openocd/src/target/cortex_m.c

2896 lines
85 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2006 by Magnus Lundin *
* lundin@mlu.mine.nu *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* *
* Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0) *
* *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "jtag/interface.h"
#include "breakpoints.h"
#include "cortex_m.h"
#include "target_request.h"
#include "target_type.h"
#include "arm_adi_v5.h"
#include "arm_disassembler.h"
#include "register.h"
#include "arm_opcodes.h"
#include "arm_semihosting.h"
#include <helper/time_support.h>
#include <rtt/rtt.h>
/* NOTE: most of this should work fine for the Cortex-M1 and
* Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
* Some differences: M0/M1 doesn't have FPB remapping or the
* DWT tracing/profiling support. (So the cycle counter will
* not be usable; the other stuff isn't currently used here.)
*
* Although there are some workarounds for errata seen only in r0p0
* silicon, such old parts are hard to find and thus not much tested
* any longer.
*/
/* Timeout for register r/w */
#define DHCSR_S_REGRDY_TIMEOUT (500)
/* Supported Cortex-M Cores */
static const struct cortex_m_part_info cortex_m_parts[] = {
{
.partno = CORTEX_M0_PARTNO,
.name = "Cortex-M0",
.arch = ARM_ARCH_V6M,
},
{
.partno = CORTEX_M0P_PARTNO,
.name = "Cortex-M0+",
.arch = ARM_ARCH_V6M,
},
{
.partno = CORTEX_M1_PARTNO,
.name = "Cortex-M1",
.arch = ARM_ARCH_V6M,
},
{
.partno = CORTEX_M3_PARTNO,
.name = "Cortex-M3",
.arch = ARM_ARCH_V7M,
.flags = CORTEX_M_F_TAR_AUTOINCR_BLOCK_4K,
},
{
.partno = CORTEX_M4_PARTNO,
.name = "Cortex-M4",
.arch = ARM_ARCH_V7M,
.flags = CORTEX_M_F_HAS_FPV4 | CORTEX_M_F_TAR_AUTOINCR_BLOCK_4K,
},
{
.partno = CORTEX_M7_PARTNO,
.name = "Cortex-M7",
.arch = ARM_ARCH_V7M,
.flags = CORTEX_M_F_HAS_FPV5,
},
{
.partno = CORTEX_M23_PARTNO,
.name = "Cortex-M23",
.arch = ARM_ARCH_V8M,
},
{
.partno = CORTEX_M33_PARTNO,
.name = "Cortex-M33",
.arch = ARM_ARCH_V8M,
.flags = CORTEX_M_F_HAS_FPV5,
},
{
.partno = CORTEX_M35P_PARTNO,
.name = "Cortex-M35P",
.arch = ARM_ARCH_V8M,
.flags = CORTEX_M_F_HAS_FPV5,
},
{
.partno = CORTEX_M55_PARTNO,
.name = "Cortex-M55",
.arch = ARM_ARCH_V8M,
.flags = CORTEX_M_F_HAS_FPV5,
},
};
/* forward declarations */
static int cortex_m_store_core_reg_u32(struct target *target,
uint32_t num, uint32_t value);
static void cortex_m_dwt_free(struct target *target);
/** DCB DHCSR register contains S_RETIRE_ST and S_RESET_ST bits cleared
* on a read. Call this helper function each time DHCSR is read
* to preserve S_RESET_ST state in case of a reset event was detected.
*/
static inline void cortex_m_cumulate_dhcsr_sticky(struct cortex_m_common *cortex_m,
uint32_t dhcsr)
{
cortex_m->dcb_dhcsr_cumulated_sticky |= dhcsr;
}
/** Read DCB DHCSR register to cortex_m->dcb_dhcsr and cumulate
* sticky bits in cortex_m->dcb_dhcsr_cumulated_sticky
*/
static int cortex_m_read_dhcsr_atomic_sticky(struct target *target)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
struct armv7m_common *armv7m = target_to_armv7m(target);
int retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
&cortex_m->dcb_dhcsr);
if (retval != ERROR_OK)
return retval;
cortex_m_cumulate_dhcsr_sticky(cortex_m, cortex_m->dcb_dhcsr);
return ERROR_OK;
}
static int cortex_m_load_core_reg_u32(struct target *target,
uint32_t regsel, uint32_t *value)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
struct armv7m_common *armv7m = target_to_armv7m(target);
int retval;
uint32_t dcrdr, tmp_value;
int64_t then;
/* because the DCB_DCRDR is used for the emulated dcc channel
* we have to save/restore the DCB_DCRDR when used */
if (target->dbg_msg_enabled) {
retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
if (retval != ERROR_OK)
return retval;
}
retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regsel);
if (retval != ERROR_OK)
return retval;
/* check if value from register is ready and pre-read it */
then = timeval_ms();
while (1) {
retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DHCSR,
&cortex_m->dcb_dhcsr);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DCRDR,
&tmp_value);
if (retval != ERROR_OK)
return retval;
cortex_m_cumulate_dhcsr_sticky(cortex_m, cortex_m->dcb_dhcsr);
if (cortex_m->dcb_dhcsr & S_REGRDY)
break;
cortex_m->slow_register_read = true; /* Polling (still) needed. */
if (timeval_ms() > then + DHCSR_S_REGRDY_TIMEOUT) {
LOG_TARGET_ERROR(target, "Timeout waiting for DCRDR transfer ready");
return ERROR_TIMEOUT_REACHED;
}
keep_alive();
}
*value = tmp_value;
if (target->dbg_msg_enabled) {
/* restore DCB_DCRDR - this needs to be in a separate
* transaction otherwise the emulated DCC channel breaks */
if (retval == ERROR_OK)
retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
}
return retval;
}
static int cortex_m_slow_read_all_regs(struct target *target)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
struct armv7m_common *armv7m = target_to_armv7m(target);
const unsigned int num_regs = armv7m->arm.core_cache->num_regs;
/* Opportunistically restore fast read, it'll revert to slow
* if any register needed polling in cortex_m_load_core_reg_u32(). */
cortex_m->slow_register_read = false;
for (unsigned int reg_id = 0; reg_id < num_regs; reg_id++) {
struct reg *r = &armv7m->arm.core_cache->reg_list[reg_id];
if (r->exist) {
int retval = armv7m->arm.read_core_reg(target, r, reg_id, ARM_MODE_ANY);
if (retval != ERROR_OK)
return retval;
}
}
if (!cortex_m->slow_register_read)
LOG_TARGET_DEBUG(target, "Switching back to fast register reads");
return ERROR_OK;
}
static int cortex_m_queue_reg_read(struct target *target, uint32_t regsel,
uint32_t *reg_value, uint32_t *dhcsr)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
int retval;
retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regsel);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DHCSR, dhcsr);
if (retval != ERROR_OK)
return retval;
return mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, reg_value);
}
static int cortex_m_fast_read_all_regs(struct target *target)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
struct armv7m_common *armv7m = target_to_armv7m(target);
int retval;
uint32_t dcrdr;
/* because the DCB_DCRDR is used for the emulated dcc channel
* we have to save/restore the DCB_DCRDR when used */
if (target->dbg_msg_enabled) {
retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
if (retval != ERROR_OK)
return retval;
}
const unsigned int num_regs = armv7m->arm.core_cache->num_regs;
const unsigned int n_r32 = ARMV7M_LAST_REG - ARMV7M_CORE_FIRST_REG + 1
+ ARMV7M_FPU_LAST_REG - ARMV7M_FPU_FIRST_REG + 1;
/* we need one 32-bit word for each register except FP D0..D15, which
* need two words */
uint32_t r_vals[n_r32];
uint32_t dhcsr[n_r32];
unsigned int wi = 0; /* write index to r_vals and dhcsr arrays */
unsigned int reg_id; /* register index in the reg_list, ARMV7M_R0... */
for (reg_id = 0; reg_id < num_regs; reg_id++) {
struct reg *r = &armv7m->arm.core_cache->reg_list[reg_id];
if (!r->exist)
continue; /* skip non existent registers */
if (r->size <= 8) {
/* Any 8-bit or shorter register is unpacked from a 32-bit
* container register. Skip it now. */
continue;
}
uint32_t regsel = armv7m_map_id_to_regsel(reg_id);
retval = cortex_m_queue_reg_read(target, regsel, &r_vals[wi],
&dhcsr[wi]);
if (retval != ERROR_OK)
return retval;
wi++;
assert(r->size == 32 || r->size == 64);
if (r->size == 32)
continue; /* done with 32-bit register */
assert(reg_id >= ARMV7M_FPU_FIRST_REG && reg_id <= ARMV7M_FPU_LAST_REG);
/* the odd part of FP register (S1, S3...) */
retval = cortex_m_queue_reg_read(target, regsel + 1, &r_vals[wi],
&dhcsr[wi]);
if (retval != ERROR_OK)
return retval;
wi++;
}
assert(wi <= n_r32);
retval = dap_run(armv7m->debug_ap->dap);
if (retval != ERROR_OK)
return retval;
if (target->dbg_msg_enabled) {
/* restore DCB_DCRDR - this needs to be in a separate
* transaction otherwise the emulated DCC channel breaks */
retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
if (retval != ERROR_OK)
return retval;
}
bool not_ready = false;
for (unsigned int i = 0; i < wi; i++) {
if ((dhcsr[i] & S_REGRDY) == 0) {
not_ready = true;
LOG_TARGET_DEBUG(target, "Register %u was not ready during fast read", i);
}
cortex_m_cumulate_dhcsr_sticky(cortex_m, dhcsr[i]);
}
if (not_ready) {
/* Any register was not ready,
* fall back to slow read with S_REGRDY polling */
return ERROR_TIMEOUT_REACHED;
}
LOG_TARGET_DEBUG(target, "read %u 32-bit registers", wi);
unsigned int ri = 0; /* read index from r_vals array */
for (reg_id = 0; reg_id < num_regs; reg_id++) {
struct reg *r = &armv7m->arm.core_cache->reg_list[reg_id];
if (!r->exist)
continue; /* skip non existent registers */
r->dirty = false;
unsigned int reg32_id;
uint32_t offset;
if (armv7m_map_reg_packing(reg_id, &reg32_id, &offset)) {
/* Unpack a partial register from 32-bit container register */
struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
