr = ARM_MODE_SVC,
},
{
.name = "MON",
.psr = ARM_MODE_MON,
},
{
.name = "ABT",
.psr = ARM_MODE_ABT,
},
{
.name = "HYP",
.psr = ARM_MODE_HYP,
},
{
.name = "UND",
.psr = ARM_MODE_UND,
},
{
.name = "SYS",
.psr = ARM_MODE_SYS,
},
{
.name = "EL0T",
.psr = ARMV8_64_EL0T,
},
{
.name = "EL1T",
.psr = ARMV8_64_EL1T,
},
{
.name = "EL1H",
.psr = ARMV8_64_EL1H,
},
{
.name = "EL2T",
.psr = ARMV8_64_EL2T,
},
{
.name = "EL2H",
.psr = ARMV8_64_EL2H,
},
{
.name = "EL3T",
.psr = ARMV8_64_EL3T,
},
{
.name = "EL3H",
.psr = ARMV8_64_EL3H,
},
};
/** Map PSR mode bits to the name of an ARM processor operating mode. */
const char *armv8_mode_name(unsigned psr_mode)
{
for (unsigned i = 0; i < ARRAY_SIZE(armv8_mode_data); i++) {
if (armv8_mode_data[i].psr == psr_mode)
return armv8_mode_data[i].name;
}
LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
return "UNRECOGNIZED";
}
static int armv8_read_reg(struct armv8_common *armv8, int regnum, uint64_t *regval)
{
struct arm_dpm *dpm = &armv8->dpm;
int retval;
uint32_t value;
uint64_t value_64;
switch (regnum) {
case 0 ... 30:
retval = dpm->instr_read_data_dcc_64(dpm,
ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, regnum), &value_64);
break;
case ARMV8_SP:
retval = dpm->instr_read_data_r0_64(dpm,
ARMV8_MOVFSP_64(0), &value_64);
break;
case ARMV8_PC:
retval = dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS_DLR(0), &value_64);
break;
case ARMV8_xPSR:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS_DSPSR(0), &value);
value_64 = value;
break;
case ARMV8_FPSR:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS_FPSR(0), &value);
value_64 = value;
break;
case ARMV8_FPCR:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS_FPCR(0), &value);
value_64 = value;
break;
case ARMV8_ELR_EL1:
retval = dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_ELR_EL1, 0), &value_64);
break;
case ARMV8_ELR_EL2:
retval = dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_ELR_EL2, 0), &value_64);
break;
case ARMV8_ELR_EL3:
retval = dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_ELR_EL3, 0), &value_64);
break;
case ARMV8_ESR_EL1:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_ESR_EL1, 0), &value);
value_64 = value;
break;
case ARMV8_ESR_EL2:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_ESR_EL2, 0), &value);
value_64 = value;
break;
case ARMV8_ESR_EL3:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_ESR_EL3, 0), &value);
value_64 = value;
break;
case ARMV8_SPSR_EL1:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_SPSR_EL1, 0), &value);
value_64 = value;
break;
case ARMV8_SPSR_EL2:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_SPSR_EL2, 0), &value);
value_64 = value;
break;
case ARMV8_SPSR_EL3:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_SPSR_EL3, 0), &value);
value_64 = value;
break;
default:
retval = ERROR_FAIL;
break;
}
if (retval == ERROR_OK && regval)
*regval = value_64;
else
retval = ERROR_FAIL;
return retval;
}
static int armv8_read_reg_simdfp_aarch64(struct armv8_common *armv8, int regnum, uint64_t *lvalue, uint64_t *hvalue)
{
int retval = ERROR_FAIL;
struct arm_dpm *dpm = &armv8->dpm;
switch (regnum) {
case ARMV8_V0 ... ARMV8_V31:
retval = dpm->instr_read_data_r0_64(dpm,
ARMV8_MOV_GPR_VFP(0, (regnum - ARMV8_V0), 1), hvalue);
if (retval != ERROR_OK)
return retval;
retval = dpm->instr_read_data_r0_64(dpm,
ARMV8_MOV_GPR_VFP(0, (regnum - ARMV8_V0), 0), lvalue);
break;
default:
retval = ERROR_FAIL;
break;
}
return retval;
}
static int armv8_write_reg(struct armv8_common *armv8, int regnum, uint64_t value_64)
{
struct arm_dpm *dpm = &armv8->dpm;
int retval;
uint32_t value;
switch (regnum) {
case 0 ... 30:
retval = dpm->instr_write_data_dcc_64(dpm,
ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, regnum),
value_64);
break;
case ARMV8_SP:
retval = dpm->instr_write_data_r0_64(dpm,
ARMV8_MOVTSP_64(0),
value_64);
break;
case ARMV8_PC:
retval = dpm->instr_write_data_r0_64(dpm,
ARMV8_MSR_DLR(0),
value_64);
break;
case ARMV8_xPSR:
value = value_64;
retval = dpm->instr_write_data_r0(dpm,
ARMV8_MSR_DSPSR(0),
value);
break;
case ARMV8_FPSR:
value = value_64;
retval = dpm->instr_write_data_r0(dpm,
ARMV8_MSR_FPSR(0),
value);
break;
case ARMV8_FPCR:
value = value_64;
retval = dpm->instr_write_data_r0(dpm,
ARMV8_MSR_FPCR(0),
value);
break;
/* registers clobbered by taking exception in debug state */
case ARMV8_ELR_EL1:
retval = dpm->instr_write_data_r0_64(dpm,
ARMV8_MSR_GP(SYSTEM_ELR_EL1, 0), value_64);
break;
case ARMV8_ELR_EL2:
retval = dpm->instr_write_data_r0_64(dpm,
ARMV8_MSR_GP(SYSTEM_ELR_EL2, 0), value_64);
break;
case ARMV8_ELR_EL3:
retval = dpm->instr_write_data_r0_64(dpm,
ARMV8_MSR_GP(SYSTEM_ELR_EL3, 0), value_64);
break;
case ARMV8_ESR_EL1:
value = value_64;
retval = dpm->instr_write_data_r0(dpm,
ARMV8_MSR_GP(SYSTEM_ESR_EL1, 0), value);
break;
case ARMV8_ESR_EL2:
value = value_64;
retval = dpm->instr_write_data_r0(dpm,
ARMV8_MSR_GP(SYSTEM_ESR_EL2, 0), value);
break;
case ARMV8_ESR_EL3:
value = value_64;
retval = dpm->instr_write_data_r0(dpm,
ARMV8_MSR_GP(SYSTEM_ESR_EL3, 0), value);
break;
case ARMV8_SPSR_EL1:
value = value_64;
retval = dpm->instr_write_data_r0(dpm,
ARMV8_MSR_GP(SYSTEM_SPSR_EL1, 0), value);
break;
case ARMV8_SPSR_EL2:
value = value_64;
retval = dpm->instr_write_data_r0(dpm,
ARMV8_MSR_GP(SYSTEM_SPSR_EL2, 0), value);
break;
case ARMV8_SPSR_EL3:
value = value_64;
retval = dpm->instr_write_data_r0(dpm,
ARMV8_MSR_GP(SYSTEM_SPSR_EL3, 0), value);
break;
default:
retval = ERROR_FAIL;
break;
}
return retval;
}
static int armv8_write_reg_simdfp_aarch64(struct armv8_common *armv8, int regnum, uint64_t lvalue, uint64_t hvalue)
{
int retval = ERROR_FAIL;
struct arm_dpm *dpm = &armv8->dpm;
switch (regnum) {
case ARMV8_V0 ... ARMV8_V31:
retval = dpm->instr_write_data_r0_64(dpm,
ARMV8_MOV_VFP_GPR((regnum - ARMV8_V0), 0, 1), hvalue);
if (retval != ERROR_OK)
return retval;
retval = dpm->instr_write_data_r0_64(dpm,
ARMV8_MOV_VFP_GPR((regnum - ARMV8_V0), 0, 0), lvalue);
break;
default:
retval = ERROR_FAIL;
break;
}
return retval;
}
static int armv8_read_reg32(struct armv8_common *armv8, int regnum, uint64_t *regval)
{
struct arm_dpm *dpm = &armv8->dpm;
uint32_t value = 0;
int retval;
switch (regnum) {
case ARMV8_R0 ... ARMV8_R14:
/* return via DCC: "MCR p14, 0, Rnum, c0, c5, 0" */
retval = dpm->instr_read_data_dcc(dpm,
ARMV4_5_MCR(14, 0, regnum, 0, 5, 0),
