openocd/src/target/embeddedice.c

651 lines
17 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2007-2010 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "embeddedice.h"
#include "register.h"
#include <helper/time_support.h>
/**
* @file
*
* This provides lowlevel glue to the EmbeddedICE (or EmbeddedICE-RT)
* module found on scan chain 2 in ARM7, ARM9, and some other families
* of ARM cores. The module is called "EmbeddedICE-RT" if it has
* monitor mode support.
*
* EmbeddedICE provides basic watchpoint/breakpoint hardware and a Debug
* Communications Channel (DCC) used to read or write 32-bit words to
* OpenOCD-aware code running on the target CPU.
* Newer modules also include vector catch hardware. Some versions
* support hardware single-stepping, "monitor mode" debug (which is not
* currently supported by OpenOCD), or extended reporting on why the
* core entered debug mode.
*/
static int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf);
/*
* From: ARM9E-S TRM, DDI 0165, table C-4 (and similar, for other cores)
*/
static const struct {
const char *name;
unsigned short addr;
unsigned short width;
} eice_regs[] = {
[EICE_DBG_CTRL] = {
.name = "debug_ctrl",
.addr = 0,
/* width is assigned based on EICE version */
},
[EICE_DBG_STAT] = {
.name = "debug_status",
.addr = 1,
/* width is assigned based on EICE version */
},
[EICE_COMMS_CTRL] = {
.name = "comms_ctrl",
.addr = 4,
.width = 6,
},
[EICE_COMMS_DATA] = {
.name = "comms_data",
.addr = 5,
.width = 32,
},
[EICE_W0_ADDR_VALUE] = {
.name = "watch_0_addr_value",
.addr = 8,
.width = 32,
},
[EICE_W0_ADDR_MASK] = {
.name = "watch_0_addr_mask",
.addr = 9,
.width = 32,
},
[EICE_W0_DATA_VALUE] = {
.name = "watch_0_data_value",
.addr = 10,
.width = 32,
},
[EICE_W0_DATA_MASK] = {
.name = "watch_0_data_mask",
.addr = 11,
.width = 32,
},
[EICE_W0_CONTROL_VALUE] = {
.name = "watch_0_control_value",
.addr = 12,
.width = 9,
},
[EICE_W0_CONTROL_MASK] = {
.name = "watch_0_control_mask",
.addr = 13,
.width = 8,
},
[EICE_W1_ADDR_VALUE] = {
.name = "watch_1_addr_value",
.addr = 16,
.width = 32,
},
[EICE_W1_ADDR_MASK] = {
.name = "watch_1_addr_mask",
.addr = 17,
.width = 32,
},
[EICE_W1_DATA_VALUE] = {
.name = "watch_1_data_value",
.addr = 18,
.width = 32,
},
[EICE_W1_DATA_MASK] = {
.name = "watch_1_data_mask",
.addr = 19,
.width = 32,
},
[EICE_W1_CONTROL_VALUE] = {
.name = "watch_1_control_value",
.addr = 20,
.width = 9,
},
[EICE_W1_CONTROL_MASK] = {
.name = "watch_1_control_mask",
.addr = 21,
.width = 8,
},
/* vector_catch isn't always present */
[EICE_VEC_CATCH] = {
.name = "vector_catch",
.addr = 2,
.width = 8,
},
};
static int embeddedice_get_reg(struct reg *reg)
{
int retval = embeddedice_read_reg(reg);
if (retval != ERROR_OK) {
LOG_ERROR("error queueing EmbeddedICE register read");
return retval;
}
retval = jtag_execute_queue();
if (retval != ERROR_OK)
LOG_ERROR("EmbeddedICE register read failed");
return retval;
}
static const struct reg_arch_type eice_reg_type = {
.get = embeddedice_get_reg,
.set = embeddedice_set_reg_w_exec,
};
/**
* Probe EmbeddedICE module and set up local records of its registers.
* Different versions of the modules have different capabilities, such as
* hardware support for vector_catch, single stepping, and monitor mode.
*/
struct reg_cache *embeddedice_build_reg_cache(struct target *target,
struct arm7_9_common *arm7_9)
{
int retval;
struct reg_cache *reg_cache = malloc(sizeof(struct reg_cache));
struct reg *reg_list = NULL;
struct embeddedice_reg *arch_info = NULL;
struct arm_jtag *jtag_info = &arm7_9->jtag_info;
int num_regs = ARRAY_SIZE(eice_regs);
int i;
int eice_version = 0;
/* vector_catch isn't always present */
if (!arm7_9->has_vector_catch)
num_regs--;
/* the actual registers are kept in two arrays */
reg_list = calloc(num_regs, sizeof(struct reg));
arch_info = calloc(num_regs, sizeof(struct embeddedice_reg));
/* fill in values for the reg cache */
reg_cache->name = "EmbeddedICE registers";
reg_cache->next = NULL;
reg_cache->reg_list = reg_list;
reg_cache->num_regs = num_regs;
/* FIXME the second watchpoint unit on Feroceon and Dragonite
* seems not to work ... we should have a way to not set up
* its four registers here!