/* The container register ought to precede all regs unpacked
* from it in the reg_list. So the value should be ready
* to unpack */
assert(r32->valid);
buf_cpy(r32->value + offset, r->value, r->size);
} else {
assert(r->size == 32 || r->size == 64);
buf_set_u32(r->value, 0, 32, r_vals[ri++]);
if (r->size == 64) {
assert(reg_id >= ARMV7M_FPU_FIRST_REG && reg_id <= ARMV7M_FPU_LAST_REG);
/* the odd part of FP register (S1, S3...) */
buf_set_u32(r->value + 4, 0, 32, r_vals[ri++]);
}
}
r->valid = true;
}
assert(ri == wi);
return retval;
}
static int cortex_m_store_core_reg_u32(struct target *target,
uint32_t regsel, uint32_t value)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
struct armv7m_common *armv7m = target_to_armv7m(target);
int retval;
uint32_t dcrdr;
int64_t then;
/* because the DCB_DCRDR is used for the emulated dcc channel
* we have to save/restore the DCB_DCRDR when used */
if (target->dbg_msg_enabled) {
retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
if (retval != ERROR_OK)
return retval;
}
retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, value);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regsel | DCRSR_WNR);
if (retval != ERROR_OK)
return retval;
/* check if value is written into register */
then = timeval_ms();
while (1) {
retval = cortex_m_read_dhcsr_atomic_sticky(target);
if (retval != ERROR_OK)
return retval;
if (cortex_m->dcb_dhcsr & S_REGRDY)
break;
if (timeval_ms() > then + DHCSR_S_REGRDY_TIMEOUT) {
LOG_TARGET_ERROR(target, "Timeout waiting for DCRDR transfer ready");
return ERROR_TIMEOUT_REACHED;
}
keep_alive();
}
if (target->dbg_msg_enabled) {
/* restore DCB_DCRDR - this needs to be in a separate
* transaction otherwise the emulated DCC channel breaks */
if (retval == ERROR_OK)
retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
}
return retval;
}
static int cortex_m_write_debug_halt_mask(struct target *target,
uint32_t mask_on, uint32_t mask_off)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
struct armv7m_common *armv7m = &cortex_m->armv7m;
/* mask off status bits */
cortex_m->dcb_dhcsr &= ~((0xFFFFul << 16) | mask_off);
/* create new register mask */
cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
return mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, cortex_m->dcb_dhcsr);
}
static int cortex_m_set_maskints(struct target *target, bool mask)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
if (!!(cortex_m->dcb_dhcsr & C_MASKINTS) != mask)
return cortex_m_write_debug_halt_mask(target, mask ? C_MASKINTS : 0, mask ? 0 : C_MASKINTS);
else
return ERROR_OK;
}
static int cortex_m_set_maskints_for_halt(struct target *target)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
switch (cortex_m->isrmasking_mode) {
case CORTEX_M_ISRMASK_AUTO:
/* interrupts taken at resume, whether for step or run -> no mask */
return cortex_m_set_maskints(target, false);
case CORTEX_M_ISRMASK_OFF:
/* interrupts never masked */
return cortex_m_set_maskints(target, false);
case CORTEX_M_ISRMASK_ON:
/* interrupts always masked */
return cortex_m_set_maskints(target, true);
case CORTEX_M_ISRMASK_STEPONLY:
/* interrupts masked for single step only -> mask now if MASKINTS
* erratum, otherwise only mask before stepping */
return cortex_m_set_maskints(target, cortex_m->maskints_erratum);
}
return ERROR_OK;
}
static int cortex_m_set_maskints_for_run(struct target *target)
{
switch (target_to_cm(target)->isrmasking_mode) {
case CORTEX_M_ISRMASK_AUTO:
/* interrupts taken at resume, whether for step or run -> no mask */
return cortex_m_set_maskints(target, false);
case CORTEX_M_ISRMASK_OFF:
/* interrupts never masked */
return cortex_m_set_maskints(target, false);
case CORTEX_M_ISRMASK_ON:
/* interrupts always masked */
return cortex_m_set_maskints(target, true);
case CORTEX_M_ISRMASK_STEPONLY:
/* interrupts masked for single step only -> no mask */
return cortex_m_set_maskints(target, false);
}
return ERROR_OK;
}
static int cortex_m_set_maskints_for_step(struct target *target)
{
switch (target_to_cm(target)->isrmasking_mode) {
case CORTEX_M_ISRMASK_AUTO:
/* the auto-interrupt should already be done -> mask */
return cortex_m_set_maskints(target, true);
case CORTEX_M_ISRMASK_OFF:
/* interrupts never masked */
return cortex_m_set_maskints(target, false);
case CORTEX_M_ISRMASK_ON:
/* interrupts always masked */
return cortex_m_set_maskints(target, true);
case CORTEX_M_ISRMASK_STEPONLY:
/* interrupts masked for single step only -> mask */
return cortex_m_set_maskints(target, true);
}
return ERROR_OK;
}
static int cortex_m_clear_halt(struct target *target)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
struct armv7m_common *armv7m = &cortex_m->armv7m;
int retval;
/* clear step if any */
cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP);
/* Read Debug Fault Status Register */
retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR, &cortex_m->nvic_dfsr);
if (retval != ERROR_OK)
return retval;
/* Clear Debug Fault Status */
retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_DFSR, cortex_m->nvic_dfsr);
if (retval != ERROR_OK)
return retval;
LOG_TARGET_DEBUG(target, "NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr);
return ERROR_OK;
}
static int cortex_m_single_step_core(struct target *target)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
int retval;
/* Mask interrupts before clearing halt, if not done already. This avoids
* Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
* HALT can put the core into an unknown state.
*/
if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) {
retval = cortex_m_write_debug_halt_mask(target, C_MASKINTS, 0);
if (retval != ERROR_OK)
return retval;
}
retval = cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
if (retval != ERROR_OK)
return retval;
LOG_TARGET_DEBUG(target, "single step");
/* restore dhcsr reg */
cortex_m_clear_halt(target);
return ERROR_OK;
}
static int cortex_m_enable_fpb(struct target *target)
{
int retval = target_write_u32(target, FP_CTRL, 3);
if (retval != ERROR_OK)
return retval;
/* check the fpb is actually enabled */
uint32_t fpctrl;
retval = target_read_u32(target, FP_CTRL, &fpctrl);
if (retval != ERROR_OK)
return retval;
if (fpctrl & 1)
return ERROR_OK;
return ERROR_FAIL;
}
static int cortex_m_endreset_event(struct target *target)
{
int retval;
uint32_t dcb_demcr;
struct cortex_m_common *cortex_m = target_to_cm(target);
struct armv7m_common *armv7m = &cortex_m->armv7m;
struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list;
struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list;
/* REVISIT The four debug monitor bits are currently ignored... */
retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &dcb_demcr);
if (retval != ERROR_OK)
return retval;
LOG_TARGET_DEBUG(target, "DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
/* this register is used for emulated dcc channel */
retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
if (retval != ERROR_OK)
return retval;
retval = cortex_m_read_dhcsr_atomic_sticky(target);
if (retval != ERROR_OK)
return retval;
if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
/* Enable debug requests */
retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
if (retval != ERROR_OK)
return retval;
}
/* Restore proper interrupt masking setting for running CPU. */
cortex_m_set_maskints_for_run(target);
/* Enable features controlled by ITM and DWT blocks, and catch only
* the vectors we were told to pay attention to.
*
* Target firmware is responsible for all fault handling policy
* choices *EXCEPT* explicitly scripted overrides like "vector_catch"
* or manual updates to the NVIC SHCSR and CCR registers.
*/
retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | armv7m->demcr);
if (retval != ERROR_OK)
return retval;
/* Paranoia: evidently some (early?) chips don't preserve all the
* debug state (including FPB, DWT, etc) across reset...
*/
/* Enable FPB */
retval = cortex_m_enable_fpb(target);
if (retval != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to enable the FPB");
return retval;
}
cortex_m->fpb_enabled = true;
/* Restore FPB registers */
for (unsigned int i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
if (retval != ERROR_OK)
return retval;
}
/* Restore DWT registers */
for (unsigned int i = 0; i < cortex_m->dwt_num_comp; i++) {
retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
dwt_list[i].comp);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
dwt_list[i].mask);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
dwt_list[i].function);
if (retval != ERROR_OK)
return retval;
}
retval = dap_run(swjdp);
if (retval != ERROR_OK)
return retval;
register_cache_invalidate(armv7m->arm.core_cache);
/* TODO: invalidate also working areas (needed in the case of detected reset).
* Doing so will require flash drivers to test if working area
* is still valid in all target algo calling loops.