&value);
break;
case ARMV8_SP:
retval = dpm->instr_read_data_dcc(dpm,
ARMV4_5_MCR(14, 0, 13, 0, 5, 0),
&value);
break;
case ARMV8_PC:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRC_DLR(0),
&value);
break;
case ARMV8_xPSR:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRC_DSPSR(0),
&value);
break;
case ARMV8_ELR_EL1: /* mapped to LR_svc */
retval = dpm->instr_read_data_dcc(dpm,
ARMV4_5_MCR(14, 0, 14, 0, 5, 0),
&value);
break;
case ARMV8_ELR_EL2: /* mapped to ELR_hyp */
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS_T1(0, 14, 0, 1),
&value);
break;
case ARMV8_ELR_EL3: /* mapped to LR_mon */
retval = dpm->instr_read_data_dcc(dpm,
ARMV4_5_MCR(14, 0, 14, 0, 5, 0),
&value);
break;
case ARMV8_ESR_EL1: /* mapped to DFSR */
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 0, 0, 5, 0, 0),
&value);
break;
case ARMV8_ESR_EL2: /* mapped to HSR */
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 4, 0, 5, 2, 0),
&value);
break;
case ARMV8_ESR_EL3: /* FIXME: no equivalent in aarch32? */
retval = ERROR_FAIL;
break;
case ARMV8_SPSR_EL1: /* mapped to SPSR_svc */
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS_xPSR_T1(1, 0),
&value);
break;
case ARMV8_SPSR_EL2: /* mapped to SPSR_hyp */
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS_xPSR_T1(1, 0),
&value);
break;
case ARMV8_SPSR_EL3: /* mapped to SPSR_mon */
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS_xPSR_T1(1, 0),
&value);
break;
case ARMV8_FPSR:
/* "VMRS r0, FPSCR"; then return via DCC */
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_VMRS(0), &value);
break;
default:
retval = ERROR_FAIL;
break;
}
if (retval == ERROR_OK && regval)
*regval = value;
return retval;
}
static int armv8_read_reg_simdfp_aarch32(struct armv8_common *armv8, int regnum, uint64_t *lvalue, uint64_t *hvalue)
{
int retval = ERROR_FAIL;
struct arm_dpm *dpm = &armv8->dpm;
struct reg *reg_r1 = dpm->arm->core_cache->reg_list + ARMV8_R1;
uint32_t value_r0 = 0, value_r1 = 0;
unsigned num = (regnum - ARMV8_V0) << 1;
switch (regnum) {
case ARMV8_V0 ... ARMV8_V15:
/* we are going to write R1, mark it dirty */
reg_r1->dirty = true;
/* move from double word register to r0:r1: "vmov r0, r1, vm"
* then read r0 via dcc
*/
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_VMOV(1, 1, 0, (num >> 4), (num & 0xf)),
&value_r0);
if (retval != ERROR_OK)
return retval;
/* read r1 via dcc */
retval = dpm->instr_read_data_dcc(dpm,
ARMV4_5_MCR(14, 0, 1, 0, 5, 0),
&value_r1);
if (retval != ERROR_OK)
return retval;
*lvalue = value_r1;
*lvalue = ((*lvalue) << 32) | value_r0;
num++;
/* repeat above steps for high 64 bits of V register */
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_VMOV(1, 1, 0, (num >> 4), (num & 0xf)),
&value_r0);
if (retval != ERROR_OK)
return retval;
retval = dpm->instr_read_data_dcc(dpm,
ARMV4_5_MCR(14, 0, 1, 0, 5, 0),
&value_r1);
if (retval != ERROR_OK)
return retval;
*hvalue = value_r1;
*hvalue = ((*hvalue) << 32) | value_r0;
break;
default:
retval = ERROR_FAIL;
break;
}
return retval;
}
static int armv8_write_reg32(struct armv8_common *armv8, int regnum, uint64_t value)
{
struct arm_dpm *dpm = &armv8->dpm;
int retval;
switch (regnum) {
case ARMV8_R0 ... ARMV8_R14:
/* load register from DCC: "MRC p14, 0, Rnum, c0, c5, 0" */
retval = dpm->instr_write_data_dcc(dpm,
ARMV4_5_MRC(14, 0, regnum, 0, 5, 0), value);
break;
case ARMV8_SP:
retval = dpm->instr_write_data_dcc(dpm,
ARMV4_5_MRC(14, 0, 13, 0, 5, 0), value);
break;
case ARMV8_PC:/* PC
* read r0 from DCC; then "MOV pc, r0" */
retval = dpm->instr_write_data_r0(dpm,
ARMV8_MCR_DLR(0), value);
break;
case ARMV8_xPSR: /* CPSR */
/* read r0 from DCC, then "MCR r0, DSPSR" */
retval = dpm->instr_write_data_r0(dpm,
ARMV8_MCR_DSPSR(0), value);
break;
case ARMV8_ELR_EL1: /* mapped to LR_svc */
retval = dpm->instr_write_data_dcc(dpm,
ARMV4_5_MRC(14, 0, 14, 0, 5, 0),
value);
break;
case ARMV8_ELR_EL2: /* mapped to ELR_hyp */
retval = dpm->instr_write_data_r0(dpm,
ARMV8_MSR_GP_T1(0, 14, 0, 1),
value);
break;
case ARMV8_ELR_EL3: /* mapped to LR_mon */
retval = dpm->instr_write_data_dcc(dpm,
ARMV4_5_MRC(14, 0, 14, 0, 5, 0),
value);
break;
case ARMV8_ESR_EL1: /* mapped to DFSR */
retval = dpm->instr_write_data_r0(dpm,
ARMV4_5_MCR(15, 0, 0, 5, 0, 0),
value);
break;
case ARMV8_ESR_EL2: /* mapped to HSR */
retval = dpm->instr_write_data_r0(dpm,
ARMV4_5_MCR(15, 4, 0, 5, 2, 0),
value);
break;
case ARMV8_ESR_EL3: /* FIXME: no equivalent in aarch32? */
retval = ERROR_FAIL;
break;
case ARMV8_SPSR_EL1: /* mapped to SPSR_svc */
retval = dpm->instr_write_data_r0(dpm,
ARMV8_MSR_GP_xPSR_T1(1, 0, 15),
value);
break;
case ARMV8_SPSR_EL2: /* mapped to SPSR_hyp */
retval = dpm->instr_write_data_r0(dpm,
ARMV8_MSR_GP_xPSR_T1(1, 0, 15),
value);
break;
case ARMV8_SPSR_EL3: /* mapped to SPSR_mon */
retval = dpm->instr_write_data_r0(dpm,
ARMV8_MSR_GP_xPSR_T1(1, 0, 15),
value);
break;
case ARMV8_FPSR:
/* move to r0 from DCC, then "VMSR FPSCR, r0" */
retval = dpm->instr_write_data_r0(dpm,
ARMV4_5_VMSR(0), value);
break;
default:
retval = ERROR_FAIL;
break;
}
return retval;
}
static int armv8_write_reg_simdfp_aarch32(struct armv8_common *armv8, int regnum, uint64_t lvalue, uint64_t hvalue)
{
int retval = ERROR_FAIL;
struct arm_dpm *dpm = &armv8->dpm;
struct reg *reg_r1 = dpm->arm->core_cache->reg_list + ARMV8_R1;
uint32_t value_r0 = 0, value_r1 = 0;
unsigned num = (regnum - ARMV8_V0) << 1;
switch (regnum) {
case ARMV8_V0 ... ARMV8_V15:
/* we are going to write R1, mark it dirty */
reg_r1->dirty = true;
value_r1 = lvalue >> 32;
value_r0 = lvalue & 0xFFFFFFFF;
/* write value_r1 to r1 via dcc */
retval = dpm->instr_write_data_dcc(dpm,
ARMV4_5_MRC(14, 0, 1, 0, 5, 0),
value_r1);
if (retval != ERROR_OK)
return retval;
/* write value_r0 to r0 via dcc then,
* move to double word register from r0:r1: "vmov vm, r0, r1"
*/
retval = dpm->instr_write_data_r0(dpm,
ARMV4_5_VMOV(0, 1, 0, (num >> 4), (num & 0xf)),
value_r0);
if (retval != ERROR_OK)
return retval;
num++;
/* repeat above steps for high 64 bits of V register */
value_r1 = hvalue >> 32;
value_r0 = hvalue & 0xFFFFFFFF;
retval = dpm->instr_write_data_dcc(dpm,
ARMV4_5_MRC(14, 0, 1, 0, 5, 0),
value_r1);
if (retval != ERROR_OK)
return retval;
retval = dpm->instr_write_data_r0(dpm,
ARMV4_5_VMOV(0, 1, 0, (num >> 4), (num & 0xf)),
value_r0);
break;
default:
retval = ERROR_FAIL;
break;
}
return retval;
}