*/
/* set up registers */
for (i = 0; i < num_regs; i++) {
reg_list[i].name = eice_regs[i].name;
reg_list[i].size = eice_regs[i].width;
reg_list[i].dirty = false;
reg_list[i].valid = false;
reg_list[i].value = calloc(1, 4);
reg_list[i].arch_info = &arch_info[i];
reg_list[i].type = &eice_reg_type;
arch_info[i].addr = eice_regs[i].addr;
arch_info[i].jtag_info = jtag_info;
}
/* identify EmbeddedICE version by reading DCC control register */
embeddedice_read_reg(&reg_list[EICE_COMMS_CTRL]);
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
for (i = 0; i < num_regs; i++)
free(reg_list[i].value);
free(reg_list);
free(reg_cache);
free(arch_info);
return NULL;
}
eice_version = buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 28, 4);
LOG_INFO("Embedded ICE version %d", eice_version);
switch (eice_version) {
case 1:
/* ARM7TDMI r3, ARM7TDMI-S r3
*
* REVISIT docs say ARM7TDMI-S r4 uses version 1 but
* that it has 6-bit CTRL and 5-bit STAT... doc bug?
* ARM7TDMI r4 docs say EICE v4.
*/
reg_list[EICE_DBG_CTRL].size = 3;
reg_list[EICE_DBG_STAT].size = 5;
break;
case 2:
/* ARM9TDMI */
reg_list[EICE_DBG_CTRL].size = 4;
reg_list[EICE_DBG_STAT].size = 5;
arm7_9->has_single_step = 1;
break;
case 3:
LOG_ERROR("EmbeddedICE v%d handling might be broken",
eice_version);
reg_list[EICE_DBG_CTRL].size = 6;
reg_list[EICE_DBG_STAT].size = 5;
arm7_9->has_single_step = 1;
arm7_9->has_monitor_mode = 1;
break;
case 4:
/* ARM7TDMI r4 */
reg_list[EICE_DBG_CTRL].size = 6;
reg_list[EICE_DBG_STAT].size = 5;
arm7_9->has_monitor_mode = 1;
break;
case 5:
/* ARM9E-S rev 1 */
reg_list[EICE_DBG_CTRL].size = 6;
reg_list[EICE_DBG_STAT].size = 5;
arm7_9->has_single_step = 1;
arm7_9->has_monitor_mode = 1;
break;
case 6:
/* ARM7EJ-S, ARM9E-S rev 2, ARM9EJ-S */
reg_list[EICE_DBG_CTRL].size = 6;
reg_list[EICE_DBG_STAT].size = 10;
/* DBG_STAT has MOE bits */
arm7_9->has_monitor_mode = 1;
break;
case 7:
LOG_ERROR("EmbeddedICE v%d handling might be broken",
eice_version);
reg_list[EICE_DBG_CTRL].size = 6;
reg_list[EICE_DBG_STAT].size = 5;
arm7_9->has_monitor_mode = 1;
break;
default:
/*
* The Feroceon implementation has the version number
* in some unusual bits. Let feroceon.c validate it
* and do the appropriate setup itself.
*/
if (strcmp(target_type_name(target), "feroceon") == 0 ||
strcmp(target_type_name(target), "dragonite") == 0)
break;
LOG_ERROR("unknown EmbeddedICE version "
"(comms ctrl: 0x%8.8" PRIx32 ")",
buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 0, 32));
}
/* On Feroceon and Dragonite the second unit is seemingly missing. */
LOG_INFO("%s: hardware has %d breakpoint/watchpoint unit%s",
target_name(target), arm7_9->wp_available_max,
(arm7_9->wp_available_max != 1) ? "s" : "");
return reg_cache;
}
/**
* Free all memory allocated for EmbeddedICE register cache
*/
void embeddedice_free_reg_cache(struct reg_cache *reg_cache)
{
if (!reg_cache)
return;
for (unsigned int i = 0; i < reg_cache->num_regs; i++)
free(reg_cache->reg_list[i].value);
free(reg_cache->reg_list[0].arch_info);
free(reg_cache->reg_list);
free(reg_cache);
}
/**
* Initialize EmbeddedICE module, if needed.