*/
/* make sure we have latest dhcsr flags */
retval = cortex_m_read_dhcsr_atomic_sticky(target);
if (retval != ERROR_OK)
return retval;
return retval;
}
static int cortex_m_examine_debug_reason(struct target *target)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
/* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
* only check the debug reason if we don't know it already */
if ((target->debug_reason != DBG_REASON_DBGRQ)
&& (target->debug_reason != DBG_REASON_SINGLESTEP)) {
if (cortex_m->nvic_dfsr & DFSR_BKPT) {
target->debug_reason = DBG_REASON_BREAKPOINT;
if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
target->debug_reason = DBG_REASON_WPTANDBKPT;
} else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
target->debug_reason = DBG_REASON_WATCHPOINT;
else if (cortex_m->nvic_dfsr & DFSR_VCATCH)
target->debug_reason = DBG_REASON_BREAKPOINT;
else if (cortex_m->nvic_dfsr & DFSR_EXTERNAL)
target->debug_reason = DBG_REASON_DBGRQ;
else /* HALTED */
target->debug_reason = DBG_REASON_UNDEFINED;
}
return ERROR_OK;
}
static int cortex_m_examine_exception_reason(struct target *target)
{
uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
struct armv7m_common *armv7m = target_to_armv7m(target);
struct adiv5_dap *swjdp = armv7m->arm.dap;
int retval;
retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SHCSR, &shcsr);
if (retval != ERROR_OK)
return retval;
switch (armv7m->exception_number) {
case 2: /* NMI */
break;
case 3: /* Hard Fault */
retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_HFSR, &except_sr);
if (retval != ERROR_OK)
return retval;
if (except_sr & 0x40000000) {
retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &cfsr);
if (retval != ERROR_OK)
return retval;
}
break;
case 4: /* Memory Management */
retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_MMFAR, &except_ar);
if (retval != ERROR_OK)
return retval;
break;
case 5: /* Bus Fault */
retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_BFAR, &except_ar);
if (retval != ERROR_OK)
return retval;
break;
case 6: /* Usage Fault */
retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
if (retval != ERROR_OK)
return retval;
break;
case 7: /* Secure Fault */
retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SFSR, &except_sr);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SFAR, &except_ar);
if (retval != ERROR_OK)
return retval;
break;
case 11: /* SVCall */
break;
case 12: /* Debug Monitor */
retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_DFSR, &except_sr);
if (retval != ERROR_OK)
return retval;
break;
case 14: /* PendSV */
break;
case 15: /* SysTick */
break;
default:
except_sr = 0;
break;
}
retval = dap_run(swjdp);
if (retval == ERROR_OK)
LOG_TARGET_DEBUG(target, "%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
armv7m_exception_string(armv7m->exception_number),
shcsr, except_sr, cfsr, except_ar);
return retval;
}
static int cortex_m_debug_entry(struct target *target)
{
uint32_t xPSR;
int retval;
struct cortex_m_common *cortex_m = target_to_cm(target);
struct armv7m_common *armv7m = &cortex_m->armv7m;
struct arm *arm = &armv7m->arm;
struct reg *r;
LOG_TARGET_DEBUG(target, " ");
/* Do this really early to minimize the window where the MASKINTS erratum
* can pile up pending interrupts. */
cortex_m_set_maskints_for_halt(target);
cortex_m_clear_halt(target);
retval = cortex_m_read_dhcsr_atomic_sticky(target);
if (retval != ERROR_OK)
return retval;
retval = armv7m->examine_debug_reason(target);
if (retval != ERROR_OK)
return retval;
/* examine PE security state */
bool secure_state = false;
if (armv7m->arm.arch == ARM_ARCH_V8M) {
uint32_t dscsr;
retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DSCSR, &dscsr);
if (retval != ERROR_OK)
return retval;
secure_state = (dscsr & DSCSR_CDS) == DSCSR_CDS;
}
/* Load all registers to arm.core_cache */
if (!cortex_m->slow_register_read) {
retval = cortex_m_fast_read_all_regs(target);
if (retval == ERROR_TIMEOUT_REACHED) {
cortex_m->slow_register_read = true;
LOG_TARGET_DEBUG(target, "Switched to slow register read");
}
}
if (cortex_m->slow_register_read)
retval = cortex_m_slow_read_all_regs(target);
if (retval != ERROR_OK)
return retval;
r = arm->cpsr;
xPSR = buf_get_u32(r->value, 0, 32);
/* Are we in an exception handler */
if (xPSR & 0x1FF) {
armv7m->exception_number = (xPSR & 0x1FF);
arm->core_mode = ARM_MODE_HANDLER;
arm->map = armv7m_msp_reg_map;
} else {
unsigned control = buf_get_u32(arm->core_cache
->reg_list[ARMV7M_CONTROL].value, 0, 3);
/* is this thread privileged? */
arm->core_mode = control & 1
? ARM_MODE_USER_THREAD
: ARM_MODE_THREAD;
/* which stack is it using? */
if (control & 2)
arm->map = armv7m_psp_reg_map;
else
arm->map = armv7m_msp_reg_map;
armv7m->exception_number = 0;
}
if (armv7m->exception_number)
cortex_m_examine_exception_reason(target);
LOG_TARGET_DEBUG(target, "entered debug state in core mode: %s at PC 0x%" PRIx32
", cpu in %s state, target->state: %s",
arm_mode_name(arm->core_mode),
buf_get_u32(arm->pc->value, 0, 32),
secure_state ? "Secure" : "Non-Secure",
target_state_name(target));
if (armv7m->post_debug_entry) {
retval = armv7m->post_debug_entry(target);
if (retval != ERROR_OK)
return retval;
}
return ERROR_OK;
}
static int cortex_m_poll(struct target *target)
{
int detected_failure = ERROR_OK;
int retval = ERROR_OK;
enum target_state prev_target_state = target->state;
struct cortex_m_common *cortex_m = target_to_cm(target);
struct armv7m_common *armv7m = &cortex_m->armv7m;
/* Check if debug_ap is available to prevent segmentation fault.
* If the re-examination after an error does not find a MEM-AP
* (e.g. the target stopped communicating), debug_ap pointer
* can suddenly become NULL.
*/
if (!armv7m->debug_ap) {
target->state = TARGET_UNKNOWN;
return ERROR_TARGET_NOT_EXAMINED;
}
/* Read from Debug Halting Control and Status Register */
retval = cortex_m_read_dhcsr_atomic_sticky(target);
if (retval != ERROR_OK) {
target->state = TARGET_UNKNOWN;
return retval;
}
/* Recover from lockup. See ARMv7-M architecture spec,
* section B1.5.15 "Unrecoverable exception cases".
*/
if (cortex_m->dcb_dhcsr & S_LOCKUP) {
LOG_TARGET_ERROR(target, "clearing lockup after double fault");
cortex_m_write_debug_halt_mask(target, C_HALT, 0);
target->debug_reason = DBG_REASON_DBGRQ;
/* We have to execute the rest (the "finally" equivalent, but
* still throw this exception again).
*/
detected_failure = ERROR_FAIL;
/* refresh status bits */
retval = cortex_m_read_dhcsr_atomic_sticky(target);
if (retval != ERROR_OK)
return retval;
}
if (cortex_m->dcb_dhcsr_cumulated_sticky & S_RESET_ST) {
cortex_m->dcb_dhcsr_cumulated_sticky &= ~S_RESET_ST;
if (target->state != TARGET_RESET) {
target->state = TARGET_RESET;
LOG_TARGET_INFO(target, "external reset detected");
}
return ERROR_OK;
}
if (target->state == TARGET_RESET) {
/* Cannot switch context while running so endreset is
* called with target->state == TARGET_RESET
*/
LOG_TARGET_DEBUG(target, "Exit from reset with dcb_dhcsr 0x%" PRIx32,
cortex_m->dcb_dhcsr);
retval = cortex_m_endreset_event(target);
if (retval != ERROR_OK) {
target->state = TARGET_UNKNOWN;
return retval;
}
target->state = TARGET_RUNNING;
prev_target_state = TARGET_RUNNING;
}
if (cortex_m->dcb_dhcsr & S_HALT) {
target->state = TARGET_HALTED;
if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
retval = cortex_m_debug_entry(target);
if (retval != ERROR_OK)
return retval;
if (arm_semihosting(target, &retval) != 0)
return retval;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
}
if (prev_target_state == TARGET_DEBUG_RUNNING) {
retval = cortex_m_debug_entry(target);
if (retval != ERROR_OK)
return retval;
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
}
}
if (target->state == TARGET_UNKNOWN) {
/* Check if processor is retiring instructions or sleeping.
* Unlike S_RESET_ST here we test if the target *is* running now,
* not if it has been running (possibly in the past). Instructions are
* typically processed much faster than OpenOCD polls DHCSR so S_RETIRE_ST
* is read always 1. That's the reason not to use dcb_dhcsr_cumulated_sticky.
*/
if (cortex_m->dcb_dhcsr & S_RETIRE_ST || cortex_m->dcb_dhcsr & S_SLEEP) {
target->state = TARGET_RUNNING;
retval = ERROR_OK;
}
}
/* Check that target is truly halted, since the target could be resumed externally */
if ((prev_target_state == TARGET_HALTED) && !(cortex_m->dcb_dhcsr & S_HALT)) {
/* registers are now invalid */
register_cache_invalidate(armv7m->arm.core_cache);
target->state = TARGET_RUNNING;
LOG_TARGET_WARNING(target, "external resume detected");
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
retval = ERROR_OK;
}
/* Did we detect a failure condition that we cleared? */
if (detected_failure != ERROR_OK)
retval = detected_failure;
return retval;
}
static int cortex_m_halt(struct target *target)
{
LOG_TARGET_DEBUG(target, "target->state: %s", target_state_name(target));
if (target->state == TARGET_HALTED) {
LOG_TARGET_DEBUG(target, "target was already halted");
return ERROR_OK;
}
if (target->state == TARGET_UNKNOWN)
LOG_TARGET_WARNING(target, "target was in unknown state when halt was requested");
if (target->state == TARGET_RESET) {
if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
LOG_TARGET_ERROR(target, "can't request a halt while in reset if nSRST pulls nTRST");
return ERROR_TARGET_FAILURE;
} else {
/* we came here in a reset_halt or reset_init sequence
* debug entry was already prepared in cortex_m3_assert_reset()
*/
target->debug_reason = DBG_REASON_DBGRQ;
return ERROR_OK;
}
}
/* Write to Debug Halting Control and Status Register */
cortex_m_write_debug_halt_mask(target, C_HALT, 0);
/* Do this really early to minimize the window where the MASKINTS erratum
* can pile up pending interrupts. */
cortex_m_set_maskints_for_halt(target);
target->debug_reason = DBG_REASON_DBGRQ;
return ERROR_OK;
}
static int cortex_m_soft_reset_halt(struct target *target)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
struct armv7m_common *armv7m = &cortex_m->armv7m;
int retval, timeout = 0;
/* on single cortex_m MCU soft_reset_halt should be avoided as same functionality
* can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'.
* As this reset only uses VC_CORERESET it would only ever reset the cortex_m
* core, not the peripherals */
LOG_TARGET_DEBUG(target, "soft_reset_halt is discouraged, please use 'reset halt' instead.");
if (!cortex_m->vectreset_supported) {
LOG_TARGET_ERROR(target, "VECTRESET is not supported on this Cortex-M core");
return ERROR_FAIL;
}
/* Set C_DEBUGEN */
retval = cortex_m_write_debug_halt_mask(target, 0, C_STEP | C_MASKINTS);
if (retval != ERROR_OK)
return retval;
/* Enter debug state on reset; restore DEMCR in endreset_event() */
retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR,
TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
if (retval != ERROR_OK)
return retval;
/* Request a core-only reset */
retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
AIRCR_VECTKEY | AIRCR_VECTRESET);
if (retval != ERROR_OK)
return retval;
target->state = TARGET_RESET;
/* registers are now invalid */
register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
while (timeout < 100) {
retval = cortex_m_read_dhcsr_atomic_sticky(target);
if (retval == ERROR_OK) {
retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR,
&cortex_m->nvic_dfsr);
if (retval != ERROR_OK)
return retval;
if ((cortex_m->dcb_dhcsr & S_HALT)
&& (cortex_m->nvic_dfsr & DFSR_VCATCH)) {
LOG_TARGET_DEBUG(target, "system reset-halted, DHCSR 0x%08" PRIx32 ", DFSR 0x%08" PRIx32,
cortex_m->dcb_dhcsr, cortex_m->nvic_dfsr);
cortex_m_poll(target);
/* FIXME restore user's vector catch config */
return ERROR_OK;
} else {
LOG_TARGET_DEBUG(target, "waiting for system reset-halt, "
"DHCSR 0x%08" PRIx32 ", %d ms",
cortex_m->dcb_dhcsr, timeout);
}
}
timeout++;
alive_sleep(1);
}
return ERROR_OK;
}
void cortex_m_enable_breakpoints(struct target *target)
{
struct breakpoint *breakpoint = target->breakpoints;
/* set any pending breakpoints */
while (breakpoint) {
if (!breakpoint->is_set)
cortex_m_set_breakpoint(target, breakpoint);
breakpoint = breakpoint->next;
}
}
static int cortex_m_resume(struct target *target, int current,
target_addr_t address, int handle_breakpoints, int debug_execution)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct breakpoint *breakpoint = NULL;
uint32_t resume_pc;
struct reg *r;
if (target->state != TARGET_HALTED) {
LOG_TARGET_WARNING(target, "target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!debug_execution) {
target_free_all_working_areas(target);
cortex_m_enable_breakpoints(target);
cortex_m_enable_watchpoints(target);
}
if (debug_execution) {
r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
/* Disable interrupts */
/* We disable interrupts in the PRIMASK register instead of
* masking with C_MASKINTS. This is probably the same issue
* as Cortex-M3 Erratum 377493 (fixed in r1p0): C_MASKINTS
* in parallel with disabled interrupts can cause local faults
* to not be taken.