void armv8_select_reg_access(struct armv8_common *armv8, bool is_aarch64)
{
if (is_aarch64) {
armv8->read_reg_u64 = armv8_read_reg;
armv8->write_reg_u64 = armv8_write_reg;
armv8->read_reg_u128 = armv8_read_reg_simdfp_aarch64;
armv8->write_reg_u128 = armv8_write_reg_simdfp_aarch64;
} else {
armv8->read_reg_u64 = armv8_read_reg32;
armv8->write_reg_u64 = armv8_write_reg32;
armv8->read_reg_u128 = armv8_read_reg_simdfp_aarch32;
armv8->write_reg_u128 = armv8_write_reg_simdfp_aarch32;
}
}
/* retrieve core id cluster id */
int armv8_read_mpidr(struct armv8_common *armv8)
{
int retval = ERROR_FAIL;
struct arm *arm = &armv8->arm;
struct arm_dpm *dpm = armv8->arm.dpm;
uint32_t mpidr;
retval = dpm->prepare(dpm);
if (retval != ERROR_OK)
goto done;
/* check if we're in an unprivileged mode */
if (armv8_curel_from_core_mode(arm->core_mode) < SYSTEM_CUREL_EL1) {
retval = armv8_dpm_modeswitch(dpm, ARMV8_64_EL1H);
if (retval != ERROR_OK)
return retval;
}
retval = dpm->instr_read_data_r0(dpm, armv8_opcode(armv8, READ_REG_MPIDR), &mpidr);
if (retval != ERROR_OK)
goto done;
if (mpidr & 1U<<31) {
armv8->multi_processor_system = (mpidr >> 30) & 1;
armv8->cluster_id = (mpidr >> 8) & 0xf;
armv8->cpu_id = mpidr & 0x3;
LOG_INFO("%s cluster %x core %x %s", target_name(armv8->arm.target),
armv8->cluster_id,
armv8->cpu_id,
armv8->multi_processor_system == 0 ? "multi core" : "single core");
} else
LOG_ERROR("mpidr not in multiprocessor format");
done:
armv8_dpm_modeswitch(dpm, ARM_MODE_ANY);
dpm->finish(dpm);
return retval;
}
/**
* Configures host-side ARM records to reflect the specified CPSR.
* Later, code can use arm_reg_current() to map register numbers
* according to how they are exposed by this mode.
*/
void armv8_set_cpsr(struct arm *arm, uint32_t cpsr)
{
uint32_t mode = cpsr & 0x1F;
/* NOTE: this may be called very early, before the register
* cache is set up. We can't defend against many errors, in
* particular against CPSRs that aren't valid *here* ...
*/
if (arm->cpsr) {
buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
arm->cpsr->valid = true;
arm->cpsr->dirty = false;
}
/* Older ARMs won't have the J bit */
enum arm_state state = 0xFF;
if ((cpsr & 0x10) != 0) {
/* Aarch32 state */
if (cpsr & (1 << 5)) { /* T */
if (cpsr & (1 << 24)) { /* J */
LOG_WARNING("ThumbEE -- incomplete support");
state = ARM_STATE_THUMB_EE;
} else
state = ARM_STATE_THUMB;
} else {
if (cpsr & (1 << 24)) { /* J */
LOG_ERROR("Jazelle state handling is BROKEN!");
state = ARM_STATE_JAZELLE;
} else
state = ARM_STATE_ARM;
}
} else {
/* Aarch64 state */
state = ARM_STATE_AARCH64;
}
arm->core_state = state;
arm->core_mode = mode;
LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
armv8_mode_name(arm->core_mode),
armv8_state_strings[arm->core_state]);
}
static void armv8_show_fault_registers32(struct armv8_common *armv8)
{
uint32_t dfsr, ifsr, dfar, ifar;
struct arm_dpm *dpm = armv8->arm.dpm;
int retval;
retval = dpm->prepare(dpm);
if (retval != ERROR_OK)
return;
/* ARMV4_5_MRC(cpnum, op1, r0, crn, crm, op2) */
/* c5/c0 - {data, instruction} fault status registers */
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 0, 0, 5, 0, 0),
&dfsr);
if (retval != ERROR_OK)
goto done;
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 0, 0, 5, 0, 1),
&ifsr);
if (retval != ERROR_OK)
goto done;
/* c6/c0 - {data, instruction} fault address registers */
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 0, 0, 6, 0, 0),
&dfar);
if (retval != ERROR_OK)
goto done;
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 0, 0, 6, 0, 2),
&ifar);
if (retval != ERROR_OK)
goto done;
LOG_USER("Data fault registers DFSR: %8.8" PRIx32
", DFAR: %8.8" PRIx32, dfsr, dfar);
LOG_USER("Instruction fault registers IFSR: %8.8" PRIx32
", IFAR: %8.8" PRIx32, ifsr, ifar);
done:
/* (void) */ dpm->finish(dpm);
}
static __attribute__((unused)) void armv8_show_fault_registers(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
if (armv8->arm.core_state != ARM_STATE_AARCH64)
armv8_show_fault_registers32(armv8);
}
static uint8_t armv8_pa_size(uint32_t ps)
{
uint8_t ret = 0;
switch (ps) {
case 0:
ret = 32;
break;
case 1:
ret = 36;
break;
case 2:
ret = 40;
break;
case 3:
ret = 42;
break;
case 4:
ret = 44;
break;
case 5:
ret = 48;
break;
default:
LOG_INFO("Unknown physical address size");
break;
}
return ret;
}
static __attribute__((unused)) int armv8_read_ttbcr32(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = armv8->arm.dpm;
uint32_t ttbcr, ttbcr_n;
int retval = dpm->prepare(dpm);
if (retval != ERROR_OK)
goto done;
/* MRC p15,0,<Rt>,c2,c0,2 ; Read CP15 Translation Table Base Control Register*/
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 0, 0, 2, 0, 2),
&ttbcr);
if (retval != ERROR_OK)
goto done;
LOG_DEBUG("ttbcr %" PRIx32, ttbcr);
ttbcr_n = ttbcr & 0x7;
armv8->armv8_mmu.ttbcr = ttbcr;
/*
* ARM Architecture Reference Manual (ARMv7-A and ARMv7-R edition),
* document # ARM DDI 0406C
*/
armv8->armv8_mmu.ttbr_range[0] = 0xffffffff >> ttbcr_n;
armv8->armv8_mmu.ttbr_range[1] = 0xffffffff;
armv8->armv8_mmu.ttbr_mask[0] = 0xffffffff << (14 - ttbcr_n);
armv8->armv8_mmu.ttbr_mask[1] = 0xffffffff << 14;
LOG_DEBUG("ttbr1 %s, ttbr0_mask %" PRIx32 " ttbr1_mask %" PRIx32,
(ttbcr_n != 0) ? "used" : "not used",
armv8->armv8_mmu.ttbr_mask[0],
armv8->armv8_mmu.ttbr_mask[1]);
done:
dpm->finish(dpm);
return retval;
}
static __attribute__((unused)) int armv8_read_ttbcr(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = armv8->arm.dpm;
struct arm *arm = &armv8->arm;
uint32_t ttbcr;
uint64_t ttbcr_64;
int retval = dpm->prepare(dpm);
if (retval != ERROR_OK)
goto done;
/* clear ttrr1_used and ttbr0_mask */
memset(&armv8->armv8_mmu.ttbr1_used, 0, sizeof(armv8->armv8_mmu.ttbr1_used));
memset(&armv8->armv8_mmu.ttbr0_mask, 0, sizeof(armv8->armv8_mmu.ttbr0_mask));
switch (armv8_curel_from_core_mode(arm->core_mode)) {
case SYSTEM_CUREL_EL3:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_TCR_EL3, 0),
&ttbcr);
retval += dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_TTBR0_EL3, 0),
&armv8->ttbr_base);
if (retval != ERROR_OK)
goto done;
armv8->va_size = 64 - (ttbcr & 0x3F);
armv8->pa_size = armv8_pa_size((ttbcr >> 16) & 7);
armv8->page_size = (ttbcr >> 14) & 3;
break;
case SYSTEM_CUREL_EL2:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_TCR_EL2, 0),
&ttbcr);
retval += dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_TTBR0_EL2, 0),
