openocd/src/target/cortex_a.c

3478 lines
101 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2006 by Magnus Lundin *
* lundin@mlu.mine.nu *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2009 by Dirk Behme *
* dirk.behme@gmail.com - copy from cortex_m3 *
* *
* Copyright (C) 2010 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) ST-Ericsson SA 2011 *
* michel.jaouen@stericsson.com : smp minimum support *
* *
* Copyright (C) Broadcom 2012 *
* ehunter@broadcom.com : Cortex-R4 support *
* *
* Copyright (C) 2013 Kamal Dasu *
* kdasu.kdev@gmail.com *
* *
* Copyright (C) 2016 Chengyu Zheng *
* chengyu.zheng@polimi.it : watchpoint support *
* *
* Cortex-A8(tm) TRM, ARM DDI 0344H *
* Cortex-A9(tm) TRM, ARM DDI 0407F *
* Cortex-A4(tm) TRM, ARM DDI 0363E *
* Cortex-A15(tm)TRM, ARM DDI 0438C *
* *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "breakpoints.h"
#include "cortex_a.h"
#include "register.h"
#include "armv7a_mmu.h"
#include "target_request.h"
#include "target_type.h"
#include "arm_coresight.h"
#include "arm_opcodes.h"
#include "arm_semihosting.h"
#include "jtag/interface.h"
#include "transport/transport.h"
#include "smp.h"
#include <helper/bits.h>
#include <helper/time_support.h>
static int cortex_a_poll(struct target *target);
static int cortex_a_debug_entry(struct target *target);
static int cortex_a_restore_context(struct target *target, bool bpwp);
static int cortex_a_set_breakpoint(struct target *target,
struct breakpoint *breakpoint, uint8_t matchmode);
static int cortex_a_set_context_breakpoint(struct target *target,
struct breakpoint *breakpoint, uint8_t matchmode);
static int cortex_a_set_hybrid_breakpoint(struct target *target,
struct breakpoint *breakpoint);
static int cortex_a_unset_breakpoint(struct target *target,
struct breakpoint *breakpoint);
static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
uint32_t value, uint32_t *dscr);
static int cortex_a_mmu(struct target *target, int *enabled);
static int cortex_a_mmu_modify(struct target *target, int enable);
static int cortex_a_virt2phys(struct target *target,
target_addr_t virt, target_addr_t *phys);
static int cortex_a_read_cpu_memory(struct target *target,
uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
static unsigned int ilog2(unsigned int x)
{
unsigned int y = 0;
x /= 2;
while (x) {
++y;
x /= 2;
}
return y;
}
/* restore cp15_control_reg at resume */
static int cortex_a_restore_cp15_control_reg(struct target *target)
{
int retval = ERROR_OK;
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
struct armv7a_common *armv7a = target_to_armv7a(target);
if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
/* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
retval = armv7a->arm.mcr(target, 15,
0, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
cortex_a->cp15_control_reg);
}
return retval;
}
/*
* Set up ARM core for memory access.
* If !phys_access, switch to SVC mode and make sure MMU is on
* If phys_access, switch off mmu
*/
static int cortex_a_prep_memaccess(struct target *target, int phys_access)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
int mmu_enabled = 0;
if (phys_access == 0) {
arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
cortex_a_mmu(target, &mmu_enabled);
if (mmu_enabled)
cortex_a_mmu_modify(target, 1);
if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
/* overwrite DACR to all-manager */
armv7a->arm.mcr(target, 15,
0, 0, 3, 0,
0xFFFFFFFF);
}
} else {
cortex_a_mmu(target, &mmu_enabled);
if (mmu_enabled)
cortex_a_mmu_modify(target, 0);
}
return ERROR_OK;
}
/*
* Restore ARM core after memory access.
* If !phys_access, switch to previous mode
* If phys_access, restore MMU setting
*/
static int cortex_a_post_memaccess(struct target *target, int phys_access)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
if (phys_access == 0) {
if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
/* restore */
armv7a->arm.mcr(target, 15,
0, 0, 3, 0,
cortex_a->cp15_dacr_reg);
}
arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
} else {
int mmu_enabled = 0;
cortex_a_mmu(target, &mmu_enabled);
if (mmu_enabled)
cortex_a_mmu_modify(target, 1);
}
return ERROR_OK;
}
/* modify cp15_control_reg in order to enable or disable mmu for :
* - virt2phys address conversion
* - read or write memory in phys or virt address */
static int cortex_a_mmu_modify(struct target *target, int enable)
{
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
struct armv7a_common *armv7a = target_to_armv7a(target);
int retval = ERROR_OK;
int need_write = 0;
if (enable) {
/* if mmu enabled at target stop and mmu not enable */
if (!(cortex_a->cp15_control_reg & 0x1U)) {
LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
return ERROR_FAIL;
}
if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
cortex_a->cp15_control_reg_curr |= 0x1U;
need_write = 1;
}
} else {
if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
cortex_a->cp15_control_reg_curr &= ~0x1U;
need_write = 1;
}
}
if (need_write) {
LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
enable ? "enable mmu" : "disable mmu",
cortex_a->cp15_control_reg_curr);
retval = armv7a->arm.mcr(target, 15,
0, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
cortex_a->cp15_control_reg_curr);
}
return retval;
}
/*
* Cortex-A Basic debug access, very low level assumes state is saved
*/
static int cortex_a_init_debug_access(struct target *target)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
uint32_t dscr;
int retval;
/* lock memory-mapped access to debug registers to prevent
* software interference */
retval = mem_ap_write_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
if (retval != ERROR_OK)
return retval;
/* Disable cacheline fills and force cache write-through in debug state */
retval = mem_ap_write_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCCR, 0);
if (retval != ERROR_OK)
return retval;
/* Disable TLB lookup and refill/eviction in debug state */
retval = mem_ap_write_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSMCR, 0);
if (retval != ERROR_OK)
return retval;
retval = dap_run(armv7a->debug_ap->dap);
if (retval != ERROR_OK)
return retval;
/* Enabling of instruction execution in debug mode is done in debug_entry code */
/* Resync breakpoint registers */
/* Enable halt for breakpoint, watchpoint and vector catch */
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
if (retval != ERROR_OK)
return retval;
/* Since this is likely called from init or reset, update target state information*/
return cortex_a_poll(target);
}
static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
{
/* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
* Writes final value of DSCR into *dscr. Pass force to force always
* reading DSCR at least once. */
struct armv7a_common *armv7a = target_to_armv7a(target);
int retval;
if (force) {
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, dscr);
if (retval != ERROR_OK) {
LOG_ERROR("Could not read DSCR register");
return retval;
}
}
retval = cortex_a_wait_dscr_bits(target, DSCR_INSTR_COMP, DSCR_INSTR_COMP, dscr);
if (retval != ERROR_OK)
LOG_ERROR("Error waiting for InstrCompl=1");
return retval;
}
/* To reduce needless round-trips, pass in a pointer to the current
* DSCR value. Initialize it to zero if you just need to know the
* value on return from this function; or DSCR_INSTR_COMP if you
* happen to know that no instruction is pending.
*/
static int cortex_a_exec_opcode(struct target *target,
uint32_t opcode, uint32_t *dscr_p)
{
uint32_t dscr;
int retval;
struct armv7a_common *armv7a = target_to_armv7a(target);
dscr = dscr_p ? *dscr_p : 0;
LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
/* Wait for InstrCompl bit to be set */
retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_write_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_ITR, opcode);
if (retval != ERROR_OK)
return retval;
/* Wait for InstrCompl bit to be set */
retval = cortex_a_wait_instrcmpl(target, &dscr, true);
if (retval != ERROR_OK) {
LOG_ERROR("Error waiting for cortex_a_exec_opcode");
return retval;
}
if (dscr_p)
*dscr_p = dscr;
return retval;
}
/* Write to memory mapped registers directly with no cache or mmu handling */
static int cortex_a_dap_write_memap_register_u32(struct target *target,
uint32_t address,
uint32_t value)
{
int retval;
struct armv7a_common *armv7a = target_to_armv7a(target);
retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
return retval;
}
/*
* Cortex-A implementation of Debug Programmer's Model
*
* NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
* so there's no need to poll for it before executing an instruction.
*
* NOTE that in several of these cases the "stall" mode might be useful.
* It'd let us queue a few operations together... prepare/finish might
* be the places to enable/disable that mode.