*
* This breaks non-debug (application) execution if not
* called from armv7m_start_algorithm() which saves registers.
*/
buf_set_u32(r->value, 0, 1, 1);
r->dirty = true;
r->valid = true;
/* Make sure we are in Thumb mode, set xPSR.T bit */
/* armv7m_start_algorithm() initializes entire xPSR register.
* This duplicity handles the case when cortex_m_resume()
* is used with the debug_execution flag directly,
* not called through armv7m_start_algorithm().
*/
r = armv7m->arm.cpsr;
buf_set_u32(r->value, 24, 1, 1);
r->dirty = true;
r->valid = true;
}
/* current = 1: continue on current pc, otherwise continue at <address> */
r = armv7m->arm.pc;
if (!current) {
buf_set_u32(r->value, 0, 32, address);
r->dirty = true;
r->valid = true;
}
/* if we halted last time due to a bkpt instruction
* then we have to manually step over it, otherwise
* the core will break again */
if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
&& !debug_execution)
armv7m_maybe_skip_bkpt_inst(target, NULL);
resume_pc = buf_get_u32(r->value, 0, 32);
armv7m_restore_context(target);
/* the front-end may request us not to handle breakpoints */
if (handle_breakpoints) {
/* Single step past breakpoint at current address */
breakpoint = breakpoint_find(target, resume_pc);
if (breakpoint) {
LOG_TARGET_DEBUG(target, "unset breakpoint at " TARGET_ADDR_FMT " (ID: %" PRIu32 ")",
breakpoint->address,
breakpoint->unique_id);
cortex_m_unset_breakpoint(target, breakpoint);
cortex_m_single_step_core(target);
cortex_m_set_breakpoint(target, breakpoint);
}
}
/* Restart core */
cortex_m_set_maskints_for_run(target);
cortex_m_write_debug_halt_mask(target, 0, C_HALT);
target->debug_reason = DBG_REASON_NOTHALTED;
/* registers are now invalid */
register_cache_invalidate(armv7m->arm.core_cache);
if (!debug_execution) {
target->state = TARGET_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
LOG_TARGET_DEBUG(target, "target resumed at 0x%" PRIx32 "", resume_pc);
} else {
target->state = TARGET_DEBUG_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
LOG_TARGET_DEBUG(target, "target debug resumed at 0x%" PRIx32 "", resume_pc);
}
return ERROR_OK;
}
/* int irqstepcount = 0; */
static int cortex_m_step(struct target *target, int current,
target_addr_t address, int handle_breakpoints)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
struct armv7m_common *armv7m = &cortex_m->armv7m;
struct breakpoint *breakpoint = NULL;
struct reg *pc = armv7m->arm.pc;
bool bkpt_inst_found = false;
int retval;
bool isr_timed_out = false;
if (target->state != TARGET_HALTED) {
LOG_TARGET_WARNING(target, "target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* current = 1: continue on current pc, otherwise continue at <address> */
if (!current) {
buf_set_u32(pc->value, 0, 32, address);
pc->dirty = true;
pc->valid = true;
}
uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
/* the front-end may request us not to handle breakpoints */
if (handle_breakpoints) {
breakpoint = breakpoint_find(target, pc_value);
if (breakpoint)
cortex_m_unset_breakpoint(target, breakpoint);
}
armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
target->debug_reason = DBG_REASON_SINGLESTEP;
armv7m_restore_context(target);
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
/* if no bkpt instruction is found at pc then we can perform
* a normal step, otherwise we have to manually step over the bkpt
* instruction - as such simulate a step */
if (bkpt_inst_found == false) {
if (cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO) {
/* Automatic ISR masking mode off: Just step over the next
* instruction, with interrupts on or off as appropriate. */
cortex_m_set_maskints_for_step(target);
cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
} else {
/* Process interrupts during stepping in a way they don't interfere
* debugging.
*
* Principle:
*
* Set a temporary break point at the current pc and let the core run
* with interrupts enabled. Pending interrupts get served and we run
* into the breakpoint again afterwards. Then we step over the next
* instruction with interrupts disabled.
*
* If the pending interrupts don't complete within time, we leave the
* core running. This may happen if the interrupts trigger faster
* than the core can process them or the handler doesn't return.
*
* If no more breakpoints are available we simply do a step with
* interrupts enabled.
*
*/
/* 2012-09-29 ph
*
* If a break point is already set on the lower half word then a break point on
* the upper half word will not break again when the core is restarted. So we
* just step over the instruction with interrupts disabled.
*
* The documentation has no information about this, it was found by observation
* on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 doesn't seem to
* suffer from this problem.
*
* To add some confusion: pc_value has bit 0 always set, while the breakpoint
* address has it always cleared. The former is done to indicate thumb mode
* to gdb.
*
*/
if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
LOG_TARGET_DEBUG(target, "Stepping over next instruction with interrupts disabled");
cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
/* Re-enable interrupts if appropriate */
cortex_m_write_debug_halt_mask(target, C_HALT, 0);
cortex_m_set_maskints_for_halt(target);
} else {
/* Set a temporary break point */
if (breakpoint) {
retval = cortex_m_set_breakpoint(target, breakpoint);
} else {
enum breakpoint_type type = BKPT_HARD;
if (cortex_m->fp_rev == 0 && pc_value > 0x1FFFFFFF) {
/* FPB rev.1 cannot handle such addr, try BKPT instr */
type = BKPT_SOFT;
}
retval = breakpoint_add(target, pc_value, 2, type);
}
bool tmp_bp_set = (retval == ERROR_OK);
/* No more breakpoints left, just do a step */
if (!tmp_bp_set) {
cortex_m_set_maskints_for_step(target);
cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
/* Re-enable interrupts if appropriate */
cortex_m_write_debug_halt_mask(target, C_HALT, 0);
cortex_m_set_maskints_for_halt(target);
} else {
/* Start the core */
LOG_TARGET_DEBUG(target, "Starting core to serve pending interrupts");
int64_t t_start = timeval_ms();
cortex_m_set_maskints_for_run(target);
cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
/* Wait for pending handlers to complete or timeout */
do {
retval = cortex_m_read_dhcsr_atomic_sticky(target);
if (retval != ERROR_OK) {
target->state = TARGET_UNKNOWN;
return retval;
}
isr_timed_out = ((timeval_ms() - t_start) > 500);
} while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out));
/* only remove breakpoint if we created it */
if (breakpoint)
cortex_m_unset_breakpoint(target, breakpoint);
else {
/* Remove the temporary breakpoint */
breakpoint_remove(target, pc_value);
}
if (isr_timed_out) {
LOG_TARGET_DEBUG(target, "Interrupt handlers didn't complete within time, "
"leaving target running");
} else {
/* Step over next instruction with interrupts disabled */
cortex_m_set_maskints_for_step(target);
cortex_m_write_debug_halt_mask(target,
C_HALT | C_MASKINTS,
0);
cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
/* Re-enable interrupts if appropriate */
cortex_m_write_debug_halt_mask(target, C_HALT, 0);
cortex_m_set_maskints_for_halt(target);
}
}
}
}
}
retval = cortex_m_read_dhcsr_atomic_sticky(target);
if (retval != ERROR_OK)
return retval;
/* registers are now invalid */
register_cache_invalidate(armv7m->arm.core_cache);
if (breakpoint)
cortex_m_set_breakpoint(target, breakpoint);
if (isr_timed_out) {
/* Leave the core running. The user has to stop execution manually. */
target->debug_reason = DBG_REASON_NOTHALTED;
target->state = TARGET_RUNNING;
return ERROR_OK;
}
LOG_TARGET_DEBUG(target, "target stepped dcb_dhcsr = 0x%" PRIx32
" nvic_icsr = 0x%" PRIx32,
cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
retval = cortex_m_debug_entry(target);
if (retval != ERROR_OK)
return retval;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
LOG_TARGET_DEBUG(target, "target stepped dcb_dhcsr = 0x%" PRIx32
" nvic_icsr = 0x%" PRIx32,
cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
return ERROR_OK;
}
static int cortex_m_assert_reset(struct target *target)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
struct armv7m_common *armv7m = &cortex_m->armv7m;
enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
LOG_TARGET_DEBUG(target, "target->state: %s",
target_state_name(target));
enum reset_types jtag_reset_config = jtag_get_reset_config();
if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
/* allow scripts to override the reset event */
target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
target->state = TARGET_RESET;
return ERROR_OK;
}
/* some cores support connecting while srst is asserted
* use that mode is it has been configured */
bool srst_asserted = false;
if (!target_was_examined(target)) {
if (jtag_reset_config & RESET_HAS_SRST) {
adapter_assert_reset();
if (target->reset_halt)
LOG_TARGET_ERROR(target, "Target not examined, will not halt after reset!");
return ERROR_OK;
} else {
LOG_TARGET_ERROR(target, "Target not examined, reset NOT asserted!");
return ERROR_FAIL;
}
}
if ((jtag_reset_config & RESET_HAS_SRST) &&
(jtag_reset_config & RESET_SRST_NO_GATING)) {
adapter_assert_reset();
srst_asserted = true;
}
/* Enable debug requests */
int retval = cortex_m_read_dhcsr_atomic_sticky(target);
/* Store important errors instead of failing and proceed to reset assert */
if (retval != ERROR_OK || !(cortex_m->dcb_dhcsr & C_DEBUGEN))
retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
/* If the processor is sleeping in a WFI or WFE instruction, the
* C_HALT bit must be asserted to regain control */
if (retval == ERROR_OK && (cortex_m->dcb_dhcsr & S_SLEEP))
retval = cortex_m_write_debug_halt_mask(target, C_HALT, 0);
mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
/* Ignore less important errors */
if (!target->reset_halt) {
/* Set/Clear C_MASKINTS in a separate operation */
cortex_m_set_maskints_for_run(target);
/* clear any debug flags before resuming */
cortex_m_clear_halt(target);
/* clear C_HALT in dhcsr reg */
cortex_m_write_debug_halt_mask(target, 0, C_HALT);
} else {
/* Halt in debug on reset; endreset_event() restores DEMCR.