&armv8->ttbr_base);
if (retval != ERROR_OK)
goto done;
armv8->va_size = 64 - (ttbcr & 0x3F);
armv8->pa_size = armv8_pa_size((ttbcr >> 16) & 7);
armv8->page_size = (ttbcr >> 14) & 3;
break;
case SYSTEM_CUREL_EL0:
armv8_dpm_modeswitch(dpm, ARMV8_64_EL1H);
/* fall through */
case SYSTEM_CUREL_EL1:
retval = dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_TCR_EL1, 0),
&ttbcr_64);
armv8->va_size = 64 - (ttbcr_64 & 0x3F);
armv8->pa_size = armv8_pa_size((ttbcr_64 >> 32) & 7);
armv8->page_size = (ttbcr_64 >> 14) & 3;
armv8->armv8_mmu.ttbr1_used = (((ttbcr_64 >> 16) & 0x3F) != 0) ? 1 : 0;
armv8->armv8_mmu.ttbr0_mask = 0x0000FFFFFFFFFFFF;
retval += dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_TTBR0_EL1 | (armv8->armv8_mmu.ttbr1_used), 0),
&armv8->ttbr_base);
if (retval != ERROR_OK)
goto done;
break;
default:
LOG_ERROR("unknown core state");
retval = ERROR_FAIL;
break;
}
if (retval != ERROR_OK)
goto done;
if (armv8->armv8_mmu.ttbr1_used == 1)
LOG_INFO("TTBR0 access above %" PRIx64, (uint64_t)(armv8->armv8_mmu.ttbr0_mask));
done:
armv8_dpm_modeswitch(dpm, ARM_MODE_ANY);
dpm->finish(dpm);
return retval;
}
/* method adapted to cortex A : reused arm v4 v5 method*/
int armv8_mmu_translate_va(struct target *target, target_addr_t va, target_addr_t *val)
{
return ERROR_OK;
}
/* V8 method VA TO PA */
int armv8_mmu_translate_va_pa(struct target *target, target_addr_t va,
target_addr_t *val, int meminfo)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm *arm = target_to_arm(target);
struct arm_dpm *dpm = &armv8->dpm;
enum arm_mode target_mode = ARM_MODE_ANY;
uint32_t retval;
uint32_t instr = 0;
uint64_t par;
static const char * const shared_name[] = {
"Non-", "UNDEFINED ", "Outer ", "Inner "
};
static const char * const secure_name[] = {
"Secure", "Not Secure"
};
if (target->state != TARGET_HALTED) {
LOG_WARNING("target %s not halted", target_name(target));
return ERROR_TARGET_NOT_HALTED;
}
retval = dpm->prepare(dpm);
if (retval != ERROR_OK)
return retval;
switch (armv8_curel_from_core_mode(arm->core_mode)) {
case SYSTEM_CUREL_EL0:
instr = ARMV8_SYS(SYSTEM_ATS12E0R, 0);
/* can only execute instruction at EL2 */
target_mode = ARMV8_64_EL2H;
break;
case SYSTEM_CUREL_EL1:
instr = ARMV8_SYS(SYSTEM_ATS12E1R, 0);
/* can only execute instruction at EL2 */
target_mode = ARMV8_64_EL2H;
break;
case SYSTEM_CUREL_EL2:
instr = ARMV8_SYS(SYSTEM_ATS1E2R, 0);
break;
case SYSTEM_CUREL_EL3:
instr = ARMV8_SYS(SYSTEM_ATS1E3R, 0);
break;
default:
break;
};
if (target_mode != ARM_MODE_ANY)
armv8_dpm_modeswitch(dpm, target_mode);
/* write VA to R0 and execute translation instruction */
retval = dpm->instr_write_data_r0_64(dpm, instr, (uint64_t)va);
/* read result from PAR_EL1 */
if (retval == ERROR_OK)
retval = dpm->instr_read_data_r0_64(dpm, ARMV8_MRS(SYSTEM_PAR_EL1, 0), &par);
/* switch back to saved PE mode */
if (target_mode != ARM_MODE_ANY)
armv8_dpm_modeswitch(dpm, ARM_MODE_ANY);
dpm->finish(dpm);
if (retval != ERROR_OK)
return retval;
if (par & 1) {
LOG_ERROR("Address translation failed at stage %i, FST=%x, PTW=%i",
((int)(par >> 9) & 1)+1, (int)(par >> 1) & 0x3f, (int)(par >> 8) & 1);
*val = 0;
retval = ERROR_FAIL;
} else {
*val = (par & 0xFFFFFFFFF000UL) | (va & 0xFFF);
if (meminfo) {
int SH = (par >> 7) & 3;
int NS = (par >> 9) & 1;
int ATTR = (par >> 56) & 0xFF;
char *memtype = (ATTR & 0xF0) == 0 ? "Device Memory" : "Normal Memory";
LOG_USER("%sshareable, %s",
shared_name[SH], secure_name[NS]);
LOG_USER("%s", memtype);
}
}
return retval;
}
COMMAND_HANDLER(armv8_handle_exception_catch_command)
{
struct target *target = get_current_target(CMD_CTX);
struct armv8_common *armv8 = target_to_armv8(target);
uint32_t edeccr = 0;
unsigned int argp = 0;
int retval;
static const struct jim_nvp nvp_ecatch_modes[] = {
{ .name = "off", .value = 0 },
{ .name = "nsec_el1", .value = (1 << 5) },
{ .name = "nsec_el2", .value = (2 << 5) },
{ .name = "nsec_el12", .value = (3 << 5) },
{ .name = "sec_el1", .value = (1 << 1) },
{ .name = "sec_el3", .value = (4 << 1) },
{ .name = "sec_el13", .value = (5 << 1) },
{ .name = NULL, .value = -1 },
};
const struct jim_nvp *n;
if (CMD_ARGC == 0) {
const char *sec = NULL, *nsec = NULL;
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_ECCR, &edeccr);
if (retval != ERROR_OK)
return retval;
n = jim_nvp_value2name_simple(nvp_ecatch_modes, edeccr & 0x0f);
if (n->name)
sec = n->name;
n = jim_nvp_value2name_simple(nvp_ecatch_modes, edeccr & 0xf0);
if (n->name)
nsec = n->name;
if (!sec || !nsec) {
LOG_WARNING("Exception Catch: unknown exception catch configuration: EDECCR = %02" PRIx32, edeccr & 0xff);
return ERROR_FAIL;
}
command_print(CMD, "Exception Catch: Secure: %s, Non-Secure: %s", sec, nsec);
return ERROR_OK;
}
while (argp < CMD_ARGC) {
n = jim_nvp_name2value_simple(nvp_ecatch_modes, CMD_ARGV[argp]);
if (!n->name) {
LOG_ERROR("Unknown option: %s", CMD_ARGV[argp]);
return ERROR_FAIL;
}
LOG_DEBUG("found: %s", n->name);
edeccr |= n->value;
argp++;
}
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_ECCR, edeccr);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
int armv8_handle_cache_info_command(struct command_invocation *cmd,
struct armv8_cache_common *armv8_cache)
{
if (armv8_cache->info == -1) {
command_print(cmd, "cache not yet identified");
return ERROR_OK;
}
if (armv8_cache->display_cache_info)
armv8_cache->display_cache_info(cmd, armv8_cache);
return ERROR_OK;
}
static int armv8_setup_semihosting(struct target *target, int enable)
{
return ERROR_OK;
}
int armv8_init_arch_info(struct target *target, struct armv8_common *armv8)
{
struct arm *arm = &armv8->arm;
arm->arch_info = armv8;
target->arch_info = &armv8->arm;
arm->setup_semihosting = armv8_setup_semihosting;
/* target is useful in all function arm v4 5 compatible */
armv8->arm.target = target;
armv8->arm.common_magic = ARM_COMMON_MAGIC;
armv8->common_magic = ARMV8_COMMON_MAGIC;
armv8->armv8_mmu.armv8_cache.l2_cache = NULL;
armv8->armv8_mmu.armv8_cache.info = -1;
armv8->armv8_mmu.armv8_cache.flush_all_data_cache = NULL;
armv8->armv8_mmu.armv8_cache.display_cache_info = NULL;
return ERROR_OK;
}
static int armv8_aarch64_state(struct target *target)
{
struct arm *arm = target_to_arm(target);
if (arm->common_magic != ARM_COMMON_MAGIC) {
LOG_ERROR("BUG: called for a non-ARM target");
return ERROR_FAIL;
}
LOG_USER("%s halted in %s state due to %s, current mode: %s\n"