*/
static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
{
return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
}
static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
{
LOG_DEBUG("write DCC 0x%08" PRIx32, data);
return mem_ap_write_u32(a->armv7a_common.debug_ap,
a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
}
static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
uint32_t *dscr_p)
{
uint32_t dscr = DSCR_INSTR_COMP;
int retval;
if (dscr_p)
dscr = *dscr_p;
/* Wait for DTRRXfull */
retval = cortex_a_wait_dscr_bits(a->armv7a_common.arm.target,
DSCR_DTR_TX_FULL, DSCR_DTR_TX_FULL, &dscr);
if (retval != ERROR_OK) {
LOG_ERROR("Error waiting for read dcc");
return retval;
}
retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
if (retval != ERROR_OK)
return retval;
/* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
if (dscr_p)
*dscr_p = dscr;
return retval;
}
static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
{
struct cortex_a_common *a = dpm_to_a(dpm);
uint32_t dscr;
int retval;
/* set up invariant: INSTR_COMP is set after ever DPM operation */
retval = cortex_a_wait_instrcmpl(dpm->arm->target, &dscr, true);
if (retval != ERROR_OK) {
LOG_ERROR("Error waiting for dpm prepare");
return retval;
}
/* this "should never happen" ... */
if (dscr & DSCR_DTR_RX_FULL) {
LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
/* Clear DCCRX */
retval = cortex_a_exec_opcode(
a->armv7a_common.arm.target,
ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
&dscr);
if (retval != ERROR_OK)
return retval;
}
return retval;
}
static int cortex_a_dpm_finish(struct arm_dpm *dpm)
{
/* REVISIT what could be done here? */
return ERROR_OK;
}
static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
uint32_t opcode, uint32_t data)
{
struct cortex_a_common *a = dpm_to_a(dpm);
int retval;
uint32_t dscr = DSCR_INSTR_COMP;
retval = cortex_a_write_dcc(a, data);
if (retval != ERROR_OK)
return retval;
return cortex_a_exec_opcode(
a->armv7a_common.arm.target,
opcode,
&dscr);
}
static int cortex_a_instr_write_data_rt_dcc(struct arm_dpm *dpm,
uint8_t rt, uint32_t data)
{
struct cortex_a_common *a = dpm_to_a(dpm);
uint32_t dscr = DSCR_INSTR_COMP;
int retval;
if (rt > 15)
return ERROR_TARGET_INVALID;
retval = cortex_a_write_dcc(a, data);
if (retval != ERROR_OK)
return retval;
/* DCCRX to Rt, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
return cortex_a_exec_opcode(
a->armv7a_common.arm.target,
ARMV4_5_MRC(14, 0, rt, 0, 5, 0),
&dscr);
}
static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
uint32_t opcode, uint32_t data)
{
struct cortex_a_common *a = dpm_to_a(dpm);
uint32_t dscr = DSCR_INSTR_COMP;
int retval;
retval = cortex_a_instr_write_data_rt_dcc(dpm, 0, data);
if (retval != ERROR_OK)
return retval;
/* then the opcode, taking data from R0 */
retval = cortex_a_exec_opcode(
a->armv7a_common.arm.target,
opcode,
&dscr);
return retval;
}
static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
{
struct target *target = dpm->arm->target;
uint32_t dscr = DSCR_INSTR_COMP;
/* "Prefetch flush" after modifying execution status in CPSR */
return cortex_a_exec_opcode(target,
ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
&dscr);
}
static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
uint32_t opcode, uint32_t *data)
{
struct cortex_a_common *a = dpm_to_a(dpm);
int retval;
uint32_t dscr = DSCR_INSTR_COMP;
/* the opcode, writing data to DCC */
retval = cortex_a_exec_opcode(
a->armv7a_common.arm.target,
opcode,
&dscr);
if (retval != ERROR_OK)
return retval;
return cortex_a_read_dcc(a, data, &dscr);
}
static int cortex_a_instr_read_data_rt_dcc(struct arm_dpm *dpm,
uint8_t rt, uint32_t *data)
{
struct cortex_a_common *a = dpm_to_a(dpm);
uint32_t dscr = DSCR_INSTR_COMP;
int retval;
if (rt > 15)
return ERROR_TARGET_INVALID;
retval = cortex_a_exec_opcode(
a->armv7a_common.arm.target,
ARMV4_5_MCR(14, 0, rt, 0, 5, 0),
&dscr);
if (retval != ERROR_OK)
return retval;
return cortex_a_read_dcc(a, data, &dscr);
}
static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
uint32_t opcode, uint32_t *data)
{
struct cortex_a_common *a = dpm_to_a(dpm);
uint32_t dscr = DSCR_INSTR_COMP;
int retval;
/* the opcode, writing data to R0 */
retval = cortex_a_exec_opcode(
a->armv7a_common.arm.target,
opcode,
&dscr);
if (retval != ERROR_OK)
return retval;
/* write R0 to DCC */
return cortex_a_instr_read_data_rt_dcc(dpm, 0, data);
}
static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
uint32_t addr, uint32_t control)
{
struct cortex_a_common *a = dpm_to_a(dpm);
uint32_t vr = a->armv7a_common.debug_base;
uint32_t cr = a->armv7a_common.debug_base;
int retval;
switch (index_t) {
case 0 ... 15: /* breakpoints */
vr += CPUDBG_BVR_BASE;
cr += CPUDBG_BCR_BASE;
break;
case 16 ... 31: /* watchpoints */
vr += CPUDBG_WVR_BASE;
cr += CPUDBG_WCR_BASE;
index_t -= 16;
break;
default:
return ERROR_FAIL;
}
vr += 4 * index_t;
cr += 4 * index_t;
LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
(unsigned) vr, (unsigned) cr);
retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
vr, addr);
if (retval != ERROR_OK)
return retval;
retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
cr, control);
return retval;
}
static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
{
struct cortex_a_common *a = dpm_to_a(dpm);
uint32_t cr;
switch (index_t) {
case 0 ... 15:
cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
break;
case 16 ... 31:
cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
index_t -= 16;
break;
default:
return ERROR_FAIL;
}
cr += 4 * index_t;
LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
/* clear control register */
return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
}
static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
{
struct arm_dpm *dpm = &a->armv7a_common.dpm;
int retval;
dpm->arm = &a->armv7a_common.arm;
dpm->didr = didr;
dpm->prepare = cortex_a_dpm_prepare;
dpm->finish = cortex_a_dpm_finish;
dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
dpm->bpwp_enable = cortex_a_bpwp_enable;
dpm->bpwp_disable = cortex_a_bpwp_disable;
retval = arm_dpm_setup(dpm);
if (retval == ERROR_OK)
retval = arm_dpm_initialize(dpm);
return retval;
}
static struct target *get_cortex_a(struct target *target, int32_t coreid)
{
struct target_list *head;
foreach_smp_target(head, target->smp_targets) {
struct target *curr = head->target;
if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
return curr;
}
return target;
}
static int cortex_a_halt(struct target *target);
static int cortex_a_halt_smp(struct target *target)
{
int retval = 0;
struct target_list *head;
foreach_smp_target(head, target->smp_targets) {
struct target *curr = head->target;
if ((curr != target) && (curr->state != TARGET_HALTED)
&& target_was_examined(curr))
retval += cortex_a_halt(curr);
}
return retval;
}
static int update_halt_gdb(struct target *target)
{
struct target *gdb_target = NULL;
struct target_list *head;
struct target *curr;
int retval = 0;
if (target->gdb_service && target->gdb_service->core[0] == -1) {
target->gdb_service->target = target;
target->gdb_service->core[0] = target->coreid;
retval += cortex_a_halt_smp(target);
}
if (target->gdb_service)
gdb_target = target->gdb_service->target;
foreach_smp_target(head, target->smp_targets) {
curr = head->target;
/* skip calling context */
if (curr == target)
continue;
if (!target_was_examined(curr))
continue;
/* skip targets that were already halted */
if (curr->state == TARGET_HALTED)
continue;
/* Skip gdb_target; it alerts GDB so has to be polled as last one */
if (curr == gdb_target)
continue;
/* avoid recursion in cortex_a_poll() */
curr->smp = 0;
cortex_a_poll(curr);
curr->smp = 1;
}
/* after all targets were updated, poll the gdb serving target */
if (gdb_target && gdb_target != target)
cortex_a_poll(gdb_target);
return retval;
}
/*
* Cortex-A Run control
*/
static int cortex_a_poll(struct target *target)
{
int retval = ERROR_OK;
uint32_t dscr;
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
enum target_state prev_target_state = target->state;
/* toggle to another core is done by gdb as follow */
/* maint packet J core_id */
/* continue */
/* the next polling trigger an halt event sent to gdb */
if ((target->state == TARGET_HALTED) && (target->smp) &&
(target->gdb_service) &&
(!target->gdb_service->target)) {
target->gdb_service->target =
get_cortex_a(target, target->gdb_service->core[1]);
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
return retval;
}
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
if (retval != ERROR_OK)
return retval;
cortex_a->cpudbg_dscr = dscr;
if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
if (prev_target_state != TARGET_HALTED) {
/* We have a halting debug event */
LOG_DEBUG("Target halted");
target->state = TARGET_HALTED;
retval = cortex_a_debug_entry(target);
if (retval != ERROR_OK)
return retval;
if (target->smp) {
retval = update_halt_gdb(target);
if (retval != ERROR_OK)
return retval;
}
if (prev_target_state == TARGET_DEBUG_RUNNING) {
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
} else { /* prev_target_state is RUNNING, UNKNOWN or RESET */
if (arm_semihosting(target, &retval) != 0)
return retval;
target_call_event_callbacks(target,
TARGET_EVENT_HALTED);
}
}
} else
target->state = TARGET_RUNNING;
return retval;
}
static int cortex_a_halt(struct target *target)
{
int retval;
uint32_t dscr;
struct armv7a_common *armv7a = target_to_armv7a(target);
/*
* Tell the core to be halted by writing DRCR with 0x1
* and then wait for the core to be halted.
*/
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
if (retval != ERROR_OK)
return retval;
dscr = 0; /* force read of dscr */
retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_HALTED,
DSCR_CORE_HALTED, &dscr);
if (retval != ERROR_OK) {
LOG_ERROR("Error waiting for halt");
return retval;
}
target->debug_reason = DBG_REASON_DBGRQ;
return ERROR_OK;
}
static int cortex_a_internal_restore(struct target *target, int current,
target_addr_t *address, int handle_breakpoints, int debug_execution)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm *arm = &armv7a->arm;
int retval;
uint32_t resume_pc;
if (!debug_execution)
target_free_all_working_areas(target);
#if 0
if (debug_execution) {
/* Disable interrupts */
/* We disable interrupts in the PRIMASK register instead of
* masking with C_MASKINTS,
* This is probably the same issue as Cortex-M3 Errata 377493:
* C_MASKINTS in parallel with disabled interrupts can cause
* local faults to not be taken. */
buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = true;
armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = true;
/* Make sure we are in Thumb mode */
buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
32) | (1 << 24));
armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = true;
armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = true;
}
#endif
/* current = 1: continue on current pc, otherwise continue at <address> */
resume_pc = buf_get_u32(arm->pc->value, 0, 32);
if (!current)
resume_pc = *address;
else
*address = resume_pc;
/* Make sure that the Armv7 gdb thumb fixups does not
* kill the return address
*/
switch (arm->core_state) {
case ARM_STATE_ARM:
resume_pc &= 0xFFFFFFFC;
break;
case ARM_STATE_THUMB:
case ARM_STATE_THUMB_EE:
/* When the return address is loaded into PC
* bit 0 must be 1 to stay in Thumb state
*/
resume_pc |= 0x1;
break;
case ARM_STATE_JAZELLE:
LOG_ERROR("How do I resume into Jazelle state??");
return ERROR_FAIL;
case ARM_STATE_AARCH64:
LOG_ERROR("Shouldn't be in AARCH64 state");
return ERROR_FAIL;
}
LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
buf_set_u32(arm->pc->value, 0, 32, resume_pc);
arm->pc->dirty = true;
arm->pc->valid = true;
/* restore dpm_mode at system halt */
arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
/* called it now before restoring context because it uses cpu
* register r0 for restoring cp15 control register */
retval = cortex_a_restore_cp15_control_reg(target);
if (retval != ERROR_OK)
return retval;
retval = cortex_a_restore_context(target, handle_breakpoints);
if (retval != ERROR_OK)
return retval;
target->debug_reason = DBG_REASON_NOTHALTED;
target->state = TARGET_RUNNING;
/* registers are now invalid */
register_cache_invalidate(arm->core_cache);
#if 0
/* the front-end may request us not to handle breakpoints */
if (handle_breakpoints) {
/* Single step past breakpoint at current address */
breakpoint = breakpoint_find(target, resume_pc);
if (breakpoint) {
LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
cortex_m3_unset_breakpoint(target, breakpoint);
cortex_m3_single_step_core(target);
cortex_m3_set_breakpoint(target, breakpoint);
}
}
#endif
return retval;
}
static int cortex_a_internal_restart(struct target *target)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm *arm = &armv7a->arm;
int retval;
uint32_t dscr;
/*
* * Restart core and wait for it to be started. Clear ITRen and sticky
* * exception flags: see ARMv7 ARM, C5.9.