*
* REVISIT catching BUSERR presumably helps to defend against
* bad vector table entries. Should this include MMERR or
* other flags too?
*/
int retval2;
retval2 = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DEMCR,
TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
if (retval != ERROR_OK || retval2 != ERROR_OK)
LOG_TARGET_INFO(target, "AP write error, reset will not halt");
}
if (jtag_reset_config & RESET_HAS_SRST) {
/* default to asserting srst */
if (!srst_asserted)
adapter_assert_reset();
/* srst is asserted, ignore AP access errors */
retval = ERROR_OK;
} else {
/* Use a standard Cortex-M3 software reset mechanism.
* We default to using VECTRESET as it is supported on all current cores
* (except Cortex-M0, M0+ and M1 which support SYSRESETREQ only!)
* This has the disadvantage of not resetting the peripherals, so a
* reset-init event handler is needed to perform any peripheral resets.
*/
if (!cortex_m->vectreset_supported
&& reset_config == CORTEX_M_RESET_VECTRESET) {
reset_config = CORTEX_M_RESET_SYSRESETREQ;
LOG_TARGET_WARNING(target, "VECTRESET is not supported on this Cortex-M core, using SYSRESETREQ instead.");
LOG_TARGET_WARNING(target, "Set 'cortex_m reset_config sysresetreq'.");
}
LOG_TARGET_DEBUG(target, "Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ)
? "SYSRESETREQ" : "VECTRESET");
if (reset_config == CORTEX_M_RESET_VECTRESET) {
LOG_TARGET_WARNING(target, "Only resetting the Cortex-M core, use a reset-init event "
"handler to reset any peripherals or configure hardware srst support.");
}
int retval3;
retval3 = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ)
? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
if (retval3 != ERROR_OK)
LOG_TARGET_DEBUG(target, "Ignoring AP write error right after reset");
retval3 = dap_dp_init_or_reconnect(armv7m->debug_ap->dap);
if (retval3 != ERROR_OK) {
LOG_TARGET_ERROR(target, "DP initialisation failed");
/* The error return value must not be propagated in this case.
* SYSRESETREQ or VECTRESET have been possibly triggered
* so reset processing should continue */
} else {
/* I do not know why this is necessary, but it
* fixes strange effects (step/resume cause NMI
* after reset) on LM3S6918 -- Michael Schwingen
*/
uint32_t tmp;
mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, &tmp);
}
}
target->state = TARGET_RESET;
jtag_sleep(50000);
register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
/* now return stored error code if any */
if (retval != ERROR_OK)
return retval;
if (target->reset_halt) {
retval = target_halt(target);
if (retval != ERROR_OK)
return retval;
}
return ERROR_OK;
}
static int cortex_m_deassert_reset(struct target *target)
{
struct armv7m_common *armv7m = &target_to_cm(target)->armv7m;
LOG_TARGET_DEBUG(target, "target->state: %s",
target_state_name(target));
/* deassert reset lines */
adapter_deassert_reset();
enum reset_types jtag_reset_config = jtag_get_reset_config();
if ((jtag_reset_config & RESET_HAS_SRST) &&
!(jtag_reset_config & RESET_SRST_NO_GATING) &&
target_was_examined(target)) {
int retval = dap_dp_init_or_reconnect(armv7m->debug_ap->dap);
if (retval != ERROR_OK) {
LOG_TARGET_ERROR(target, "DP initialisation failed");
return retval;
}
}
return ERROR_OK;
}
int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
int retval;
unsigned int fp_num = 0;
struct cortex_m_common *cortex_m = target_to_cm(target);
struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
if (breakpoint->is_set) {
LOG_TARGET_WARNING(target, "breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id);
return ERROR_OK;
}
if (breakpoint->type == BKPT_HARD) {
uint32_t fpcr_value;
while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code))
fp_num++;
if (fp_num >= cortex_m->fp_num_code) {
LOG_TARGET_ERROR(target, "Can not find free FPB Comparator!");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
breakpoint_hw_set(breakpoint, fp_num);
fpcr_value = breakpoint->address | 1;
if (cortex_m->fp_rev == 0) {
if (breakpoint->address > 0x1FFFFFFF) {
LOG_TARGET_ERROR(target, "Cortex-M Flash Patch Breakpoint rev.1 "
"cannot handle HW breakpoint above address 0x1FFFFFFE");
return ERROR_FAIL;
}
uint32_t hilo;
hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
fpcr_value = (fpcr_value & 0x1FFFFFFC) | hilo | 1;
} else if (cortex_m->fp_rev > 1) {
LOG_TARGET_ERROR(target, "Unhandled Cortex-M Flash Patch Breakpoint architecture revision");
return ERROR_FAIL;
}
comparator_list[fp_num].used = true;
comparator_list[fp_num].fpcr_value = fpcr_value;
target_write_u32(target, comparator_list[fp_num].fpcr_address,
comparator_list[fp_num].fpcr_value);
LOG_TARGET_DEBUG(target, "fpc_num %i fpcr_value 0x%" PRIx32 "",
fp_num,
comparator_list[fp_num].fpcr_value);
if (!cortex_m->fpb_enabled) {
LOG_TARGET_DEBUG(target, "FPB wasn't enabled, do it now");
retval = cortex_m_enable_fpb(target);
if (retval != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to enable the FPB");
return retval;
}
cortex_m->fpb_enabled = true;
}
} else if (breakpoint->type == BKPT_SOFT) {
uint8_t code[4];
/* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
* semihosting; don't use that. Otherwise the BKPT
* parameter is arbitrary.
*/
buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
retval = target_read_memory(target,
breakpoint->address & 0xFFFFFFFE,
breakpoint->length, 1,
breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
retval = target_write_memory(target,
breakpoint->address & 0xFFFFFFFE,
breakpoint->length, 1,
code);
if (retval != ERROR_OK)
return retval;
breakpoint->is_set = true;
}
LOG_TARGET_DEBUG(target, "BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (n=%u)",
breakpoint->unique_id,
(int)(breakpoint->type),
breakpoint->address,
breakpoint->length,
(breakpoint->type == BKPT_SOFT) ? 0 : breakpoint->number);
return ERROR_OK;
}
int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
int retval;
struct cortex_m_common *cortex_m = target_to_cm(target);
struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
if (!breakpoint->is_set) {
LOG_TARGET_WARNING(target, "breakpoint not set");
return ERROR_OK;
}
LOG_TARGET_DEBUG(target, "BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (n=%u)",
breakpoint->unique_id,
(int)(breakpoint->type),
breakpoint->address,
breakpoint->length,
(breakpoint->type == BKPT_SOFT) ? 0 : breakpoint->number);
if (breakpoint->type == BKPT_HARD) {
unsigned int fp_num = breakpoint->number;
if (fp_num >= cortex_m->fp_num_code) {
LOG_TARGET_DEBUG(target, "Invalid FP Comparator number in breakpoint");
return ERROR_OK;
}
comparator_list[fp_num].used = false;
comparator_list[fp_num].fpcr_value = 0;
target_write_u32(target, comparator_list[fp_num].fpcr_address,
comparator_list[fp_num].fpcr_value);
} else {
/* restore original instruction (kept in target endianness) */
retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE,
breakpoint->length, 1,
breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
}
breakpoint->is_set = false;
return ERROR_OK;
}
int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
if (breakpoint->length == 3) {
LOG_TARGET_DEBUG(target, "Using a two byte breakpoint for 32bit Thumb-2 request");
breakpoint->length = 2;
}
if ((breakpoint->length != 2)) {
LOG_TARGET_INFO(target, "only breakpoints of two bytes length supported");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
return cortex_m_set_breakpoint(target, breakpoint);
}
int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
if (!breakpoint->is_set)
return ERROR_OK;
return cortex_m_unset_breakpoint(target, breakpoint);
}
static int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
unsigned int dwt_num = 0;
struct cortex_m_common *cortex_m = target_to_cm(target);
/* REVISIT Don't fully trust these "not used" records ... users
* may set up breakpoints by hand, e.g. dual-address data value
* watchpoint using comparator #1; comparator #0 matching cycle
* count; send data trace info through ITM and TPIU; etc
*/
struct cortex_m_dwt_comparator *comparator;
for (comparator = cortex_m->dwt_comparator_list;
comparator->used && dwt_num < cortex_m->dwt_num_comp;
comparator++, dwt_num++)
continue;
if (dwt_num >= cortex_m->dwt_num_comp) {
LOG_TARGET_ERROR(target, "Can not find free DWT Comparator");
return ERROR_FAIL;
}
comparator->used = true;
watchpoint_set(watchpoint, dwt_num);
comparator->comp = watchpoint->address;
target_write_u32(target, comparator->dwt_comparator_address + 0,
comparator->comp);
if ((cortex_m->dwt_devarch & 0x1FFFFF) != DWT_DEVARCH_ARMV8M) {
uint32_t mask = 0, temp;
/* watchpoint params were validated earlier */
temp = watchpoint->length;
while (temp) {
temp >>= 1;
mask++;
}
mask--;
comparator->mask = mask;
target_write_u32(target, comparator->dwt_comparator_address + 4,
comparator->mask);
switch (watchpoint->rw) {
case WPT_READ:
comparator->function = 5;
break;
case WPT_WRITE:
comparator->function = 6;
break;
case WPT_ACCESS:
comparator->function = 7;
break;
}
} else {
uint32_t data_size = watchpoint->length >> 1;
comparator->mask = (watchpoint->length >> 1) | 1;
switch (watchpoint->rw) {
case WPT_ACCESS:
comparator->function = 4;
break;
case WPT_WRITE:
comparator->function = 5;
break;
case WPT_READ:
comparator->function = 6;
break;
}
comparator->function = comparator->function | (1 << 4) |
(data_size << 10);
}
target_write_u32(target, comparator->dwt_comparator_address + 8,
comparator->function);
LOG_TARGET_DEBUG(target, "Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
watchpoint->unique_id, dwt_num,
(unsigned) comparator->comp,
(unsigned) comparator->mask,
(unsigned) comparator->function);
return ERROR_OK;
}
static int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
struct cortex_m_dwt_comparator *comparator;
if (!watchpoint->is_set) {
LOG_TARGET_WARNING(target, "watchpoint (wpid: %d) not set",
watchpoint->unique_id);
return ERROR_OK;
}
unsigned int dwt_num = watchpoint->number;
LOG_TARGET_DEBUG(target, "Watchpoint (ID %d) DWT%u address: 0x%08x clear",
watchpoint->unique_id, dwt_num,
(unsigned) watchpoint->address);
if (dwt_num >= cortex_m->dwt_num_comp) {
LOG_TARGET_DEBUG(target, "Invalid DWT Comparator number in watchpoint");
return ERROR_OK;
}
comparator = cortex_m->dwt_comparator_list + dwt_num;
comparator->used = false;
comparator->function = 0;
target_write_u32(target, comparator->dwt_comparator_address + 8,
comparator->function);
watchpoint->is_set = false;
return ERROR_OK;
}
int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
if (cortex_m->dwt_comp_available < 1) {
LOG_TARGET_DEBUG(target, "no comparators?");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* hardware doesn't support data value masking */
if (watchpoint->mask != ~(uint32_t)0) {
LOG_TARGET_DEBUG(target, "watchpoint value masks not supported");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* hardware allows address masks of up to 32K */
unsigned mask;
for (mask = 0; mask < 16; mask++) {
if ((1u << mask) == watchpoint->length)
break;
}
if (mask == 16) {
LOG_TARGET_DEBUG(target, "unsupported watchpoint length");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (watchpoint->address & ((1 << mask) - 1)) {
LOG_TARGET_DEBUG(target, "watchpoint address is unaligned");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* Caller doesn't seem to be able to describe watching for data
* values of zero; that flags "no value".