"cpsr: 0x%8.8" PRIx32 " pc: 0x%" PRIx64 "%s",
target_name(target),
armv8_state_strings[arm->core_state],
debug_reason_name(target),
armv8_mode_name(arm->core_mode),
buf_get_u32(arm->cpsr->value, 0, 32),
buf_get_u64(arm->pc->value, 0, 64),
(target->semihosting && target->semihosting->is_active) ? ", semihosting" : "");
return ERROR_OK;
}
int armv8_arch_state(struct target *target)
{
static const char * const state[] = {
"disabled", "enabled"
};
struct armv8_common *armv8 = target_to_armv8(target);
struct arm *arm = &armv8->arm;
if (armv8->common_magic != ARMV8_COMMON_MAGIC) {
LOG_ERROR("BUG: called for a non-Armv8 target");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (arm->core_state == ARM_STATE_AARCH64)
armv8_aarch64_state(target);
else
arm_arch_state(target);
LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
state[armv8->armv8_mmu.mmu_enabled],
state[armv8->armv8_mmu.armv8_cache.d_u_cache_enabled],
state[armv8->armv8_mmu.armv8_cache.i_cache_enabled]);
if (arm->core_mode == ARM_MODE_ABT)
armv8_show_fault_registers(target);
if (target->debug_reason == DBG_REASON_WATCHPOINT)
LOG_USER("Watchpoint triggered at " TARGET_ADDR_FMT, armv8->dpm.wp_addr);
return ERROR_OK;
}
static struct reg_data_type aarch64_vector_base_types[] = {
{REG_TYPE_IEEE_DOUBLE, "ieee_double", 0, {NULL} },
{REG_TYPE_UINT64, "uint64", 0, {NULL} },
{REG_TYPE_INT64, "int64", 0, {NULL} },
{REG_TYPE_IEEE_SINGLE, "ieee_single", 0, {NULL} },
{REG_TYPE_UINT32, "uint32", 0, {NULL} },
{REG_TYPE_INT32, "int32", 0, {NULL} },
{REG_TYPE_UINT16, "uint16", 0, {NULL} },
{REG_TYPE_INT16, "int16", 0, {NULL} },
{REG_TYPE_UINT8, "uint8", 0, {NULL} },
{REG_TYPE_INT8, "int8", 0, {NULL} },
{REG_TYPE_UINT128, "uint128", 0, {NULL} },
{REG_TYPE_INT128, "int128", 0, {NULL} }
};
static struct reg_data_type_vector aarch64_vector_types[] = {
{aarch64_vector_base_types + 0, 2},
{aarch64_vector_base_types + 1, 2},
{aarch64_vector_base_types + 2, 2},
{aarch64_vector_base_types + 3, 4},
{aarch64_vector_base_types + 4, 4},
{aarch64_vector_base_types + 5, 4},
{aarch64_vector_base_types + 6, 8},
{aarch64_vector_base_types + 7, 8},
{aarch64_vector_base_types + 8, 16},
{aarch64_vector_base_types + 9, 16},
{aarch64_vector_base_types + 10, 01},
{aarch64_vector_base_types + 11, 01},
};
static struct reg_data_type aarch64_fpu_vector[] = {
{REG_TYPE_ARCH_DEFINED, "v2d", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 0} },
{REG_TYPE_ARCH_DEFINED, "v2u", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 1} },
{REG_TYPE_ARCH_DEFINED, "v2i", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 2} },
{REG_TYPE_ARCH_DEFINED, "v4f", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 3} },
{REG_TYPE_ARCH_DEFINED, "v4u", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 4} },
{REG_TYPE_ARCH_DEFINED, "v4i", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 5} },
{REG_TYPE_ARCH_DEFINED, "v8u", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 6} },
{REG_TYPE_ARCH_DEFINED, "v8i", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 7} },
{REG_TYPE_ARCH_DEFINED, "v16u", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 8} },
{REG_TYPE_ARCH_DEFINED, "v16i", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 9} },
{REG_TYPE_ARCH_DEFINED, "v1u", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 10} },
{REG_TYPE_ARCH_DEFINED, "v1i", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 11} },
};
static struct reg_data_type_union_field aarch64_union_fields_vnd[] = {
{"f", aarch64_fpu_vector + 0, aarch64_union_fields_vnd + 1},
{"u", aarch64_fpu_vector + 1, aarch64_union_fields_vnd + 2},
{"s", aarch64_fpu_vector + 2, NULL},
};
static struct reg_data_type_union_field aarch64_union_fields_vns[] = {
{"f", aarch64_fpu_vector + 3, aarch64_union_fields_vns + 1},
{"u", aarch64_fpu_vector + 4, aarch64_union_fields_vns + 2},
{"s", aarch64_fpu_vector + 5, NULL},
};
static struct reg_data_type_union_field aarch64_union_fields_vnh[] = {
{"u", aarch64_fpu_vector + 6, aarch64_union_fields_vnh + 1},
{"s", aarch64_fpu_vector + 7, NULL},
};
static struct reg_data_type_union_field aarch64_union_fields_vnb[] = {
{"u", aarch64_fpu_vector + 8, aarch64_union_fields_vnb + 1},
{"s", aarch64_fpu_vector + 9, NULL},
};
static struct reg_data_type_union_field aarch64_union_fields_vnq[] = {
{"u", aarch64_fpu_vector + 10, aarch64_union_fields_vnq + 1},
{"s", aarch64_fpu_vector + 11, NULL},
};
static struct reg_data_type_union aarch64_union_types[] = {
{aarch64_union_fields_vnd},
{aarch64_union_fields_vns},
{aarch64_union_fields_vnh},
{aarch64_union_fields_vnb},
{aarch64_union_fields_vnq},
};
static struct reg_data_type aarch64_fpu_union[] = {
{REG_TYPE_ARCH_DEFINED, "vnd", REG_TYPE_CLASS_UNION, {.reg_type_union = aarch64_union_types + 0} },
{REG_TYPE_ARCH_DEFINED, "vns", REG_TYPE_CLASS_UNION, {.reg_type_union = aarch64_union_types + 1} },
{REG_TYPE_ARCH_DEFINED, "vnh", REG_TYPE_CLASS_UNION, {.reg_type_union = aarch64_union_types + 2} },
{REG_TYPE_ARCH_DEFINED, "vnb", REG_TYPE_CLASS_UNION, {.reg_type_union = aarch64_union_types + 3} },
{REG_TYPE_ARCH_DEFINED, "vnq", REG_TYPE_CLASS_UNION, {.reg_type_union = aarch64_union_types + 4} },
};
static struct reg_data_type_union_field aarch64v_union_fields[] = {
{"d", aarch64_fpu_union + 0, aarch64v_union_fields + 1},
{"s", aarch64_fpu_union + 1, aarch64v_union_fields + 2},
{"h", aarch64_fpu_union + 2, aarch64v_union_fields + 3},
{"b", aarch64_fpu_union + 3, aarch64v_union_fields + 4},
{"q", aarch64_fpu_union + 4, NULL},
};
static struct reg_data_type_union aarch64v_union[] = {
{aarch64v_union_fields}
};
static struct reg_data_type aarch64v[] = {
{REG_TYPE_ARCH_DEFINED, "aarch64v", REG_TYPE_CLASS_UNION,
{.reg_type_union = aarch64v_union} },
};
static struct reg_data_type_bitfield aarch64_cpsr_bits[] = {
{ 0, 0, REG_TYPE_UINT8 },
{ 2, 3, REG_TYPE_UINT8 },
{ 4, 4, REG_TYPE_UINT8 },
{ 6, 6, REG_TYPE_BOOL },
{ 7, 7, REG_TYPE_BOOL },
{ 8, 8, REG_TYPE_BOOL },
{ 9, 9, REG_TYPE_BOOL },
{ 20, 20, REG_TYPE_BOOL },
{ 21, 21, REG_TYPE_BOOL },
{ 28, 28, REG_TYPE_BOOL },
{ 29, 29, REG_TYPE_BOOL },
{ 30, 30, REG_TYPE_BOOL },
{ 31, 31, REG_TYPE_BOOL },
};
static struct reg_data_type_flags_field aarch64_cpsr_fields[] = {
{ "SP", aarch64_cpsr_bits + 0, aarch64_cpsr_fields + 1 },
{ "EL", aarch64_cpsr_bits + 1, aarch64_cpsr_fields + 2 },
{ "nRW", aarch64_cpsr_bits + 2, aarch64_cpsr_fields + 3 },