*
* REVISIT: for single stepping, we probably want to
* disable IRQs by default, with optional override...
*/
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
if (retval != ERROR_OK)
return retval;
if ((dscr & DSCR_INSTR_COMP) == 0)
LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
DRCR_CLEAR_EXCEPTIONS);
if (retval != ERROR_OK)
return retval;
dscr = 0; /* force read of dscr */
retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_RESTARTED,
DSCR_CORE_RESTARTED, &dscr);
if (retval != ERROR_OK) {
LOG_ERROR("Error waiting for resume");
return retval;
}
target->debug_reason = DBG_REASON_NOTHALTED;
target->state = TARGET_RUNNING;
/* registers are now invalid */
register_cache_invalidate(arm->core_cache);
return ERROR_OK;
}
static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
{
int retval = 0;
struct target_list *head;
target_addr_t address;
foreach_smp_target(head, target->smp_targets) {
struct target *curr = head->target;
if ((curr != target) && (curr->state != TARGET_RUNNING)
&& target_was_examined(curr)) {
/* resume current address , not in step mode */
retval += cortex_a_internal_restore(curr, 1, &address,
handle_breakpoints, 0);
retval += cortex_a_internal_restart(curr);
}
}
return retval;
}
static int cortex_a_resume(struct target *target, int current,
target_addr_t address, int handle_breakpoints, int debug_execution)
{
int retval = 0;
/* dummy resume for smp toggle in order to reduce gdb impact */
if ((target->smp) && (target->gdb_service->core[1] != -1)) {
/* simulate a start and halt of target */
target->gdb_service->target = NULL;
target->gdb_service->core[0] = target->gdb_service->core[1];
/* fake resume at next poll we play the target core[1], see poll*/
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
return 0;
}
cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
if (target->smp) {
target->gdb_service->core[0] = -1;
retval = cortex_a_restore_smp(target, handle_breakpoints);
if (retval != ERROR_OK)
return retval;
}
cortex_a_internal_restart(target);
if (!debug_execution) {
target->state = TARGET_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
} else {
target->state = TARGET_DEBUG_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
}
return ERROR_OK;
}
static int cortex_a_debug_entry(struct target *target)
{
uint32_t dscr;
int retval = ERROR_OK;
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm *arm = &armv7a->arm;
LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
/* REVISIT surely we should not re-read DSCR !! */
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
if (retval != ERROR_OK)
return retval;
/* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
* imprecise data aborts get discarded by issuing a Data
* Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
*/
/* Enable the ITR execution once we are in debug mode */
dscr |= DSCR_ITR_EN;
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, dscr);
if (retval != ERROR_OK)
return retval;
/* Examine debug reason */
arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
/* save address of instruction that triggered the watchpoint? */
if (target->debug_reason == DBG_REASON_WATCHPOINT) {
uint32_t wfar;
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_WFAR,
&wfar);
if (retval != ERROR_OK)
return retval;
arm_dpm_report_wfar(&armv7a->dpm, wfar);
}
/* First load register accessible through core debug port */
retval = arm_dpm_read_current_registers(&armv7a->dpm);
if (retval != ERROR_OK)
return retval;
if (arm->spsr) {
/* read SPSR */
retval = arm_dpm_read_reg(&armv7a->dpm, arm->spsr, 17);
if (retval != ERROR_OK)
return retval;
}
#if 0
/* TODO, Move this */
uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
#endif
/* Are we in an exception handler */
/* armv4_5->exception_number = 0; */
if (armv7a->post_debug_entry) {
retval = armv7a->post_debug_entry(target);
if (retval != ERROR_OK)
return retval;
}
return retval;
}
static int cortex_a_post_debug_entry(struct target *target)
{
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
int retval;
/* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
retval = armv7a->arm.mrc(target, 15,
0, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
&cortex_a->cp15_control_reg);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
if (!armv7a->is_armv7r)
armv7a_read_ttbcr(target);
if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
armv7a_identify_cache(target);
if (armv7a->is_armv7r) {
armv7a->armv7a_mmu.mmu_enabled = 0;
} else {
armv7a->armv7a_mmu.mmu_enabled =
(cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
}
armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
(cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
(cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
cortex_a->curr_mode = armv7a->arm.core_mode;
/* switch to SVC mode to read DACR */
arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
armv7a->arm.mrc(target, 15,
0, 0, 3, 0,
&cortex_a->cp15_dacr_reg);
LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
cortex_a->cp15_dacr_reg);
arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
return ERROR_OK;
}
static int cortex_a_set_dscr_bits(struct target *target,
unsigned long bit_mask, unsigned long value)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
uint32_t dscr;
/* Read DSCR */
int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
if (retval != ERROR_OK)
return retval;
/* clear bitfield */
dscr &= ~bit_mask;
/* put new value */
dscr |= value & bit_mask;
/* write new DSCR */
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, dscr);
return retval;
}
static int cortex_a_step(struct target *target, int current, target_addr_t address,
int handle_breakpoints)
{
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm *arm = &armv7a->arm;
struct breakpoint *breakpoint = NULL;
struct breakpoint stepbreakpoint;
struct reg *r;
int retval;
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* current = 1: continue on current pc, otherwise continue at <address> */
r = arm->pc;
if (!current)
buf_set_u32(r->value, 0, 32, address);
else
address = buf_get_u32(r->value, 0, 32);
/* The front-end may request us not to handle breakpoints.
* But since Cortex-A uses breakpoint for single step,
* we MUST handle breakpoints.
*/
handle_breakpoints = 1;
if (handle_breakpoints) {
breakpoint = breakpoint_find(target, address);
if (breakpoint)
cortex_a_unset_breakpoint(target, breakpoint);
}
/* Setup single step breakpoint */
stepbreakpoint.address = address;
stepbreakpoint.asid = 0;
stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
? 2 : 4;
stepbreakpoint.type = BKPT_HARD;
stepbreakpoint.is_set = false;
/* Disable interrupts during single step if requested */
if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
if (retval != ERROR_OK)
return retval;
}
/* Break on IVA mismatch */
cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
target->debug_reason = DBG_REASON_SINGLESTEP;
retval = cortex_a_resume(target, 1, address, 0, 0);
if (retval != ERROR_OK)
return retval;
int64_t then = timeval_ms();
while (target->state != TARGET_HALTED) {
retval = cortex_a_poll(target);
if (retval != ERROR_OK)
return retval;
if (target->state == TARGET_HALTED)
break;
if (timeval_ms() > then + 1000) {
LOG_ERROR("timeout waiting for target halt");
return ERROR_FAIL;
}
}
cortex_a_unset_breakpoint(target, &stepbreakpoint);
/* Re-enable interrupts if they were disabled */
if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
if (retval != ERROR_OK)
return retval;
}
target->debug_reason = DBG_REASON_BREAKPOINT;
if (breakpoint)
cortex_a_set_breakpoint(target, breakpoint, 0);
if (target->state != TARGET_HALTED)
LOG_DEBUG("target stepped");
return ERROR_OK;
}
static int cortex_a_restore_context(struct target *target, bool bpwp)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
LOG_DEBUG(" ");
if (armv7a->pre_restore_context)
armv7a->pre_restore_context(target);
return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
}
/*
* Cortex-A Breakpoint and watchpoint functions
*/
/* Setup hardware Breakpoint Register Pair */
static int cortex_a_set_breakpoint(struct target *target,
struct breakpoint *breakpoint, uint8_t matchmode)
{
int retval;
int brp_i = 0;
uint32_t control;
uint8_t byte_addr_select = 0x0F;
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
struct cortex_a_brp *brp_list = cortex_a->brp_list;
if (breakpoint->is_set) {
LOG_WARNING("breakpoint already set");
return ERROR_OK;
}
if (breakpoint->type == BKPT_HARD) {
while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
brp_i++;
if (brp_i >= cortex_a->brp_num) {
LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
breakpoint_hw_set(breakpoint, brp_i);
if (breakpoint->length == 2)
byte_addr_select = (3 << (breakpoint->address & 0x02));
control = ((matchmode & 0x7) << 20)
| (byte_addr_select << 5)
| (3 << 1) | 1;
brp_list[brp_i].used = true;
brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
brp_list[brp_i].control = control;
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
brp_list[brp_i].value);
if (retval != ERROR_OK)
return retval;
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
brp_list[brp_i].control);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
brp_list[brp_i].control,
brp_list[brp_i].value);
} else if (breakpoint->type == BKPT_SOFT) {
uint8_t code[4];
/* length == 2: Thumb breakpoint */
if (breakpoint->length == 2)
buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
else
/* length == 3: Thumb-2 breakpoint, actual encoding is
* a regular Thumb BKPT instruction but we replace a
* 32bit Thumb-2 instruction, so fix-up the breakpoint
* length
*/
if (breakpoint->length == 3) {
buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
breakpoint->length = 4;
} else
/* length == 4, normal ARM breakpoint */
buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
retval = target_read_memory(target,
breakpoint->address & 0xFFFFFFFE,
breakpoint->length, 1,
breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
/* make sure data cache is cleaned & invalidated down to PoC */
if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
armv7a_cache_flush_virt(target, breakpoint->address,
breakpoint->length);
}
retval = target_write_memory(target,
breakpoint->address & 0xFFFFFFFE,
breakpoint->length, 1, code);
if (retval != ERROR_OK)
return retval;
/* update i-cache at breakpoint location */
armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
breakpoint->length);
armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
breakpoint->length);
breakpoint->is_set = true;
}