*/
int embeddedice_setup(struct target *target)
{
int retval;
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
/* Explicitly disable monitor mode. For now we only support halting
* debug ... we don't know how to talk with a resident debug monitor
* that manages break requests. ARM's "Angel Debug Monitor" is one
* common example of such code.
*/
if (arm7_9->has_monitor_mode) {
struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
embeddedice_read_reg(dbg_ctrl);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
buf_set_u32(dbg_ctrl->value, 4, 1, 0);
embeddedice_set_reg_w_exec(dbg_ctrl, dbg_ctrl->value);
}
return jtag_execute_queue();
}
/**
* Queue a read for an EmbeddedICE register into the register cache,
* optionally checking the value read.
* Note that at this level, all registers are 32 bits wide.
*/
int embeddedice_read_reg_w_check(struct reg *reg,
uint8_t *check_value, uint8_t *check_mask)
{
struct embeddedice_reg *ice_reg = reg->arch_info;
uint8_t reg_addr = ice_reg->addr & 0x1f;
struct scan_field fields[3];
uint8_t field1_out[1];
uint8_t field2_out[1];
int retval;
retval = arm_jtag_scann(ice_reg->jtag_info, 0x2, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
retval = arm_jtag_set_instr(ice_reg->jtag_info->tap,
ice_reg->jtag_info->intest_instr, NULL, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
/* bits 31:0 -- data (ignored here) */
fields[0].num_bits = 32;
fields[0].out_value = reg->value;
fields[0].in_value = NULL;
fields[0].check_value = NULL;
fields[0].check_mask = NULL;
/* bits 36:32 -- register */
fields[1].num_bits = 5;
fields[1].out_value = field1_out;
field1_out[0] = reg_addr;
fields[1].in_value = NULL;
fields[1].check_value = NULL;
fields[1].check_mask = NULL;
/* bit 37 -- 0/read */
fields[2].num_bits = 1;
fields[2].out_value = field2_out;
field2_out[0] = 0;
fields[2].in_value = NULL;
fields[2].check_value = NULL;
fields[2].check_mask = NULL;
/* traverse Update-DR, setting address for the next read */
jtag_add_dr_scan(ice_reg->jtag_info->tap, 3, fields, TAP_IDLE);
/* bits 31:0 -- the data we're reading (and maybe checking) */
fields[0].in_value = reg->value;
fields[0].check_value = check_value;
fields[0].check_mask = check_mask;
/* when reading the DCC data register, leaving the address field set to
* EICE_COMMS_DATA would read the register twice
* reading the control register is safe
*/
field1_out[0] = eice_regs[EICE_COMMS_CTRL].addr;
/* traverse Update-DR, reading but with no other side effects */
jtag_add_dr_scan_check(ice_reg->jtag_info->tap, 3, fields, TAP_IDLE);
return ERROR_OK;
}
/**
* Receive a block of size 32-bit words from the DCC.
* We assume the target is always going to be fast enough (relative to
* the JTAG clock) that the debugger won't need to poll the handshake
* bit. The JTAG clock is usually at least six times slower than the
* functional clock, so the 50+ JTAG clocks needed to receive the word
* allow hundreds of instruction cycles (per word) in the target.
*/
int embeddedice_receive(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
{
struct scan_field fields[3];
uint8_t field1_out[1];
uint8_t field2_out[1];
int retval;
retval = arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
fields[0].num_bits = 32;
fields[0].out_value = NULL;
fields[0].in_value = NULL;
fields[1].num_bits = 5;
fields[1].out_value = field1_out;
field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
fields[1].in_value = NULL;
fields[2].num_bits = 1;
fields[2].out_value = field2_out;
field2_out[0] = 0;
fields[2].in_value = NULL;
jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
while (size > 0) {
/* when reading the last item, set the register address to the DCC control reg,
* to avoid reading additional data from the DCC data reg
*/
if (size == 1)
field1_out[0] = eice_regs[EICE_COMMS_CTRL].addr;
fields[0].in_value = (uint8_t *)data;
jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)data);
data++;
size--;
}
return jtag_execute_queue();
}
/**
* Queue a read for an EmbeddedICE register into the register cache,
* not checking the value read.
*/
int embeddedice_read_reg(struct reg *reg)
{
return embeddedice_read_reg_w_check(reg, NULL, NULL);
}
/**
* Queue a write for an EmbeddedICE register, updating the register cache.
* Uses embeddedice_write_reg().