{ "F", aarch64_cpsr_bits + 3, aarch64_cpsr_fields + 4 },
{ "I", aarch64_cpsr_bits + 4, aarch64_cpsr_fields + 5 },
{ "A", aarch64_cpsr_bits + 5, aarch64_cpsr_fields + 6 },
{ "D", aarch64_cpsr_bits + 6, aarch64_cpsr_fields + 7 },
{ "IL", aarch64_cpsr_bits + 7, aarch64_cpsr_fields + 8 },
{ "SS", aarch64_cpsr_bits + 8, aarch64_cpsr_fields + 9 },
{ "V", aarch64_cpsr_bits + 9, aarch64_cpsr_fields + 10 },
{ "C", aarch64_cpsr_bits + 10, aarch64_cpsr_fields + 11 },
{ "Z", aarch64_cpsr_bits + 11, aarch64_cpsr_fields + 12 },
{ "N", aarch64_cpsr_bits + 12, NULL }
};
static struct reg_data_type_flags aarch64_cpsr_flags[] = {
{ 4, aarch64_cpsr_fields }
};
static struct reg_data_type aarch64_flags_cpsr[] = {
{REG_TYPE_ARCH_DEFINED, "cpsr_flags", REG_TYPE_CLASS_FLAGS,
{.reg_type_flags = aarch64_cpsr_flags} },
};
static const struct {
unsigned id;
const char *name;
unsigned bits;
enum arm_mode mode;
enum reg_type type;
const char *group;
const char *feature;
struct reg_data_type *data_type;
} armv8_regs[] = {
{ ARMV8_R0, "x0", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R1, "x1", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R2, "x2", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R3, "x3", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R4, "x4", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R5, "x5", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R6, "x6", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R7, "x7", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R8, "x8", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R9, "x9", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R10, "x10", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R11, "x11", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R12, "x12", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R13, "x13", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R14, "x14", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R15, "x15", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R16, "x16", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R17, "x17", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R18, "x18", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R19, "x19", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R20, "x20", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R21, "x21", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R22, "x22", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R23, "x23", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R24, "x24", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R25, "x25", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R26, "x26", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R27, "x27", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R28, "x28", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R29, "x29", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_R30, "x30", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_SP, "sp", 64, ARM_MODE_ANY, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_PC, "pc", 64, ARM_MODE_ANY, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.aarch64.core", NULL},
{ ARMV8_xPSR, "cpsr", 32, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED,
"general", "org.gnu.gdb.aarch64.core", aarch64_flags_cpsr},
{ ARMV8_V0, "v0", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V1, "v1", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V2, "v2", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V3, "v3", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V4, "v4", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V5, "v5", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V6, "v6", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V7, "v7", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V8, "v8", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V9, "v9", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V10, "v10", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V11, "v11", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V12, "v12", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V13, "v13", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V14, "v14", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V15, "v15", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V16, "v16", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V17, "v17", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V18, "v18", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V19, "v19", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V20, "v20", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V21, "v21", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V22, "v22", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V23, "v23", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V24, "v24", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V25, "v25", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V26, "v26", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V27, "v27", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V28, "v28", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V29, "v29", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V30, "v30", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_V31, "v31", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
{ ARMV8_FPSR, "fpsr", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "simdfp", "org.gnu.gdb.aarch64.fpu", NULL},
{ ARMV8_FPCR, "fpcr", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "simdfp", "org.gnu.gdb.aarch64.fpu", NULL},
{ ARMV8_ELR_EL1, "ELR_EL1", 64, ARMV8_64_EL1H, REG_TYPE_CODE_PTR, "banked", "net.sourceforge.openocd.banked",
NULL},
{ ARMV8_ESR_EL1, "ESR_EL1", 32, ARMV8_64_EL1H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
NULL},
{ ARMV8_SPSR_EL1, "SPSR_EL1", 32, ARMV8_64_EL1H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
NULL},
{ ARMV8_ELR_EL2, "ELR_EL2", 64, ARMV8_64_EL2H, REG_TYPE_CODE_PTR, "banked", "net.sourceforge.openocd.banked",
NULL},
{ ARMV8_ESR_EL2, "ESR_EL2", 32, ARMV8_64_EL2H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
NULL},
{ ARMV8_SPSR_EL2, "SPSR_EL2", 32, ARMV8_64_EL2H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
NULL},
{ ARMV8_ELR_EL3, "ELR_EL3", 64, ARMV8_64_EL3H, REG_TYPE_CODE_PTR, "banked", "net.sourceforge.openocd.banked",