return ERROR_OK;
}
static int cortex_a_set_context_breakpoint(struct target *target,
struct breakpoint *breakpoint, uint8_t matchmode)
{
int retval = ERROR_FAIL;
int brp_i = 0;
uint32_t control;
uint8_t byte_addr_select = 0x0F;
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
struct cortex_a_brp *brp_list = cortex_a->brp_list;
if (breakpoint->is_set) {
LOG_WARNING("breakpoint already set");
return retval;
}
/*check available context BRPs*/
while ((brp_list[brp_i].used ||
(brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
brp_i++;
if (brp_i >= cortex_a->brp_num) {
LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
return ERROR_FAIL;
}
breakpoint_hw_set(breakpoint, brp_i);
control = ((matchmode & 0x7) << 20)
| (byte_addr_select << 5)
| (3 << 1) | 1;
brp_list[brp_i].used = true;
brp_list[brp_i].value = (breakpoint->asid);
brp_list[brp_i].control = control;
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
brp_list[brp_i].value);
if (retval != ERROR_OK)
return retval;
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
brp_list[brp_i].control);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
brp_list[brp_i].control,
brp_list[brp_i].value);
return ERROR_OK;
}
static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
int retval = ERROR_FAIL;
int brp_1 = 0; /* holds the contextID pair */
int brp_2 = 0; /* holds the IVA pair */
uint32_t control_ctx, control_iva;
uint8_t ctx_byte_addr_select = 0x0F;
uint8_t iva_byte_addr_select = 0x0F;
uint8_t ctx_machmode = 0x03;
uint8_t iva_machmode = 0x01;
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
struct cortex_a_brp *brp_list = cortex_a->brp_list;
if (breakpoint->is_set) {
LOG_WARNING("breakpoint already set");
return retval;
}
/*check available context BRPs*/
while ((brp_list[brp_1].used ||
(brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
brp_1++;
LOG_DEBUG("brp(CTX) found num: %d", brp_1);
if (brp_1 >= cortex_a->brp_num) {
LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
return ERROR_FAIL;
}
while ((brp_list[brp_2].used ||
(brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
brp_2++;
LOG_DEBUG("brp(IVA) found num: %d", brp_2);
if (brp_2 >= cortex_a->brp_num) {
LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
return ERROR_FAIL;
}
breakpoint_hw_set(breakpoint, brp_1);
breakpoint->linked_brp = brp_2;
control_ctx = ((ctx_machmode & 0x7) << 20)
| (brp_2 << 16)
| (0 << 14)
| (ctx_byte_addr_select << 5)
| (3 << 1) | 1;
brp_list[brp_1].used = true;
brp_list[brp_1].value = (breakpoint->asid);
brp_list[brp_1].control = control_ctx;
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_BVR_BASE + 4 * brp_list[brp_1].brpn,
brp_list[brp_1].value);
if (retval != ERROR_OK)
return retval;
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_BCR_BASE + 4 * brp_list[brp_1].brpn,
brp_list[brp_1].control);
if (retval != ERROR_OK)
return retval;
control_iva = ((iva_machmode & 0x7) << 20)
| (brp_1 << 16)
| (iva_byte_addr_select << 5)
| (3 << 1) | 1;
brp_list[brp_2].used = true;
brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
brp_list[brp_2].control = control_iva;
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_BVR_BASE + 4 * brp_list[brp_2].brpn,
brp_list[brp_2].value);
if (retval != ERROR_OK)
return retval;
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_BCR_BASE + 4 * brp_list[brp_2].brpn,
brp_list[brp_2].control);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
int retval;
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
struct cortex_a_brp *brp_list = cortex_a->brp_list;
if (!breakpoint->is_set) {
LOG_WARNING("breakpoint not set");
return ERROR_OK;
}
if (breakpoint->type == BKPT_HARD) {
if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
int brp_i = breakpoint->number;
int brp_j = breakpoint->linked_brp;
if (brp_i >= cortex_a->brp_num) {
LOG_DEBUG("Invalid BRP number in breakpoint");
return ERROR_OK;
}
LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
brp_list[brp_i].control, brp_list[brp_i].value);
brp_list[brp_i].used = false;
brp_list[brp_i].value = 0;
brp_list[brp_i].control = 0;
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
brp_list[brp_i].control);
if (retval != ERROR_OK)
return retval;
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
brp_list[brp_i].value);
if (retval != ERROR_OK)
return retval;
if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
LOG_DEBUG("Invalid BRP number in breakpoint");
return ERROR_OK;
}
LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
brp_list[brp_j].control, brp_list[brp_j].value);
brp_list[brp_j].used = false;
brp_list[brp_j].value = 0;
brp_list[brp_j].control = 0;
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_BCR_BASE + 4 * brp_list[brp_j].brpn,
brp_list[brp_j].control);
if (retval != ERROR_OK)
return retval;
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_BVR_BASE + 4 * brp_list[brp_j].brpn,
brp_list[brp_j].value);
if (retval != ERROR_OK)
return retval;
breakpoint->linked_brp = 0;
breakpoint->is_set = false;
return ERROR_OK;
} else {
int brp_i = breakpoint->number;
if (brp_i >= cortex_a->brp_num) {
LOG_DEBUG("Invalid BRP number in breakpoint");
return ERROR_OK;
}
LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
brp_list[brp_i].control, brp_list[brp_i].value);
brp_list[brp_i].used = false;
brp_list[brp_i].value = 0;
brp_list[brp_i].control = 0;
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
brp_list[brp_i].control);
if (retval != ERROR_OK)
return retval;
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
brp_list[brp_i].value);
if (retval != ERROR_OK)
return retval;
breakpoint->is_set = false;
return ERROR_OK;
}
} else {
/* make sure data cache is cleaned & invalidated down to PoC */
if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
armv7a_cache_flush_virt(target, breakpoint->address,
breakpoint->length);
}
/* restore original instruction (kept in target endianness) */
if (breakpoint->length == 4) {
retval = target_write_memory(target,
breakpoint->address & 0xFFFFFFFE,
4, 1, breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
} else {
retval = target_write_memory(target,
breakpoint->address & 0xFFFFFFFE,
2, 1, breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
}
/* update i-cache at breakpoint location */
armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
breakpoint->length);
armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
breakpoint->length);
}
breakpoint->is_set = false;
return ERROR_OK;
}
static int cortex_a_add_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
LOG_INFO("no hardware breakpoint available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (breakpoint->type == BKPT_HARD)
cortex_a->brp_num_available--;
return cortex_a_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
}
static int cortex_a_add_context_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
LOG_INFO("no hardware breakpoint available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (breakpoint->type == BKPT_HARD)
cortex_a->brp_num_available--;
return cortex_a_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
}
static int cortex_a_add_hybrid_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
LOG_INFO("no hardware breakpoint available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (breakpoint->type == BKPT_HARD)
cortex_a->brp_num_available--;
return cortex_a_set_hybrid_breakpoint(target, breakpoint); /* ??? */
}
static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
#if 0
/* It is perfectly possible to remove breakpoints while the target is running */
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
#endif
if (breakpoint->is_set) {
cortex_a_unset_breakpoint(target, breakpoint);
if (breakpoint->type == BKPT_HARD)
cortex_a->brp_num_available++;
}
return ERROR_OK;
}
/**
* Sets a watchpoint for an Cortex-A target in one of the watchpoint units. It is
* considered a bug to call this function when there are no available watchpoint
* units.
*
* @param target Pointer to an Cortex-A target to set a watchpoint on
* @param watchpoint Pointer to the watchpoint to be set
* @return Error status if watchpoint set fails or the result of executing the
* JTAG queue
*/
static int cortex_a_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
int retval = ERROR_OK;
int wrp_i = 0;
uint32_t control;
uint32_t address;
uint8_t address_mask;
uint8_t byte_address_select;
uint8_t load_store_access_control = 0x3;
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
struct cortex_a_wrp *wrp_list = cortex_a->wrp_list;
if (watchpoint->is_set) {
LOG_WARNING("watchpoint already set");
return retval;
}
/* check available context WRPs */
while (wrp_list[wrp_i].used && (wrp_i < cortex_a->wrp_num))
wrp_i++;
if (wrp_i >= cortex_a->wrp_num) {
LOG_ERROR("ERROR Can not find free Watchpoint Register Pair");
return ERROR_FAIL;
}
if (watchpoint->length == 0 || watchpoint->length > 0x80000000U ||
(watchpoint->length & (watchpoint->length - 1))) {
LOG_WARNING("watchpoint length must be a power of 2");
return ERROR_FAIL;
}
if (watchpoint->address & (watchpoint->length - 1)) {
LOG_WARNING("watchpoint address must be aligned at length");
return ERROR_FAIL;
}
/* FIXME: ARM DDI 0406C: address_mask is optional. What to do if it's missing? */
/* handle wp length 1 and 2 through byte select */
switch (watchpoint->length) {
case 1:
byte_address_select = BIT(watchpoint->address & 0x3);
address = watchpoint->address & ~0x3;
address_mask = 0;
break;
case 2:
byte_address_select = 0x03 << (watchpoint->address & 0x2);
address = watchpoint->address & ~0x3;
address_mask = 0;
break;
case 4:
byte_address_select = 0x0f;
address = watchpoint->address;
address_mask = 0;
break;
default:
byte_address_select = 0xff;
address = watchpoint->address;
address_mask = ilog2(watchpoint->length);
break;
}
watchpoint_set(watchpoint, wrp_i);
control = (address_mask << 24) |
(byte_address_select << 5) |
(load_store_access_control << 3) |
(0x3 << 1) | 1;
wrp_list[wrp_i].used = true;
wrp_list[wrp_i].value = address;
wrp_list[wrp_i].control = control;
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_WVR_BASE + 4 * wrp_list[wrp_i].wrpn,
wrp_list[wrp_i].value);
if (retval != ERROR_OK)
return retval;
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_WCR_BASE + 4 * wrp_list[wrp_i].wrpn,
wrp_list[wrp_i].control);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("wp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, wrp_i,
wrp_list[wrp_i].control,
wrp_list[wrp_i].value);
return ERROR_OK;
}
/**
* Unset an existing watchpoint and clear the used watchpoint unit.