*
* REVISIT This DWT may well be able to watch for specific data
* values. Requires comparator #1 to set DATAVMATCH and match
* the data, and another comparator (DATAVADDR0) matching addr.
*/
if (watchpoint->value) {
LOG_TARGET_DEBUG(target, "data value watchpoint not YET supported");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
cortex_m->dwt_comp_available--;
LOG_TARGET_DEBUG(target, "dwt_comp_available: %d", cortex_m->dwt_comp_available);
return ERROR_OK;
}
int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
/* REVISIT why check? DWT can be updated with core running ... */
if (target->state != TARGET_HALTED) {
LOG_TARGET_WARNING(target, "target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (watchpoint->is_set)
cortex_m_unset_watchpoint(target, watchpoint);
cortex_m->dwt_comp_available++;
LOG_TARGET_DEBUG(target, "dwt_comp_available: %d", cortex_m->dwt_comp_available);
return ERROR_OK;
}
int cortex_m_hit_watchpoint(struct target *target, struct watchpoint **hit_watchpoint)
{
if (target->debug_reason != DBG_REASON_WATCHPOINT)
return ERROR_FAIL;
struct cortex_m_common *cortex_m = target_to_cm(target);
for (struct watchpoint *wp = target->watchpoints; wp; wp = wp->next) {
if (!wp->is_set)
continue;
unsigned int dwt_num = wp->number;
struct cortex_m_dwt_comparator *comparator = cortex_m->dwt_comparator_list + dwt_num;
uint32_t dwt_function;
int retval = target_read_u32(target, comparator->dwt_comparator_address + 8, &dwt_function);
if (retval != ERROR_OK)
return ERROR_FAIL;
/* check the MATCHED bit */
if (dwt_function & BIT(24)) {
*hit_watchpoint = wp;
return ERROR_OK;
}
}
return ERROR_FAIL;
}
void cortex_m_enable_watchpoints(struct target *target)
{
struct watchpoint *watchpoint = target->watchpoints;
/* set any pending watchpoints */
while (watchpoint) {
if (!watchpoint->is_set)
cortex_m_set_watchpoint(target, watchpoint);
watchpoint = watchpoint->next;
}
}
static int cortex_m_read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
if (armv7m->arm.arch == ARM_ARCH_V6M) {
/* armv6m does not handle unaligned memory access */
if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
return ERROR_TARGET_UNALIGNED_ACCESS;
}
return mem_ap_read_buf(armv7m->debug_ap, buffer, size, count, address);
}
static int cortex_m_write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
if (armv7m->arm.arch == ARM_ARCH_V6M) {
/* armv6m does not handle unaligned memory access */
if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
return ERROR_TARGET_UNALIGNED_ACCESS;
}
return mem_ap_write_buf(armv7m->debug_ap, buffer, size, count, address);
}
static int cortex_m_init_target(struct command_context *cmd_ctx,
struct target *target)
{
armv7m_build_reg_cache(target);
arm_semihosting_init(target);
return ERROR_OK;
}
void cortex_m_deinit_target(struct target *target)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
struct armv7m_common *armv7m = target_to_armv7m(target);
if (!armv7m->is_hla_target && armv7m->debug_ap)
dap_put_ap(armv7m->debug_ap);
free(cortex_m->fp_comparator_list);
cortex_m_dwt_free(target);
armv7m_free_reg_cache(target);
free(target->private_config);
free(cortex_m);
}
int cortex_m_profiling(struct target *target, uint32_t *samples,
uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
{
struct timeval timeout, now;
struct armv7m_common *armv7m = target_to_armv7m(target);
uint32_t reg_value;
int retval;
retval = target_read_u32(target, DWT_PCSR, &reg_value);
if (retval != ERROR_OK) {
LOG_TARGET_ERROR(target, "Error while reading PCSR");
return retval;
}
if (reg_value == 0) {
LOG_TARGET_INFO(target, "PCSR sampling not supported on this processor.");
return target_profiling_default(target, samples, max_num_samples, num_samples, seconds);
}
gettimeofday(&timeout, NULL);
timeval_add_time(&timeout, seconds, 0);
LOG_TARGET_INFO(target, "Starting Cortex-M profiling. Sampling DWT_PCSR as fast as we can...");
/* Make sure the target is running */
target_poll(target);
if (target->state == TARGET_HALTED)
retval = target_resume(target, 1, 0, 0, 0);
if (retval != ERROR_OK) {
LOG_TARGET_ERROR(target, "Error while resuming target");
return retval;
}
uint32_t sample_count = 0;
for (;;) {
if (armv7m && armv7m->debug_ap) {
uint32_t read_count = max_num_samples - sample_count;
if (read_count > 1024)
read_count = 1024;
retval = mem_ap_read_buf_noincr(armv7m->debug_ap,
(void *)&samples[sample_count],
4, read_count, DWT_PCSR);
sample_count += read_count;
} else {
target_read_u32(target, DWT_PCSR, &samples[sample_count++]);
}
if (retval != ERROR_OK) {
LOG_TARGET_ERROR(target, "Error while reading PCSR");
return retval;
}
gettimeofday(&now, NULL);
if (sample_count >= max_num_samples || timeval_compare(&now, &timeout) > 0) {
LOG_TARGET_INFO(target, "Profiling completed. %" PRIu32 " samples.", sample_count);
break;
}
}
*num_samples = sample_count;
return retval;
}
/* REVISIT cache valid/dirty bits are unmaintained. We could set "valid"
* on r/w if the core is not running, and clear on resume or reset ... or
* at least, in a post_restore_context() method.
*/
struct dwt_reg_state {
struct target *target;
uint32_t addr;
uint8_t value[4]; /* scratch/cache */
};
static int cortex_m_dwt_get_reg(struct reg *reg)
{
struct dwt_reg_state *state = reg->arch_info;
uint32_t tmp;
int retval = target_read_u32(state->target, state->addr, &tmp);
if (retval != ERROR_OK)
return retval;
buf_set_u32(state->value, 0, 32, tmp);
return ERROR_OK;
}
static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf)
{
struct dwt_reg_state *state = reg->arch_info;
return target_write_u32(state->target, state->addr,
buf_get_u32(buf, 0, reg->size));
}
struct dwt_reg {
uint32_t addr;
const char *name;
unsigned size;
};
static const struct dwt_reg dwt_base_regs[] = {
{ DWT_CTRL, "dwt_ctrl", 32, },
/* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT: it wrongly
* increments while the core is asleep.
*/
{ DWT_CYCCNT, "dwt_cyccnt", 32, },
/* plus some 8 bit counters, useful for profiling with TPIU */
};
static const struct dwt_reg dwt_comp[] = {
#define DWT_COMPARATOR(i) \
{ DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
{ DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
{ DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
DWT_COMPARATOR(0),
DWT_COMPARATOR(1),
DWT_COMPARATOR(2),
DWT_COMPARATOR(3),
DWT_COMPARATOR(4),
DWT_COMPARATOR(5),
DWT_COMPARATOR(6),
DWT_COMPARATOR(7),
DWT_COMPARATOR(8),
DWT_COMPARATOR(9),
DWT_COMPARATOR(10),
DWT_COMPARATOR(11),
DWT_COMPARATOR(12),
DWT_COMPARATOR(13),
DWT_COMPARATOR(14),
DWT_COMPARATOR(15),
#undef DWT_COMPARATOR
};
static const struct reg_arch_type dwt_reg_type = {
.get = cortex_m_dwt_get_reg,
.set = cortex_m_dwt_set_reg,
};
static void cortex_m_dwt_addreg(struct target *t, struct reg *r, const struct dwt_reg *d)
{
struct dwt_reg_state *state;
state = calloc(1, sizeof(*state));
if (!state)
return;
state->addr = d->addr;
state->target = t;
r->name = d->name;
r->size = d->size;
r->value = state->value;
r->arch_info = state;
r->type = &dwt_reg_type;
}
static void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target)
{
uint32_t dwtcr;
struct reg_cache *cache;
struct cortex_m_dwt_comparator *comparator;
int reg;
target_read_u32(target, DWT_CTRL, &dwtcr);
LOG_TARGET_DEBUG(target, "DWT_CTRL: 0x%" PRIx32, dwtcr);
if (!dwtcr) {
LOG_TARGET_DEBUG(target, "no DWT");
return;
}
target_read_u32(target, DWT_DEVARCH, &cm->dwt_devarch);
LOG_TARGET_DEBUG(target, "DWT_DEVARCH: 0x%" PRIx32, cm->dwt_devarch);
cm->dwt_num_comp = (dwtcr >> 28) & 0xF;
cm->dwt_comp_available = cm->dwt_num_comp;
cm->dwt_comparator_list = calloc(cm->dwt_num_comp,
sizeof(struct cortex_m_dwt_comparator));
if (!cm->dwt_comparator_list) {
fail0:
cm->dwt_num_comp = 0;
LOG_TARGET_ERROR(target, "out of mem");
return;
}
cache = calloc(1, sizeof(*cache));
if (!cache) {
fail1:
free(cm->dwt_comparator_list);
goto fail0;
}
cache->name = "Cortex-M DWT registers";
cache->num_regs = 2 + cm->dwt_num_comp * 3;
cache->reg_list = calloc(cache->num_regs, sizeof(*cache->reg_list));
if (!cache->reg_list) {
free(cache);
goto fail1;
}
for (reg = 0; reg < 2; reg++)
cortex_m_dwt_addreg(target, cache->reg_list + reg,
dwt_base_regs + reg);
comparator = cm->dwt_comparator_list;
for (unsigned int i = 0; i < cm->dwt_num_comp; i++, comparator++) {
int j;
comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
for (j = 0; j < 3; j++, reg++)
cortex_m_dwt_addreg(target, cache->reg_list + reg,
dwt_comp + 3 * i + j);
/* make sure we clear any watchpoints enabled on the target */
target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
}
*register_get_last_cache_p(&target->reg_cache) = cache;
cm->dwt_cache = cache;
LOG_TARGET_DEBUG(target, "DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
dwtcr, cm->dwt_num_comp,
(dwtcr & (0xf << 24)) ? " only" : "/trigger");
/* REVISIT: if num_comp > 1, check whether comparator #1 can
* implement single-address data value watchpoints ... so we
* won't need to check it later, when asked to set one up.