*/
void embeddedice_set_reg(struct reg *reg, uint32_t value)
{
embeddedice_write_reg(reg, value);
buf_set_u32(reg->value, 0, reg->size, value);
reg->valid = true;
reg->dirty = false;
}
/**
* Write an EmbeddedICE register, updating the register cache.
* Uses embeddedice_set_reg(); not queued.
*/
static int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf)
{
int retval;
embeddedice_set_reg(reg, buf_get_u32(buf, 0, reg->size));
retval = jtag_execute_queue();
if (retval != ERROR_OK)
LOG_ERROR("register write failed");
return retval;
}
/**
* Queue a write for an EmbeddedICE register, bypassing the register cache.
*/
void embeddedice_write_reg(struct reg *reg, uint32_t value)
{
struct embeddedice_reg *ice_reg = reg->arch_info;
LOG_DEBUG("%i: 0x%8.8" PRIx32 "", ice_reg->addr, value);
arm_jtag_scann(ice_reg->jtag_info, 0x2, TAP_IDLE);
arm_jtag_set_instr(ice_reg->jtag_info->tap, ice_reg->jtag_info->intest_instr, NULL, TAP_IDLE);
uint8_t reg_addr = ice_reg->addr & 0x1f;
embeddedice_write_reg_inner(ice_reg->jtag_info->tap, reg_addr, value);
}
/**
* Queue a write for an EmbeddedICE register, using cached value.
* Uses embeddedice_write_reg().
*/
void embeddedice_store_reg(struct reg *reg)
{
embeddedice_write_reg(reg, buf_get_u32(reg->value, 0, reg->size));
}
/**
* Send a block of size 32-bit words to the DCC.
* We assume the target is always going to be fast enough (relative to
* the JTAG clock) that the debugger won't need to poll the handshake
* bit. The JTAG clock is usually at least six times slower than the
* functional clock, so the 50+ JTAG clocks needed to receive the word
* allow hundreds of instruction cycles (per word) in the target.
*/
int embeddedice_send(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
{
struct scan_field fields[3];
uint8_t field0_out[4];
uint8_t field1_out[1];
uint8_t field2_out[1];
int retval;
retval = arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
fields[0].num_bits = 32;
fields[0].out_value = field0_out;
fields[0].in_value = NULL;
fields[1].num_bits = 5;
fields[1].out_value = field1_out;
field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
fields[1].in_value = NULL;
fields[2].num_bits = 1;
fields[2].out_value = field2_out;
field2_out[0] = 1;
fields[2].in_value = NULL;
while (size > 0) {
buf_set_u32(field0_out, 0, 32, *data);
jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
data++;
size--;
}
/* call to jtag_execute_queue() intentionally omitted */
return ERROR_OK;
}
/**
* Poll DCC control register until read or write handshake completes.
*/
int embeddedice_handshake(struct arm_jtag *jtag_info, int hsbit, uint32_t timeout)
{
struct scan_field fields[3];
uint8_t field0_in[4];
uint8_t field1_out[1];
uint8_t field2_out[1];
int retval;
uint32_t hsact;
struct timeval now;
struct timeval timeout_end;
if (hsbit == EICE_COMM_CTRL_WBIT)
hsact = 1;
else if (hsbit == EICE_COMM_CTRL_RBIT)
hsact = 0;
else {
LOG_ERROR("Invalid arguments");
return ERROR_COMMAND_SYNTAX_ERROR;
}
retval = arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
fields[0].num_bits = 32;
fields[0].out_value = NULL;
fields[0].in_value = field0_in;
fields[1].num_bits = 5;
fields[1].out_value = field1_out;
field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
fields[1].in_value = NULL;
fields[2].num_bits = 1;
fields[2].out_value = field2_out;
field2_out[0] = 0;
fields[2].in_value = NULL;
jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
gettimeofday(&timeout_end, NULL);
timeval_add_time(&timeout_end, 0, timeout * 1000);
do {
jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
if (buf_get_u32(field0_in, hsbit, 1) == hsact)
return ERROR_OK;
gettimeofday(&now, NULL);
} while (timeval_compare(&now, &timeout_end) <= 0);
LOG_ERROR("embeddedice handshake timeout");
return ERROR_TARGET_TIMEOUT;
}
/**
* This is an inner loop of the open loop DCC write of data to target
*/
void embeddedice_write_dcc(struct jtag_tap *tap,
int reg_addr, const uint8_t *buffer, int little, int count)
{
int i;
for (i = 0; i < count; i++) {
embeddedice_write_reg_inner(tap, reg_addr,
fast_target_buffer_get_u32(buffer, little));
buffer += 4;
}
}