*
* @param target Pointer to the target to have the watchpoint removed
* @param watchpoint Pointer to the watchpoint to be removed
* @return Error status while trying to unset the watchpoint or the result of
* executing the JTAG queue
*/
static int cortex_a_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
int retval;
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
struct cortex_a_wrp *wrp_list = cortex_a->wrp_list;
if (!watchpoint->is_set) {
LOG_WARNING("watchpoint not set");
return ERROR_OK;
}
int wrp_i = watchpoint->number;
if (wrp_i >= cortex_a->wrp_num) {
LOG_DEBUG("Invalid WRP number in watchpoint");
return ERROR_OK;
}
LOG_DEBUG("wrp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, wrp_i,
wrp_list[wrp_i].control, wrp_list[wrp_i].value);
wrp_list[wrp_i].used = false;
wrp_list[wrp_i].value = 0;
wrp_list[wrp_i].control = 0;
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_WCR_BASE + 4 * wrp_list[wrp_i].wrpn,
wrp_list[wrp_i].control);
if (retval != ERROR_OK)
return retval;
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
+ CPUDBG_WVR_BASE + 4 * wrp_list[wrp_i].wrpn,
wrp_list[wrp_i].value);
if (retval != ERROR_OK)
return retval;
watchpoint->is_set = false;
return ERROR_OK;
}
/**
* Add a watchpoint to an Cortex-A target. If there are no watchpoint units
* available, an error response is returned.
*
* @param target Pointer to the Cortex-A target to add a watchpoint to
* @param watchpoint Pointer to the watchpoint to be added
* @return Error status while trying to add the watchpoint
*/
static int cortex_a_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
if (cortex_a->wrp_num_available < 1) {
LOG_INFO("no hardware watchpoint available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
int retval = cortex_a_set_watchpoint(target, watchpoint);
if (retval != ERROR_OK)
return retval;
cortex_a->wrp_num_available--;
return ERROR_OK;
}
/**
* Remove a watchpoint from an Cortex-A target. The watchpoint will be unset and
* the used watchpoint unit will be reopened.
*
* @param target Pointer to the target to remove a watchpoint from
* @param watchpoint Pointer to the watchpoint to be removed
* @return Result of trying to unset the watchpoint
*/
static int cortex_a_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
if (watchpoint->is_set) {
cortex_a->wrp_num_available++;
cortex_a_unset_watchpoint(target, watchpoint);
}
return ERROR_OK;
}
/*
* Cortex-A Reset functions
*/
static int cortex_a_assert_reset(struct target *target)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
LOG_DEBUG(" ");
/* FIXME when halt is requested, make it work somehow... */
/* This function can be called in "target not examined" state */
/* Issue some kind of warm reset. */
if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
else if (jtag_get_reset_config() & RESET_HAS_SRST) {
/* REVISIT handle "pulls" cases, if there's
* hardware that needs them to work.
*/
/*
* FIXME: fix reset when transport is not JTAG. This is a temporary
* work-around for release v0.10 that is not intended to stay!
*/
if (!transport_is_jtag() ||
(target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
adapter_assert_reset();
} else {
LOG_ERROR("%s: how to reset?", target_name(target));
return ERROR_FAIL;
}
/* registers are now invalid */
if (target_was_examined(target))
register_cache_invalidate(armv7a->arm.core_cache);
target->state = TARGET_RESET;
return ERROR_OK;
}
static int cortex_a_deassert_reset(struct target *target)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
int retval;
LOG_DEBUG(" ");
/* be certain SRST is off */
adapter_deassert_reset();
if (target_was_examined(target)) {
retval = cortex_a_poll(target);
if (retval != ERROR_OK)
return retval;
}
if (target->reset_halt) {
if (target->state != TARGET_HALTED) {
LOG_WARNING("%s: ran after reset and before halt ...",
target_name(target));
if (target_was_examined(target)) {
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
if (retval != ERROR_OK)
return retval;
} else
target->state = TARGET_UNKNOWN;
}
}
return ERROR_OK;
}
static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
{
/* Changes the mode of the DCC between non-blocking, stall, and fast mode.
* New desired mode must be in mode. Current value of DSCR must be in
* *dscr, which is updated with new value.
*
* This function elides actually sending the mode-change over the debug
* interface if the mode is already set as desired.
*/
uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
if (new_dscr != *dscr) {
struct armv7a_common *armv7a = target_to_armv7a(target);
int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, new_dscr);
if (retval == ERROR_OK)
*dscr = new_dscr;
return retval;
} else {
return ERROR_OK;
}
}
static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
uint32_t value, uint32_t *dscr)
{
/* Waits until the specified bit(s) of DSCR take on a specified value. */
struct armv7a_common *armv7a = target_to_armv7a(target);
int64_t then;
int retval;
if ((*dscr & mask) == value)
return ERROR_OK;
then = timeval_ms();
while (1) {
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, dscr);
if (retval != ERROR_OK) {
LOG_ERROR("Could not read DSCR register");
return retval;
}
if ((*dscr & mask) == value)
break;
if (timeval_ms() > then + 1000) {
LOG_ERROR("timeout waiting for DSCR bit change");
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static int cortex_a_read_copro(struct target *target, uint32_t opcode,
uint32_t *data, uint32_t *dscr)
{
int retval;
struct armv7a_common *armv7a = target_to_armv7a(target);
/* Move from coprocessor to R0. */
retval = cortex_a_exec_opcode(target, opcode, dscr);
if (retval != ERROR_OK)
return retval;
/* Move from R0 to DTRTX. */
retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
if (retval != ERROR_OK)
return retval;
/* Wait until DTRTX is full (according to ARMv7-A/-R architecture
* manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
* must also check TXfull_l). Most of the time this will be free
* because TXfull_l will be set immediately and cached in dscr. */
retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
DSCR_DTRTX_FULL_LATCHED, dscr);
if (retval != ERROR_OK)
return retval;
/* Read the value transferred to DTRTX. */
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DTRTX, data);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
uint32_t *dfsr, uint32_t *dscr)
{
int retval;
if (dfar) {
retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
if (retval != ERROR_OK)
return retval;
}
if (dfsr) {
retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
if (retval != ERROR_OK)
return retval;
}
return ERROR_OK;
}
static int cortex_a_write_copro(struct target *target, uint32_t opcode,
uint32_t data, uint32_t *dscr)
{
int retval;
struct armv7a_common *armv7a = target_to_armv7a(target);
/* Write the value into DTRRX. */
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DTRRX, data);
if (retval != ERROR_OK)
return retval;
/* Move from DTRRX to R0. */
retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
if (retval != ERROR_OK)
return retval;
/* Move from R0 to coprocessor. */
retval = cortex_a_exec_opcode(target, opcode, dscr);
if (retval != ERROR_OK)
return retval;
/* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
* section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
* check RXfull_l). Most of the time this will be free because RXfull_l
* will be cleared immediately and cached in dscr. */
retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
uint32_t dfsr, uint32_t *dscr)
{
int retval;
retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
if (retval != ERROR_OK)
return retval;
retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
{
uint32_t status, upper4;
if (dfsr & (1 << 9)) {
/* LPAE format. */
status = dfsr & 0x3f;
upper4 = status >> 2;
if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
return ERROR_TARGET_TRANSLATION_FAULT;
else if (status == 33)
return ERROR_TARGET_UNALIGNED_ACCESS;
else
return ERROR_TARGET_DATA_ABORT;
} else {
/* Normal format. */
status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
if (status == 1)
return ERROR_TARGET_UNALIGNED_ACCESS;
else if (status == 5 || status == 7 || status == 3 || status == 6 ||
status == 9 || status == 11 || status == 13 || status == 15)
return ERROR_TARGET_TRANSLATION_FAULT;
else
return ERROR_TARGET_DATA_ABORT;
}
}
static int cortex_a_write_cpu_memory_slow(struct target *target,
uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
{
/* Writes count objects of size size from *buffer. Old value of DSCR must
* be in *dscr; updated to new value. This is slow because it works for
* non-word-sized objects. Avoid unaligned accesses as they do not work
* on memory address space without "Normal" attribute. If size == 4 and
* the address is aligned, cortex_a_write_cpu_memory_fast should be
* preferred.
* Preconditions:
* - Address is in R0.
* - R0 is marked dirty.
*/
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm *arm = &armv7a->arm;
int retval;
/* Mark register R1 as dirty, to use for transferring data. */
arm_reg_current(arm, 1)->dirty = true;
/* Switch to non-blocking mode if not already in that mode. */
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
if (retval != ERROR_OK)
return retval;
/* Go through the objects. */
while (count) {
/* Write the value to store into DTRRX. */
uint32_t data, opcode;
if (size == 1)
data = *buffer;
else if (size == 2)
data = target_buffer_get_u16(target, buffer);
else
data = target_buffer_get_u32(target, buffer);
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DTRRX, data);
if (retval != ERROR_OK)
return retval;
/* Transfer the value from DTRRX to R1. */
retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
if (retval != ERROR_OK)
return retval;
/* Write the value transferred to R1 into memory. */
if (size == 1)
opcode = ARMV4_5_STRB_IP(1, 0);
else if (size == 2)
opcode = ARMV4_5_STRH_IP(1, 0);
else
opcode = ARMV4_5_STRW_IP(1, 0);
retval = cortex_a_exec_opcode(target, opcode, dscr);
if (retval != ERROR_OK)
return retval;
/* Check for faults and return early. */
if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
return ERROR_OK; /* A data fault is not considered a system failure. */
/* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
* manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
* must also check RXfull_l). Most of the time this will be free
* because RXfull_l will be cleared immediately and cached in dscr. */
retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
if (retval != ERROR_OK)
return retval;
/* Advance. */
buffer += size;
--count;
}
return ERROR_OK;
}
static int cortex_a_write_cpu_memory_fast(struct target *target,
uint32_t count, const uint8_t *buffer, uint32_t *dscr)
{
/* Writes count objects of size 4 from *buffer. Old value of DSCR must be
* in *dscr; updated to new value. This is fast but only works for
* word-sized objects at aligned addresses.