*/
}
static void cortex_m_dwt_free(struct target *target)
{
struct cortex_m_common *cm = target_to_cm(target);
struct reg_cache *cache = cm->dwt_cache;
free(cm->dwt_comparator_list);
cm->dwt_comparator_list = NULL;
cm->dwt_num_comp = 0;
if (cache) {
register_unlink_cache(&target->reg_cache, cache);
if (cache->reg_list) {
for (size_t i = 0; i < cache->num_regs; i++)
free(cache->reg_list[i].arch_info);
free(cache->reg_list);
}
free(cache);
}
cm->dwt_cache = NULL;
}
#define MVFR0 0xe000ef40
#define MVFR1 0xe000ef44
#define MVFR0_DEFAULT_M4 0x10110021
#define MVFR1_DEFAULT_M4 0x11000011
#define MVFR0_DEFAULT_M7_SP 0x10110021
#define MVFR0_DEFAULT_M7_DP 0x10110221
#define MVFR1_DEFAULT_M7_SP 0x11000011
#define MVFR1_DEFAULT_M7_DP 0x12000011
static int cortex_m_find_mem_ap(struct adiv5_dap *swjdp,
struct adiv5_ap **debug_ap)
{
if (dap_find_get_ap(swjdp, AP_TYPE_AHB3_AP, debug_ap) == ERROR_OK)
return ERROR_OK;
return dap_find_get_ap(swjdp, AP_TYPE_AHB5_AP, debug_ap);
}
int cortex_m_examine(struct target *target)
{
int retval;
uint32_t cpuid, fpcr, mvfr0, mvfr1;
struct cortex_m_common *cortex_m = target_to_cm(target);
struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
struct armv7m_common *armv7m = target_to_armv7m(target);
/* hla_target shares the examine handler but does not support
* all its calls */
if (!armv7m->is_hla_target) {
if (armv7m->debug_ap) {
dap_put_ap(armv7m->debug_ap);
armv7m->debug_ap = NULL;
}
if (cortex_m->apsel == DP_APSEL_INVALID) {
/* Search for the MEM-AP */
retval = cortex_m_find_mem_ap(swjdp, &armv7m->debug_ap);
if (retval != ERROR_OK) {
LOG_TARGET_ERROR(target, "Could not find MEM-AP to control the core");
return retval;
}
} else {
armv7m->debug_ap = dap_get_ap(swjdp, cortex_m->apsel);
if (!armv7m->debug_ap) {
LOG_ERROR("Cannot get AP");
return ERROR_FAIL;
}
}
armv7m->debug_ap->memaccess_tck = 8;
retval = mem_ap_init(armv7m->debug_ap);
if (retval != ERROR_OK)
return retval;
}
if (!target_was_examined(target)) {
target_set_examined(target);
/* Read from Device Identification Registers */
retval = target_read_u32(target, CPUID, &cpuid);
if (retval != ERROR_OK)
return retval;
/* Get ARCH and CPU types */
const enum cortex_m_partno core_partno = (cpuid & ARM_CPUID_PARTNO_MASK) >> ARM_CPUID_PARTNO_POS;
for (unsigned int n = 0; n < ARRAY_SIZE(cortex_m_parts); n++) {
if (core_partno == cortex_m_parts[n].partno) {
cortex_m->core_info = &cortex_m_parts[n];
break;
}
}
if (!cortex_m->core_info) {
LOG_TARGET_ERROR(target, "Cortex-M PARTNO 0x%x is unrecognized", core_partno);
return ERROR_FAIL;
}
armv7m->arm.arch = cortex_m->core_info->arch;
LOG_TARGET_INFO(target, "%s r%" PRId8 "p%" PRId8 " processor detected",
cortex_m->core_info->name,
(uint8_t)((cpuid >> 20) & 0xf),
(uint8_t)((cpuid >> 0) & 0xf));
cortex_m->maskints_erratum = false;
if (core_partno == CORTEX_M7_PARTNO) {
uint8_t rev, patch;
rev = (cpuid >> 20) & 0xf;
patch = (cpuid >> 0) & 0xf;
if ((rev == 0) && (patch < 2)) {
LOG_TARGET_WARNING(target, "Silicon bug: single stepping may enter pending exception handler!");
cortex_m->maskints_erratum = true;
}
}
LOG_TARGET_DEBUG(target, "cpuid: 0x%8.8" PRIx32 "", cpuid);
if (cortex_m->core_info->flags & CORTEX_M_F_HAS_FPV4) {
target_read_u32(target, MVFR0, &mvfr0);
target_read_u32(target, MVFR1, &mvfr1);
/* test for floating point feature on Cortex-M4 */
if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
LOG_TARGET_DEBUG(target, "%s floating point feature FPv4_SP found", cortex_m->core_info->name);
armv7m->fp_feature = FPV4_SP;
}
} else if (cortex_m->core_info->flags & CORTEX_M_F_HAS_FPV5) {
target_read_u32(target, MVFR0, &mvfr0);
target_read_u32(target, MVFR1, &mvfr1);
/* test for floating point features on Cortex-M7 */
if ((mvfr0 == MVFR0_DEFAULT_M7_SP) && (mvfr1 == MVFR1_DEFAULT_M7_SP)) {
LOG_TARGET_DEBUG(target, "%s floating point feature FPv5_SP found", cortex_m->core_info->name);
armv7m->fp_feature = FPV5_SP;
} else if ((mvfr0 == MVFR0_DEFAULT_M7_DP) && (mvfr1 == MVFR1_DEFAULT_M7_DP)) {
LOG_TARGET_DEBUG(target, "%s floating point feature FPv5_DP found", cortex_m->core_info->name);
armv7m->fp_feature = FPV5_DP;
}
}
/* VECTRESET is supported only on ARMv7-M cores */
cortex_m->vectreset_supported = armv7m->arm.arch == ARM_ARCH_V7M;
/* Check for FPU, otherwise mark FPU register as non-existent */
if (armv7m->fp_feature == FP_NONE)
for (size_t idx = ARMV7M_FPU_FIRST_REG; idx <= ARMV7M_FPU_LAST_REG; idx++)
armv7m->arm.core_cache->reg_list[idx].exist = false;
if (armv7m->arm.arch != ARM_ARCH_V8M)
for (size_t idx = ARMV8M_FIRST_REG; idx <= ARMV8M_LAST_REG; idx++)
armv7m->arm.core_cache->reg_list[idx].exist = false;
if (!armv7m->is_hla_target) {
if (cortex_m->core_info->flags & CORTEX_M_F_TAR_AUTOINCR_BLOCK_4K)
/* Cortex-M3/M4 have 4096 bytes autoincrement range,
* s. ARM IHI 0031C: MEM-AP 7.2.2 */
armv7m->debug_ap->tar_autoincr_block = (1 << 12);
}
retval = target_read_u32(target, DCB_DHCSR, &cortex_m->dcb_dhcsr);
if (retval != ERROR_OK)
return retval;
/* Don't cumulate sticky S_RESET_ST at the very first read of DHCSR
* as S_RESET_ST may indicate a reset that happened long time ago
* (most probably the power-on reset before OpenOCD was started).
* As we are just initializing the debug system we do not need
* to call cortex_m_endreset_event() in the following poll.
*/
if (!cortex_m->dcb_dhcsr_sticky_is_recent) {
cortex_m->dcb_dhcsr_sticky_is_recent = true;
if (cortex_m->dcb_dhcsr & S_RESET_ST) {
LOG_TARGET_DEBUG(target, "reset happened some time ago, ignore");
cortex_m->dcb_dhcsr &= ~S_RESET_ST;
}
}
cortex_m_cumulate_dhcsr_sticky(cortex_m, cortex_m->dcb_dhcsr);
if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
/* Enable debug requests */
uint32_t dhcsr = (cortex_m->dcb_dhcsr | C_DEBUGEN) & ~(C_HALT | C_STEP | C_MASKINTS);
retval = target_write_u32(target, DCB_DHCSR, DBGKEY | (dhcsr & 0x0000FFFFUL));
if (retval != ERROR_OK)
return retval;
cortex_m->dcb_dhcsr = dhcsr;
}
/* Configure trace modules */
retval = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr);
if (retval != ERROR_OK)
return retval;
if (armv7m->trace_config.itm_deferred_config)
armv7m_trace_itm_config(target);
/* NOTE: FPB and DWT are both optional. */
/* Setup FPB */
target_read_u32(target, FP_CTRL, &fpcr);
/* bits [14:12] and [7:4] */
cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);
cortex_m->fp_num_lit = (fpcr >> 8) & 0xF;
/* Detect flash patch revision, see RM DDI 0403E.b page C1-817.