NULL},
{ ARMV8_ESR_EL3, "ESR_EL3", 32, ARMV8_64_EL3H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
NULL},
{ ARMV8_SPSR_EL3, "SPSR_EL3", 32, ARMV8_64_EL3H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
NULL},
};
static const struct {
unsigned id;
unsigned mapping;
const char *name;
unsigned bits;
enum arm_mode mode;
enum reg_type type;
const char *group;
const char *feature;
} armv8_regs32[] = {
{ ARMV8_R0, 0, "r0", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
{ ARMV8_R1, 0, "r1", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
{ ARMV8_R2, 0, "r2", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
{ ARMV8_R3, 0, "r3", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
{ ARMV8_R4, 0, "r4", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
{ ARMV8_R5, 0, "r5", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
{ ARMV8_R6, 0, "r6", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
{ ARMV8_R7, 0, "r7", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
{ ARMV8_R8, 0, "r8", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
{ ARMV8_R9, 0, "r9", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
{ ARMV8_R10, 0, "r10", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
{ ARMV8_R11, 0, "r11", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
{ ARMV8_R12, 0, "r12", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
{ ARMV8_R13, 0, "sp", 32, ARM_MODE_ANY, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.arm.core" },
{ ARMV8_R14, 0, "lr", 32, ARM_MODE_ANY, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.core" },
{ ARMV8_PC, 0, "pc", 32, ARM_MODE_ANY, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.core" },
{ ARMV8_xPSR, 0, "cpsr", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
{ ARMV8_V0, 0, "d0", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V0, 8, "d1", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V1, 0, "d2", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V1, 8, "d3", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V2, 0, "d4", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V2, 8, "d5", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V3, 0, "d6", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V3, 8, "d7", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V4, 0, "d8", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V4, 8, "d9", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V5, 0, "d10", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V5, 8, "d11", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V6, 0, "d12", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V6, 8, "d13", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V7, 0, "d14", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V7, 8, "d15", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V8, 0, "d16", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V8, 8, "d17", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V9, 0, "d18", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V9, 8, "d19", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V10, 0, "d20", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V10, 8, "d21", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V11, 0, "d22", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V11, 8, "d23", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V12, 0, "d24", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V12, 8, "d25", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V13, 0, "d26", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V13, 8, "d27", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V14, 0, "d28", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V14, 8, "d29", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V15, 0, "d30", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_V15, 8, "d31", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARMV8_FPSR, 0, "fpscr", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "float", "org.gnu.gdb.arm.vfp"},
};
#define ARMV8_NUM_REGS ARRAY_SIZE(armv8_regs)
#define ARMV8_NUM_REGS32 ARRAY_SIZE(armv8_regs32)
static int armv8_get_core_reg(struct reg *reg)
{
struct arm_reg *armv8_reg = reg->arch_info;
struct target *target = armv8_reg->target;
struct arm *arm = target_to_arm(target);
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
return arm->read_core_reg(target, reg, armv8_reg->num, arm->core_mode);
}
static int armv8_set_core_reg(struct reg *reg, uint8_t *buf)
{
struct arm_reg *armv8_reg = reg->arch_info;
struct target *target = armv8_reg->target;
struct arm *arm = target_to_arm(target);
uint64_t value = buf_get_u64(buf, 0, reg->size);
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
if (reg->size <= 64) {
if (reg == arm->cpsr)
armv8_set_cpsr(arm, (uint32_t)value);
else {
buf_set_u64(reg->value, 0, reg->size, value);
reg->valid = true;
}
} else if (reg->size <= 128) {
uint64_t hvalue = buf_get_u64(buf + 8, 0, reg->size - 64);
buf_set_u64(reg->value, 0, 64, value);
buf_set_u64(reg->value + 8, 0, reg->size - 64, hvalue);
reg->valid = true;
}
reg->dirty = true;
return ERROR_OK;
}
static const struct reg_arch_type armv8_reg_type = {
.get = armv8_get_core_reg,
.set = armv8_set_core_reg,
};
static int armv8_get_core_reg32(struct reg *reg)
{
struct arm_reg *armv8_reg = reg->arch_info;
struct target *target = armv8_reg->target;
struct arm *arm = target_to_arm(target);
struct reg_cache *cache = arm->core_cache;
struct reg *reg64;
int retval;
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
/* get the corresponding Aarch64 register */
reg64 = cache->reg_list + armv8_reg->num;
if (reg64->valid) {
reg->valid = true;
return ERROR_OK;
}
retval = arm->read_core_reg(target, reg64, armv8_reg->num, arm->core_mode);
if (retval == ERROR_OK)
reg->valid = reg64->valid;
return retval;
}
static int armv8_set_core_reg32(struct reg *reg, uint8_t *buf)
{
struct arm_reg *armv8_reg = reg->arch_info;
struct target *target = armv8_reg->target;
struct arm *arm = target_to_arm(target);
struct reg_cache *cache = arm->core_cache;
struct reg *reg64 = cache->reg_list + armv8_reg->num;
uint32_t value = buf_get_u32(buf, 0, 32);
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
if (reg64 == arm->cpsr) {
armv8_set_cpsr(arm, value);
} else {
if (reg->size <= 32)
buf_set_u32(reg->value, 0, 32, value);
else if (reg->size <= 64) {