* Preconditions:
* - Address is in R0 and must be a multiple of 4.
* - R0 is marked dirty.
*/
struct armv7a_common *armv7a = target_to_armv7a(target);
int retval;
/* Switch to fast mode if not already in that mode. */
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
if (retval != ERROR_OK)
return retval;
/* Latch STC instruction. */
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
if (retval != ERROR_OK)
return retval;
/* Transfer all the data and issue all the instructions. */
return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
4, count, armv7a->debug_base + CPUDBG_DTRRX);
}
static int cortex_a_write_cpu_memory(struct target *target,
uint32_t address, uint32_t size,
uint32_t count, const uint8_t *buffer)
{
/* Write memory through the CPU. */
int retval, final_retval;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm *arm = &armv7a->arm;
uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
address, size, count);
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!count)
return ERROR_OK;
/* Clear any abort. */
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
if (retval != ERROR_OK)
return retval;
/* Read DSCR. */
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
if (retval != ERROR_OK)
return retval;
/* Switch to non-blocking mode if not already in that mode. */
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
if (retval != ERROR_OK)
goto out;
/* Mark R0 as dirty. */
arm_reg_current(arm, 0)->dirty = true;
/* Read DFAR and DFSR, as they will be modified in the event of a fault. */
retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
if (retval != ERROR_OK)
goto out;
/* Get the memory address into R0. */
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DTRRX, address);
if (retval != ERROR_OK)
goto out;
retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
if (retval != ERROR_OK)
goto out;
if (size == 4 && (address % 4) == 0) {
/* We are doing a word-aligned transfer, so use fast mode. */
retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
} else {
/* Use slow path. Adjust size for aligned accesses */
switch (address % 4) {
case 1:
case 3:
count *= size;
size = 1;
break;
case 2:
if (size == 4) {
count *= 2;
size = 2;
}
case 0:
default:
break;
}
retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
}
out:
final_retval = retval;
/* Switch to non-blocking mode if not already in that mode. */
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
if (final_retval == ERROR_OK)
final_retval = retval;
/* Wait for last issued instruction to complete. */
retval = cortex_a_wait_instrcmpl(target, &dscr, true);
if (final_retval == ERROR_OK)
final_retval = retval;
/* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
* section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
* check RXfull_l). Most of the time this will be free because RXfull_l
* will be cleared immediately and cached in dscr. However, don't do this
* if there is fault, because then the instruction might not have completed
* successfully. */
if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
if (retval != ERROR_OK)
return retval;
}
/* If there were any sticky abort flags, clear them. */
if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
fault_dscr = dscr;
mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
} else {
fault_dscr = 0;
}
/* Handle synchronous data faults. */
if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
if (final_retval == ERROR_OK) {
/* Final return value will reflect cause of fault. */
retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
if (retval == ERROR_OK) {
LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
} else
final_retval = retval;
}
/* Fault destroyed DFAR/DFSR; restore them. */
retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
if (retval != ERROR_OK)
LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
}
/* Handle asynchronous data faults. */
if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
if (final_retval == ERROR_OK)
/* No other error has been recorded so far, so keep this one. */
final_retval = ERROR_TARGET_DATA_ABORT;
}
/* If the DCC is nonempty, clear it. */
if (dscr & DSCR_DTRTX_FULL_LATCHED) {
uint32_t dummy;
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DTRTX, &dummy);
if (final_retval == ERROR_OK)
final_retval = retval;
}
if (dscr & DSCR_DTRRX_FULL_LATCHED) {
retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
if (final_retval == ERROR_OK)
final_retval = retval;
}
/* Done. */
return final_retval;
}
static int cortex_a_read_cpu_memory_slow(struct target *target,
uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
{
/* Reads count objects of size size into *buffer. Old value of DSCR must be
* in *dscr; updated to new value. This is slow because it works for
* non-word-sized objects. Avoid unaligned accesses as they do not work
* on memory address space without "Normal" attribute. If size == 4 and
* the address is aligned, cortex_a_read_cpu_memory_fast should be
* preferred.
* Preconditions:
* - Address is in R0.
* - R0 is marked dirty.
*/
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm *arm = &armv7a->arm;
int retval;
/* Mark register R1 as dirty, to use for transferring data. */
arm_reg_current(arm, 1)->dirty = true;
/* Switch to non-blocking mode if not already in that mode. */
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
if (retval != ERROR_OK)
return retval;
/* Go through the objects. */
while (count) {
/* Issue a load of the appropriate size to R1. */
uint32_t opcode, data;
if (size == 1)
opcode = ARMV4_5_LDRB_IP(1, 0);
else if (size == 2)
opcode = ARMV4_5_LDRH_IP(1, 0);
else
opcode = ARMV4_5_LDRW_IP(1, 0);
retval = cortex_a_exec_opcode(target, opcode, dscr);
if (retval != ERROR_OK)
return retval;
/* Issue a write of R1 to DTRTX. */
retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
if (retval != ERROR_OK)
return retval;
/* Check for faults and return early. */
if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
return ERROR_OK; /* A data fault is not considered a system failure. */
/* Wait until DTRTX is full (according to ARMv7-A/-R architecture
* manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
* must also check TXfull_l). Most of the time this will be free
* because TXfull_l will be set immediately and cached in dscr. */
retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
DSCR_DTRTX_FULL_LATCHED, dscr);
if (retval != ERROR_OK)
return retval;
/* Read the value transferred to DTRTX into the buffer. */
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DTRTX, &data);
if (retval != ERROR_OK)
return retval;
if (size == 1)
*buffer = (uint8_t) data;
else if (size == 2)
target_buffer_set_u16(target, buffer, (uint16_t) data);
else
target_buffer_set_u32(target, buffer, data);
/* Advance. */
buffer += size;
--count;
}
return ERROR_OK;
}
static int cortex_a_read_cpu_memory_fast(struct target *target,
uint32_t count, uint8_t *buffer, uint32_t *dscr)
{
/* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
* *dscr; updated to new value. This is fast but only works for word-sized
* objects at aligned addresses.
* Preconditions:
* - Address is in R0 and must be a multiple of 4.
* - R0 is marked dirty.
*/
struct armv7a_common *armv7a = target_to_armv7a(target);
uint32_t u32;
int retval;
/* Switch to non-blocking mode if not already in that mode. */
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
if (retval != ERROR_OK)
return retval;
/* Issue the LDC instruction via a write to ITR. */
retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
if (retval != ERROR_OK)
return retval;
count--;
if (count > 0) {
/* Switch to fast mode if not already in that mode. */
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
if (retval != ERROR_OK)
return retval;
/* Latch LDC instruction. */
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
if (retval != ERROR_OK)
return retval;
/* Read the value transferred to DTRTX into the buffer. Due to fast
* mode rules, this blocks until the instruction finishes executing and
* then reissues the read instruction to read the next word from
* memory. The last read of DTRTX in this call reads the second-to-last
* word from memory and issues the read instruction for the last word.
*/
retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
4, count, armv7a->debug_base + CPUDBG_DTRTX);
if (retval != ERROR_OK)
return retval;
/* Advance. */
buffer += count * 4;
}
/* Wait for last issued instruction to complete. */
retval = cortex_a_wait_instrcmpl(target, dscr, false);
if (retval != ERROR_OK)
return retval;
/* Switch to non-blocking mode if not already in that mode. */
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
if (retval != ERROR_OK)
return retval;
/* Check for faults and return early. */
if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
return ERROR_OK; /* A data fault is not considered a system failure. */
/* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
* section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
* check TXfull_l). Most of the time this will be free because TXfull_l
* will be set immediately and cached in dscr. */
retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
DSCR_DTRTX_FULL_LATCHED, dscr);
if (retval != ERROR_OK)
return retval;
/* Read the value transferred to DTRTX into the buffer. This is the last
* word. */
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DTRTX, &u32);
if (retval != ERROR_OK)
return retval;
target_buffer_set_u32(target, buffer, u32);
return ERROR_OK;
}
static int cortex_a_read_cpu_memory(struct target *target,
uint32_t address, uint32_t size,
uint32_t count, uint8_t *buffer)
{
/* Read memory through the CPU. */
int retval, final_retval;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm *arm = &armv7a->arm;
uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
address, size, count);
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!count)
return ERROR_OK;
/* Clear any abort. */
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
if (retval != ERROR_OK)
return retval;
/* Read DSCR */
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
if (retval != ERROR_OK)
return retval;
/* Switch to non-blocking mode if not already in that mode. */
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
if (retval != ERROR_OK)
goto out;
/* Mark R0 as dirty. */
arm_reg_current(arm, 0)->dirty = true;
/* Read DFAR and DFSR, as they will be modified in the event of a fault. */
retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
if (retval != ERROR_OK)
goto out;
/* Get the memory address into R0. */
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DTRRX, address);
if (retval != ERROR_OK)
goto out;
retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
if (retval != ERROR_OK)
goto out;
if (size == 4 && (address % 4) == 0) {
/* We are doing a word-aligned transfer, so use fast mode. */
retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
} else {
/* Use slow path. Adjust size for aligned accesses */
switch (address % 4) {
case 1:
case 3:
count *= size;
size = 1;
break;
case 2:
if (size == 4) {
count *= 2;
size = 2;
}
break;
case 0:
default:
break;
}
retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
}
out:
final_retval = retval;
/* Switch to non-blocking mode if not already in that mode. */
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
if (final_retval == ERROR_OK)
final_retval = retval;
/* Wait for last issued instruction to complete. */
retval = cortex_a_wait_instrcmpl(target, &dscr, true);
if (final_retval == ERROR_OK)
final_retval = retval;
/* If there were any sticky abort flags, clear them. */
if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
fault_dscr = dscr;
mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
} else {
fault_dscr = 0;
}
/* Handle synchronous data faults. */
if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
if (final_retval == ERROR_OK) {
/* Final return value will reflect cause of fault. */
retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
if (retval == ERROR_OK) {
LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
} else
final_retval = retval;
}
/* Fault destroyed DFAR/DFSR; restore them. */
retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
if (retval != ERROR_OK)
LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
}
/* Handle asynchronous data faults. */
if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
if (final_retval == ERROR_OK)
/* No other error has been recorded so far, so keep this one. */
final_retval = ERROR_TARGET_DATA_ABORT;
}
/* If the DCC is nonempty, clear it. */
if (dscr & DSCR_DTRTX_FULL_LATCHED) {
uint32_t dummy;
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DTRTX, &dummy);
if (final_retval == ERROR_OK)
final_retval = retval;
}
if (dscr & DSCR_DTRRX_FULL_LATCHED) {
retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
if (final_retval == ERROR_OK)
final_retval = retval;
}
/* Done. */
return final_retval;
}
/*
* Cortex-A Memory access
*
* This is same Cortex-M3 but we must also use the correct
* ap number for every access.