Revision is zero base, fp_rev == 1 means Rev.2 ! */
cortex_m->fp_rev = (fpcr >> 28) & 0xf;
free(cortex_m->fp_comparator_list);
cortex_m->fp_comparator_list = calloc(
cortex_m->fp_num_code + cortex_m->fp_num_lit,
sizeof(struct cortex_m_fp_comparator));
cortex_m->fpb_enabled = fpcr & 1;
for (unsigned int i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
cortex_m->fp_comparator_list[i].type =
(i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
/* make sure we clear any breakpoints enabled on the target */
target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0);
}
LOG_TARGET_DEBUG(target, "FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
fpcr,
cortex_m->fp_num_code,
cortex_m->fp_num_lit);
/* Setup DWT */
cortex_m_dwt_free(target);
cortex_m_dwt_setup(cortex_m, target);
/* These hardware breakpoints only work for code in flash! */
LOG_TARGET_INFO(target, "target has %d breakpoints, %d watchpoints",
cortex_m->fp_num_code,
cortex_m->dwt_num_comp);
}
return ERROR_OK;
}
static int cortex_m_dcc_read(struct target *target, uint8_t *value, uint8_t *ctrl)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
uint16_t dcrdr;
uint8_t buf[2];
int retval;
retval = mem_ap_read_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
if (retval != ERROR_OK)
return retval;
dcrdr = target_buffer_get_u16(target, buf);
*ctrl = (uint8_t)dcrdr;
*value = (uint8_t)(dcrdr >> 8);
LOG_TARGET_DEBUG(target, "data 0x%x ctrl 0x%x", *value, *ctrl);
/* write ack back to software dcc register
* signify we have read data */
if (dcrdr & (1 << 0)) {
target_buffer_set_u16(target, buf, 0);
retval = mem_ap_write_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
if (retval != ERROR_OK)
return retval;
}
return ERROR_OK;
}
static int cortex_m_target_request_data(struct target *target,
uint32_t size, uint8_t *buffer)
{
uint8_t data;
uint8_t ctrl;
uint32_t i;
for (i = 0; i < (size * 4); i++) {
int retval = cortex_m_dcc_read(target, &data, &ctrl);
if (retval != ERROR_OK)
return retval;
buffer[i] = data;
}
return ERROR_OK;
}
static int cortex_m_handle_target_request(void *priv)
{
struct target *target = priv;
if (!target_was_examined(target))
return ERROR_OK;
if (!target->dbg_msg_enabled)
return ERROR_OK;
if (target->state == TARGET_RUNNING) {
uint8_t data;
uint8_t ctrl;
int retval;
retval = cortex_m_dcc_read(target, &data, &ctrl);
if (retval != ERROR_OK)
return retval;
/* check if we have data */
if (ctrl & (1 << 0)) {
uint32_t request;
/* we assume target is quick enough */
request = data;
for (int i = 1; i <= 3; i++) {
retval = cortex_m_dcc_read(target, &data, &ctrl);
if (retval != ERROR_OK)
return retval;
request |= ((uint32_t)data << (i * 8));
}
target_request(target, request);
}
}
return ERROR_OK;
}
static int cortex_m_init_arch_info(struct target *target,
struct cortex_m_common *cortex_m, struct adiv5_dap *dap)
{
struct armv7m_common *armv7m = &cortex_m->armv7m;
armv7m_init_arch_info(target, armv7m);
/* default reset mode is to use srst if fitted
* if not it will use CORTEX_M3_RESET_VECTRESET */
cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
armv7m->arm.dap = dap;
/* register arch-specific functions */
armv7m->examine_debug_reason = cortex_m_examine_debug_reason;
armv7m->post_debug_entry = NULL;
armv7m->pre_restore_context = NULL;
armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32;
armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32;
target_register_timer_callback(cortex_m_handle_target_request, 1,
TARGET_TIMER_TYPE_PERIODIC, target);
return ERROR_OK;
}
static int cortex_m_target_create(struct target *target, Jim_Interp *interp)
{
struct adiv5_private_config *pc;
pc = (struct adiv5_private_config *)target->private_config;
if (adiv5_verify_config(pc) != ERROR_OK)
return ERROR_FAIL;
struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
if (!cortex_m) {
LOG_TARGET_ERROR(target, "No memory creating target");
return ERROR_FAIL;
}
cortex_m->common_magic = CORTEX_M_COMMON_MAGIC;
cortex_m->apsel = pc->ap_num;
cortex_m_init_arch_info(target, cortex_m, pc->dap);
return ERROR_OK;
}
/*--------------------------------------------------------------------------*/
static int cortex_m_verify_pointer(struct command_invocation *cmd,
struct cortex_m_common *cm)
{
if (!is_cortex_m_with_dap_access(cm)) {
command_print(cmd, "target is not a Cortex-M");
return ERROR_TARGET_INVALID;
}
return ERROR_OK;
}
/*
* Only stuff below this line should need to verify that its target
* is a Cortex-M3. Everything else should have indirected through the
* cortexm3_target structure, which is only used with CM3 targets.
*/
COMMAND_HANDLER(handle_cortex_m_vector_catch_command)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_m_common *cortex_m = target_to_cm(target);
struct armv7m_common *armv7m = &cortex_m->armv7m;
uint32_t demcr = 0;
int retval;
static const struct {
char name[10];
unsigned mask;
} vec_ids[] = {
{ "hard_err", VC_HARDERR, },
{ "int_err", VC_INTERR, },
{ "bus_err", VC_BUSERR, },
{ "state_err", VC_STATERR, },
{ "chk_err", VC_CHKERR, },
{ "nocp_err", VC_NOCPERR, },
{ "mm_err", VC_MMERR, },
{ "reset", VC_CORERESET, },
};
retval = cortex_m_verify_pointer(CMD, cortex_m);
if (retval != ERROR_OK)
return retval;
if (!target_was_examined(target)) {
LOG_TARGET_ERROR(target, "Target not examined yet");
return ERROR_FAIL;
}
retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
if (retval != ERROR_OK)
return retval;
if (CMD_ARGC > 0) {
unsigned catch = 0;
if (CMD_ARGC == 1) {
if (strcmp(CMD_ARGV[0], "all") == 0) {
catch = VC_HARDERR | VC_INTERR | VC_BUSERR
| VC_STATERR | VC_CHKERR | VC_NOCPERR
| VC_MMERR | VC_CORERESET;
goto write;
} else if (strcmp(CMD_ARGV[0], "none") == 0)
goto write;
}
while (CMD_ARGC-- > 0) {
unsigned i;
for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
continue;
catch |= vec_ids[i].mask;
break;
}
if (i == ARRAY_SIZE(vec_ids)) {
LOG_TARGET_ERROR(target, "No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
write:
/* For now, armv7m->demcr only stores vector catch flags. */
armv7m->demcr = catch;
demcr &= ~0xffff;
demcr |= catch;
/* write, but don't assume it stuck (why not??) */
retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, demcr);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
if (retval != ERROR_OK)
return retval;
/* FIXME be sure to clear DEMCR on clean server shutdown.
* Otherwise the vector catch hardware could fire when there's
* no debugger hooked up, causing much confusion...
*/
}
for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
command_print(CMD, "%9s: %s", vec_ids[i].name,
(demcr & vec_ids[i].mask) ? "catch" : "ignore");
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_m_common *cortex_m = target_to_cm(target);
int retval;
static const struct jim_nvp nvp_maskisr_modes[] = {
{ .name = "auto", .value = CORTEX_M_ISRMASK_AUTO },
{ .name = "off", .value = CORTEX_M_ISRMASK_OFF },
{ .name = "on", .value = CORTEX_M_ISRMASK_ON },
{ .name = "steponly", .value = CORTEX_M_ISRMASK_STEPONLY },
{ .name = NULL, .value = -1 },
};
const struct jim_nvp *n;
retval = cortex_m_verify_pointer(CMD, cortex_m);
if (retval != ERROR_OK)
return retval;
if (target->state != TARGET_HALTED) {
command_print(CMD, "target must be stopped for \"%s\" command", CMD_NAME);
return ERROR_OK;
}
if (CMD_ARGC > 0) {
n = jim_nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
if (!n->name)
return ERROR_COMMAND_SYNTAX_ERROR;
cortex_m->isrmasking_mode = n->value;
cortex_m_set_maskints_for_halt(target);
}
n = jim_nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode);
command_print(CMD, "cortex_m interrupt mask %s", n->name);
return ERROR_OK;
}
COMMAND_HANDLER(handle_cortex_m_reset_config_command)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_m_common *cortex_m = target_to_cm(target);
int retval;
char *reset_config;
retval = cortex_m_verify_pointer(CMD, cortex_m);
if (retval != ERROR_OK)
return retval;
if (CMD_ARGC > 0) {
if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ;
else if (strcmp(*CMD_ARGV, "vectreset") == 0) {
if (target_was_examined(target)
&& !cortex_m->vectreset_supported)
LOG_TARGET_WARNING(target, "VECTRESET is not supported on your Cortex-M core!");
else
cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
} else
return ERROR_COMMAND_SYNTAX_ERROR;
}
switch (cortex_m->soft_reset_config) {
case CORTEX_M_RESET_SYSRESETREQ:
reset_config = "sysresetreq";
break;
case CORTEX_M_RESET_VECTRESET:
reset_config = "vectreset";
break;
default:
reset_config = "unknown";
break;
}
command_print(CMD, "cortex_m reset_config %s", reset_config);
return ERROR_OK;
}
static const struct command_registration cortex_m_exec_command_handlers[] = {
{
.name = "maskisr",
.handler = handle_cortex_m_mask_interrupts_command,
.mode = COMMAND_EXEC,
.help = "mask cortex_m interrupts",
.usage = "['auto'|'on'|'off'|'steponly']",
},
{
.name = "vector_catch",
.handler = handle_cortex_m_vector_catch_command,
.mode = COMMAND_EXEC,
.help = "configure hardware vectors to trigger debug entry",
.usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
},
{
.name = "reset_config",
.handler = handle_cortex_m_reset_config_command,
.mode = COMMAND_ANY,
.help = "configure software reset handling",
.usage = "['sysresetreq'|'vectreset']",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration cortex_m_command_handlers[] = {
{
.chain = armv7m_command_handlers,
},
{
.chain = armv7m_trace_command_handlers,
},
/* START_DEPRECATED_TPIU */
{
.chain = arm_tpiu_deprecated_command_handlers,
},
/* END_DEPRECATED_TPIU */
{
.name = "cortex_m",
.mode = COMMAND_EXEC,
.help = "Cortex-M command group",
.usage = "",
.chain = cortex_m_exec_command_handlers,
},
{
.chain = rtt_target_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct target_type cortexm_target = {
.name = "cortex_m",
.poll = cortex_m_poll,
.arch_state = armv7m_arch_state,
.target_request_data = cortex_m_target_request_data,
.halt = cortex_m_halt,
.resume = cortex_m_resume,
.step = cortex_m_step,
.assert_reset = cortex_m_assert_reset,
.deassert_reset = cortex_m_deassert_reset,
.soft_reset_halt = cortex_m_soft_reset_halt,
.get_gdb_arch = arm_get_gdb_arch,
.get_gdb_reg_list = armv7m_get_gdb_reg_list,
.read_memory = cortex_m_read_memory,
.write_memory = cortex_m_write_memory,
.checksum_memory = armv7m_checksum_memory,
.blank_check_memory = armv7m_blank_check_memory,
.run_algorithm = armv7m_run_algorithm,
.start_algorithm = armv7m_start_algorithm,
.wait_algorithm = armv7m_wait_algorithm,
.add_breakpoint = cortex_m_add_breakpoint,
.remove_breakpoint = cortex_m_remove_breakpoint,
.add_watchpoint = cortex_m_add_watchpoint,
.remove_watchpoint = cortex_m_remove_watchpoint,
.hit_watchpoint = cortex_m_hit_watchpoint,
.commands = cortex_m_command_handlers,
.target_create = cortex_m_target_create,
.target_jim_configure = adiv5_jim_configure,
.init_target = cortex_m_init_target,
.examine = cortex_m_examine,
.deinit_target = cortex_m_deinit_target,
.profiling = cortex_m_profiling,
};