uint64_t value64 = buf_get_u64(buf, 0, 64);
buf_set_u64(reg->value, 0, 64, value64);
}
reg->valid = true;
reg64->valid = true;
}
reg64->dirty = true;
return ERROR_OK;
}
static const struct reg_arch_type armv8_reg32_type = {
.get = armv8_get_core_reg32,
.set = armv8_set_core_reg32,
};
/** Builds cache of architecturally defined registers. */
struct reg_cache *armv8_build_reg_cache(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm *arm = &armv8->arm;
int num_regs = ARMV8_NUM_REGS;
int num_regs32 = ARMV8_NUM_REGS32;
struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
struct reg_cache *cache = malloc(sizeof(struct reg_cache));
struct reg_cache *cache32 = malloc(sizeof(struct reg_cache));
struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
struct reg *reg_list32 = calloc(num_regs32, sizeof(struct reg));
struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
struct reg_feature *feature;
int i;
/* Build the process context cache */
cache->name = "Aarch64 registers";
cache->next = cache32;
cache->reg_list = reg_list;
cache->num_regs = num_regs;
for (i = 0; i < num_regs; i++) {
arch_info[i].num = armv8_regs[i].id;
arch_info[i].mode = armv8_regs[i].mode;
arch_info[i].target = target;
arch_info[i].arm = arm;
reg_list[i].name = armv8_regs[i].name;
reg_list[i].size = armv8_regs[i].bits;
reg_list[i].value = &arch_info[i].value[0];
reg_list[i].type = &armv8_reg_type;
reg_list[i].arch_info = &arch_info[i];
reg_list[i].group = armv8_regs[i].group;
reg_list[i].number = i;
reg_list[i].exist = true;
reg_list[i].caller_save = true; /* gdb defaults to true */
feature = calloc(1, sizeof(struct reg_feature));
if (feature) {
feature->name = armv8_regs[i].feature;
reg_list[i].feature = feature;
} else
LOG_ERROR("unable to allocate feature list");
reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
if (reg_list[i].reg_data_type) {
if (!armv8_regs[i].data_type)
reg_list[i].reg_data_type->type = armv8_regs[i].type;
else
*reg_list[i].reg_data_type = *armv8_regs[i].data_type;
} else
LOG_ERROR("unable to allocate reg type list");
}
arm->cpsr = reg_list + ARMV8_xPSR;
arm->pc = reg_list + ARMV8_PC;
arm->core_cache = cache;
/* shadow cache for ARM mode registers */
cache32->name = "Aarch32 registers";
cache32->next = NULL;
cache32->reg_list = reg_list32;
cache32->num_regs = num_regs32;
for (i = 0; i < num_regs32; i++) {
reg_list32[i].name = armv8_regs32[i].name;
reg_list32[i].size = armv8_regs32[i].bits;
reg_list32[i].value = &arch_info[armv8_regs32[i].id].value[armv8_regs32[i].mapping];
reg_list32[i].type = &armv8_reg32_type;
reg_list32[i].arch_info = &arch_info[armv8_regs32[i].id];
reg_list32[i].group = armv8_regs32[i].group;
reg_list32[i].number = i;
reg_list32[i].exist = true;
reg_list32[i].caller_save = true;
feature = calloc(1, sizeof(struct reg_feature));
if (feature) {
feature->name = armv8_regs32[i].feature;
reg_list32[i].feature = feature;
} else
LOG_ERROR("unable to allocate feature list");
reg_list32[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
if (reg_list32[i].reg_data_type)
reg_list32[i].reg_data_type->type = armv8_regs32[i].type;
else
LOG_ERROR("unable to allocate reg type list");
}
(*cache_p) = cache;
return cache;
}
struct reg *armv8_reg_current(struct arm *arm, unsigned regnum)
{
struct reg *r;
if (regnum > (ARMV8_LAST_REG - 1))
return NULL;
r = arm->core_cache->reg_list + regnum;
return r;
}
static void armv8_free_cache(struct reg_cache *cache, bool regs32)
{
struct reg *reg;
unsigned int i;
if (!cache)
return;
for (i = 0; i < cache->num_regs; i++) {
reg = &cache->reg_list[i];
free(reg->feature);
free(reg->reg_data_type);
}
if (!regs32)
free(cache->reg_list[0].arch_info);
free(cache->reg_list);
free(cache);
}
void armv8_free_reg_cache(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm *arm = &armv8->arm;
struct reg_cache *cache = NULL, *cache32 = NULL;
cache = arm->core_cache;
if (cache)
cache32 = cache->next;
armv8_free_cache(cache32, true);
armv8_free_cache(cache, false);
arm->core_cache = NULL;
}
const struct command_registration armv8_command_handlers[] = {
{
.name = "catch_exc",
.handler = armv8_handle_exception_catch_command,
.mode = COMMAND_EXEC,
.help = "configure exception catch",
.usage = "[(nsec_el1,nsec_el2,sec_el1,sec_el3)+,off]",
},
COMMAND_REGISTRATION_DONE
};
const char *armv8_get_gdb_arch(struct target *target)
{
struct arm *arm = target_to_arm(target);
return arm->core_state == ARM_STATE_AARCH64 ? "aarch64" : "arm";
}
int armv8_get_gdb_reg_list(struct target *target,
struct reg **reg_list[], int *reg_list_size,
enum target_register_class reg_class)
{
struct arm *arm = target_to_arm(target);
int i;
if (arm->core_state == ARM_STATE_AARCH64) {
LOG_DEBUG("Creating Aarch64 register list for target %s", target_name(target));
switch (reg_class) {
case REG_CLASS_GENERAL:
*reg_list_size = ARMV8_V0;
*reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
for (i = 0; i < *reg_list_size; i++)
(*reg_list)[i] = armv8_reg_current(arm, i);
return ERROR_OK;
case REG_CLASS_ALL:
*reg_list_size = ARMV8_LAST_REG;
*reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
for (i = 0; i < *reg_list_size; i++)
(*reg_list)[i] = armv8_reg_current(arm, i);
return ERROR_OK;
default:
LOG_ERROR("not a valid register class type in query.");
return ERROR_FAIL;
}
} else {
struct reg_cache *cache32 = arm->core_cache->next;
LOG_DEBUG("Creating Aarch32 register list for target %s", target_name(target));
switch (reg_class) {
case REG_CLASS_GENERAL:
*reg_list_size = ARMV8_R14 + 3;
*reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
for (i = 0; i < *reg_list_size; i++)
(*reg_list)[i] = cache32->reg_list + i;
return ERROR_OK;
case REG_CLASS_ALL:
*reg_list_size = cache32->num_regs;
*reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
for (i = 0; i < *reg_list_size; i++)
(*reg_list)[i] = cache32->reg_list + i;
return ERROR_OK;
default:
LOG_ERROR("not a valid register class type in query.");
return ERROR_FAIL;
}
}
}
int armv8_set_dbgreg_bits(struct armv8_common *armv8, unsigned int reg, unsigned long mask, unsigned long value)
{
uint32_t tmp;
/* Read register */
int retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + reg, &tmp);
if (retval != ERROR_OK)
return retval;
/* clear bitfield */
tmp &= ~mask;
/* put new value */
tmp |= value & mask;
/* write new value */
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + reg, tmp);
return retval;
}