*/
static int cortex_a_read_phys_memory(struct target *target,
target_addr_t address, uint32_t size,
uint32_t count, uint8_t *buffer)
{
int retval;
if (!count || !buffer)
return ERROR_COMMAND_SYNTAX_ERROR;
LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
address, size, count);
/* read memory through the CPU */
cortex_a_prep_memaccess(target, 1);
retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
cortex_a_post_memaccess(target, 1);
return retval;
}
static int cortex_a_read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
int retval;
/* cortex_a handles unaligned memory access */
LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
address, size, count);
cortex_a_prep_memaccess(target, 0);
retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
cortex_a_post_memaccess(target, 0);
return retval;
}
static int cortex_a_write_phys_memory(struct target *target,
target_addr_t address, uint32_t size,
uint32_t count, const uint8_t *buffer)
{
int retval;
if (!count || !buffer)
return ERROR_COMMAND_SYNTAX_ERROR;
LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
address, size, count);
/* write memory through the CPU */
cortex_a_prep_memaccess(target, 1);
retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
cortex_a_post_memaccess(target, 1);
return retval;
}
static int cortex_a_write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
int retval;
/* cortex_a handles unaligned memory access */
LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
address, size, count);
/* memory writes bypass the caches, must flush before writing */
armv7a_cache_auto_flush_on_write(target, address, size * count);
cortex_a_prep_memaccess(target, 0);
retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
cortex_a_post_memaccess(target, 0);
return retval;
}
static int cortex_a_read_buffer(struct target *target, target_addr_t address,
uint32_t count, uint8_t *buffer)
{
uint32_t size;
/* Align up to maximum 4 bytes. The loop condition makes sure the next pass
* will have something to do with the size we leave to it. */
for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
if (address & size) {
int retval = target_read_memory(target, address, size, 1, buffer);
if (retval != ERROR_OK)
return retval;
address += size;
count -= size;
buffer += size;
}
}
/* Read the data with as large access size as possible. */
for (; size > 0; size /= 2) {
uint32_t aligned = count - count % size;
if (aligned > 0) {
int retval = target_read_memory(target, address, size, aligned / size, buffer);
if (retval != ERROR_OK)
return retval;
address += aligned;
count -= aligned;
buffer += aligned;
}
}
return ERROR_OK;
}
static int cortex_a_write_buffer(struct target *target, target_addr_t address,
uint32_t count, const uint8_t *buffer)
{
uint32_t size;
/* Align up to maximum 4 bytes. The loop condition makes sure the next pass
* will have something to do with the size we leave to it. */
for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
if (address & size) {
int retval = target_write_memory(target, address, size, 1, buffer);
if (retval != ERROR_OK)
return retval;
address += size;
count -= size;
buffer += size;
}
}
/* Write the data with as large access size as possible. */
for (; size > 0; size /= 2) {
uint32_t aligned = count - count % size;
if (aligned > 0) {
int retval = target_write_memory(target, address, size, aligned / size, buffer);
if (retval != ERROR_OK)
return retval;
address += aligned;
count -= aligned;
buffer += aligned;
}
}
return ERROR_OK;
}
static int cortex_a_handle_target_request(void *priv)
{
struct target *target = priv;
struct armv7a_common *armv7a = target_to_armv7a(target);
int retval;
if (!target_was_examined(target))
return ERROR_OK;
if (!target->dbg_msg_enabled)
return ERROR_OK;
if (target->state == TARGET_RUNNING) {
uint32_t request;
uint32_t dscr;
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
/* check if we have data */
int64_t then = timeval_ms();
while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DTRTX, &request);
if (retval == ERROR_OK) {
target_request(target, request);
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
}
if (timeval_ms() > then + 1000) {
LOG_ERROR("Timeout waiting for dtr tx full");
return ERROR_FAIL;
}
}
}
return ERROR_OK;
}
/*
* Cortex-A target information and configuration
*/
static int cortex_a_examine_first(struct target *target)
{
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
struct adiv5_dap *swjdp = armv7a->arm.dap;
struct adiv5_private_config *pc = target->private_config;
int i;
int retval = ERROR_OK;
uint32_t didr, cpuid, dbg_osreg, dbg_idpfr1;
if (armv7a->debug_ap) {
dap_put_ap(armv7a->debug_ap);
armv7a->debug_ap = NULL;
}
if (pc->ap_num == DP_APSEL_INVALID) {
/* Search for the APB-AP - it is needed for access to debug registers */
retval = dap_find_get_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
if (retval != ERROR_OK) {
LOG_ERROR("Could not find APB-AP for debug access");
return retval;
}
} else {
armv7a->debug_ap = dap_get_ap(swjdp, pc->ap_num);
if (!armv7a->debug_ap) {
LOG_ERROR("Cannot get AP");
return ERROR_FAIL;
}
}
retval = mem_ap_init(armv7a->debug_ap);
if (retval != ERROR_OK) {
LOG_ERROR("Could not initialize the APB-AP");
return retval;
}
armv7a->debug_ap->memaccess_tck = 80;
if (!target->dbgbase_set) {
LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
target->cmd_name);
/* Lookup Processor DAP */
retval = dap_lookup_cs_component(armv7a->debug_ap, ARM_CS_C9_DEVTYPE_CORE_DEBUG,
&armv7a->debug_base, target->coreid);
if (retval != ERROR_OK) {
LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
target->cmd_name);
return retval;
}
LOG_DEBUG("Detected core %" PRId32 " dbgbase: " TARGET_ADDR_FMT,
target->coreid, armv7a->debug_base);
} else
armv7a->debug_base = target->dbgbase;
if ((armv7a->debug_base & (1UL<<31)) == 0)
LOG_WARNING("Debug base address for target %s has bit 31 set to 0. Access to debug registers will likely fail!\n"
"Please fix the target configuration.", target_name(target));
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DIDR, &didr);
if (retval != ERROR_OK) {
LOG_DEBUG("Examine %s failed", "DIDR");
return retval;
}
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_CPUID, &cpuid);
if (retval != ERROR_OK) {
LOG_DEBUG("Examine %s failed", "CPUID");
return retval;
}
LOG_DEBUG("didr = 0x%08" PRIx32, didr);
LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
cortex_a->didr = didr;
cortex_a->cpuid = cpuid;
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR 0x%" PRIx32, target->coreid, dbg_osreg);
if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
return ERROR_TARGET_INIT_FAILED;
}
if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
/* Read DBGOSLSR and check if OSLK is implemented */
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
/* check if OS Lock is implemented */
if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
/* check if OS Lock is set */
if (dbg_osreg & OSLSR_OSLK) {
LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_OSLAR,
0);
if (retval == ERROR_OK)
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
/* if we fail to access the register or cannot reset the OSLK bit, bail out */
if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
target->coreid);
target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
return ERROR_TARGET_INIT_FAILED;
}
}
}
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_ID_PFR1, &dbg_idpfr1);
if (retval != ERROR_OK)
return retval;
if (dbg_idpfr1 & 0x000000f0) {
LOG_DEBUG("target->coreid %" PRId32 " has security extensions",
target->coreid);
armv7a->arm.core_type = ARM_CORE_TYPE_SEC_EXT;
}
if (dbg_idpfr1 & 0x0000f000) {
LOG_DEBUG("target->coreid %" PRId32 " has virtualization extensions",
target->coreid);
/*
* overwrite and simplify the checks.
* virtualization extensions require implementation of security extension
*/
armv7a->arm.core_type = ARM_CORE_TYPE_VIRT_EXT;
}
/* Avoid recreating the registers cache */
if (!target_was_examined(target)) {
retval = cortex_a_dpm_setup(cortex_a, didr);
if (retval != ERROR_OK)
return retval;
}
/* Setup Breakpoint Register Pairs */
cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
cortex_a->brp_num_available = cortex_a->brp_num;
free(cortex_a->brp_list);
cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
/* cortex_a->brb_enabled = ????; */
for (i = 0; i < cortex_a->brp_num; i++) {
cortex_a->brp_list[i].used = false;
if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
cortex_a->brp_list[i].type = BRP_NORMAL;
else
cortex_a->brp_list[i].type = BRP_CONTEXT;
cortex_a->brp_list[i].value = 0;
cortex_a->brp_list[i].control = 0;
cortex_a->brp_list[i].brpn = i;
}
LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
/* Setup Watchpoint Register Pairs */
cortex_a->wrp_num = ((didr >> 28) & 0x0F) + 1;
cortex_a->wrp_num_available = cortex_a->wrp_num;
free(cortex_a->wrp_list);
cortex_a->wrp_list = calloc(cortex_a->wrp_num, sizeof(struct cortex_a_wrp));
for (i = 0; i < cortex_a->wrp_num; i++) {
cortex_a->wrp_list[i].used = false;
cortex_a->wrp_list[i].value = 0;
cortex_a->wrp_list[i].control = 0;
cortex_a->wrp_list[i].wrpn = i;
}
LOG_DEBUG("Configured %i hw watchpoints", cortex_a->wrp_num);
/* select debug_ap as default */
swjdp->apsel = armv7a->debug_ap->ap_num;
target_set_examined(target);
return ERROR_OK;
}
static int cortex_a_examine(struct target *target)
{
int retval = ERROR_OK;
/* Reestablish communication after target reset */
retval = cortex_a_examine_first(target);
/* Configure core debug access */
if (retval == ERROR_OK)
retval = cortex_a_init_debug_access(target);
return retval;
}
/*
* Cortex-A target creation and initialization
*/
static int cortex_a_init_target(struct command_context *cmd_ctx,
struct target *target)
{
/* examine_first() does a bunch of this */
arm_semihosting_init(target);
return ERROR_OK;
}
static int cortex_a_init_arch_info(struct target *target,
struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
{
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
/* Setup struct cortex_a_common */
cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
armv7a->arm.dap = dap;
/* register arch-specific functions */
armv7a->examine_debug_reason = NULL;
armv7a->post_debug_entry = cortex_a_post_debug_entry;
armv7a->pre_restore_context = NULL;
armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
/* arm7_9->handle_target_request = cortex_a_handle_target_request; */
/* REVISIT v7a setup should be in a v7a-specific routine */
armv7a_init_arch_info(target, armv7a);
target_register_timer_callback(cortex_a_handle_target_request, 1,
TARGET_TIMER_TYPE_PERIODIC, target);
return ERROR_OK;
}
static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
{
struct cortex_a_common *cortex_a;
struct adiv5_private_config *pc;
if (!target->private_config)
return ERROR_FAIL;
pc = (struct adiv5_private_config *)target->private_config;
cortex_a = calloc(1, sizeof(struct cortex_a_common));
if (!cortex_a) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
cortex_a->armv7a_common.is_armv7r = false;
cortex_a->armv7a_common.arm.arm_vfp_version = ARM_VFP_V3;
return cortex_a_init_arch_info(target, cortex_a, pc->dap);
}
static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
{
struct cortex_a_common *cortex_a;
struct adiv5_private_config *pc;
pc = (struct adiv5_private_config *)target->private_config;
if (adiv5_verify_config(pc) != ERROR_OK)
return ERROR_FAIL;
cortex_a = calloc(1, sizeof(struct cortex_a_common));
if (!cortex_a) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
cortex_a->armv7a_common.is_armv7r = true;
return cortex_a_init_arch_info(target, cortex_a, pc->dap);
}
static void cortex_a_deinit_target(struct target *target)
{
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
struct arm_dpm *dpm = &armv7a->dpm;
uint32_t dscr;
int retval;
if (target_was_examined(target)) {
/* Disable halt for breakpoint, watchpoint and vector catch */
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
if (retval == ERROR_OK)
mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR,
dscr & ~DSCR_HALT_DBG_MODE);
}
if (armv7a->debug_ap)
dap_put_ap(armv7a->debug_ap);
free(cortex_a->wrp_list);
free(cortex_a->brp_list);
arm_free_reg_cache(dpm->arm);
free(dpm->dbp);
free(dpm->dwp);
free(target->private_config);
free(cortex_a);
}
static int cortex_a_mmu(struct target *target, int *enabled)
{
struct armv7a_common *armv7a = target_to_armv7a(target);
if (target->state != TARGET_HALTED) {
LOG_ERROR("%s: target not halted", __func__);
return ERROR_TARGET_INVALID;
}
if (armv7a->is_armv7r)
*enabled = 0;
else
*enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
return ERROR_OK;
}
static int cortex_a_virt2phys(struct target *target,
target_addr_t virt, target_addr_t *phys)
{
int retval;
int mmu_enabled = 0;
/*
* If the MMU was not enabled at debug entry, there is no
* way of knowing if there was ever a valid configuration
* for it and thus it's not safe to enable it. In this case,
* just return the virtual address as physical.
*/
cortex_a_mmu(target, &mmu_enabled);
if (!mmu_enabled) {
*phys = virt;
return ERROR_OK;
}
/* mmu must be enable in order to get a correct translation */
retval = cortex_a_mmu_modify(target, 1);
if (retval != ERROR_OK)
return retval;
return armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
phys, 1);
}
COMMAND_HANDLER(cortex_a_handle_cache_info_command)
{
struct target *target = get_current_target(CMD_CTX);
struct armv7a_common *armv7a = target_to_armv7a(target);
return armv7a_handle_cache_info_command(CMD,
&armv7a->armv7a_mmu.armv7a_cache);
}
COMMAND_HANDLER(cortex_a_handle_dbginit_command)
{
struct target *target = get_current_target(CMD_CTX);
if (!target_was_examined(target)) {
LOG_ERROR("target not examined yet");
return ERROR_FAIL;
}
return cortex_a_init_debug_access(target);
}
COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
static const struct jim_nvp nvp_maskisr_modes[] = {
{ .name = "off", .value = CORTEX_A_ISRMASK_OFF },
{ .name = "on", .value = CORTEX_A_ISRMASK_ON },
{ .name = NULL, .value = -1 },
};
const struct jim_nvp *n;
if (CMD_ARGC > 0) {
n = jim_nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
if (!n->name) {
LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
cortex_a->isrmasking_mode = n->value;
}
n = jim_nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
command_print(CMD, "cortex_a interrupt mask %s", n->name);
return ERROR_OK;
}
COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
static const struct jim_nvp nvp_dacrfixup_modes[] = {
{ .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
{ .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
{ .name = NULL, .value = -1 },
};
const struct jim_nvp *n;
if (CMD_ARGC > 0) {
n = jim_nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
if (!n->name)
return ERROR_COMMAND_SYNTAX_ERROR;
cortex_a->dacrfixup_mode = n->value;
}
n = jim_nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
command_print(CMD, "cortex_a domain access control fixup %s", n->name);
return ERROR_OK;
}
static const struct command_registration cortex_a_exec_command_handlers[] = {
{
.name = "cache_info",
.handler = cortex_a_handle_cache_info_command,
.mode = COMMAND_EXEC,
.help = "display information about target caches",
.usage = "",
},
{
.name = "dbginit",
.handler = cortex_a_handle_dbginit_command,
.mode = COMMAND_EXEC,
.help = "Initialize core debug",
.usage = "",
},
{
.name = "maskisr",
.handler = handle_cortex_a_mask_interrupts_command,
.mode = COMMAND_ANY,
.help = "mask cortex_a interrupts",
.usage = "['on'|'off']",
},
{
.name = "dacrfixup",
.handler = handle_cortex_a_dacrfixup_command,
.mode = COMMAND_ANY,
.help = "set domain access control (DACR) to all-manager "
"on memory access",
.usage = "['on'|'off']",
},
{
.chain = armv7a_mmu_command_handlers,
},
{
.chain = smp_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration cortex_a_command_handlers[] = {
{
.chain = arm_command_handlers,
},
{
.chain = armv7a_command_handlers,
},
{
.name = "cortex_a",
.mode = COMMAND_ANY,
.help = "Cortex-A command group",
.usage = "",
.chain = cortex_a_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct target_type cortexa_target = {
.name = "cortex_a",
.poll = cortex_a_poll,
.arch_state = armv7a_arch_state,
.halt = cortex_a_halt,
.resume = cortex_a_resume,
.step = cortex_a_step,
.assert_reset = cortex_a_assert_reset,
.deassert_reset = cortex_a_deassert_reset,
/* REVISIT allow exporting VFP3 registers ... */
.get_gdb_arch = arm_get_gdb_arch,
.get_gdb_reg_list = arm_get_gdb_reg_list,
.read_memory = cortex_a_read_memory,
.write_memory = cortex_a_write_memory,
.read_buffer = cortex_a_read_buffer,
.write_buffer = cortex_a_write_buffer,
.checksum_memory = arm_checksum_memory,
.blank_check_memory = arm_blank_check_memory,
.run_algorithm = armv4_5_run_algorithm,
.add_breakpoint = cortex_a_add_breakpoint,
.add_context_breakpoint = cortex_a_add_context_breakpoint,
.add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
.remove_breakpoint = cortex_a_remove_breakpoint,
.add_watchpoint = cortex_a_add_watchpoint,
.remove_watchpoint = cortex_a_remove_watchpoint,
.commands = cortex_a_command_handlers,
.target_create = cortex_a_target_create,
.target_jim_configure = adiv5_jim_configure,
.init_target = cortex_a_init_target,
.examine = cortex_a_examine,
.deinit_target = cortex_a_deinit_target,
.read_phys_memory = cortex_a_read_phys_memory,
.write_phys_memory = cortex_a_write_phys_memory,
.mmu = cortex_a_mmu,
.virt2phys = cortex_a_virt2phys,
};
static const struct command_registration cortex_r4_exec_command_handlers[] = {
{
.name = "dbginit",
.handler = cortex_a_handle_dbginit_command,
.mode = COMMAND_EXEC,
.help = "Initialize core debug",
.usage = "",
},
{
.name = "maskisr",
.handler = handle_cortex_a_mask_interrupts_command,
.mode = COMMAND_EXEC,
.help = "mask cortex_r4 interrupts",
.usage = "['on'|'off']",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration cortex_r4_command_handlers[] = {
{
.chain = arm_command_handlers,
},
{
.name = "cortex_r4",
.mode = COMMAND_ANY,
.help = "Cortex-R4 command group",
.usage = "",
.chain = cortex_r4_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct target_type cortexr4_target = {
.name = "cortex_r4",
.poll = cortex_a_poll,
.arch_state = armv7a_arch_state,
.halt = cortex_a_halt,
.resume = cortex_a_resume,
.step = cortex_a_step,
.assert_reset = cortex_a_assert_reset,
.deassert_reset = cortex_a_deassert_reset,
/* REVISIT allow exporting VFP3 registers ... */
.get_gdb_arch = arm_get_gdb_arch,
.get_gdb_reg_list = arm_get_gdb_reg_list,
.read_memory = cortex_a_read_phys_memory,
.write_memory = cortex_a_write_phys_memory,
.checksum_memory = arm_checksum_memory,
.blank_check_memory = arm_blank_check_memory,
.run_algorithm = armv4_5_run_algorithm,
.add_breakpoint = cortex_a_add_breakpoint,
.add_context_breakpoint = cortex_a_add_context_breakpoint,
.add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
.remove_breakpoint = cortex_a_remove_breakpoint,
.add_watchpoint = cortex_a_add_watchpoint,
.remove_watchpoint = cortex_a_remove_watchpoint,
.commands = cortex_r4_command_handlers,
.target_create = cortex_r4_target_create,
.target_jim_configure = adiv5_jim_configure,
.init_target = cortex_a_init_target,
.examine = cortex_a_examine,
.deinit_target = cortex_a_deinit_target,
};