openocd/src/target/etm.c

2100 lines
55 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "arm.h"
#include "etm.h"
#include "etb.h"
#include "image.h"
#include "arm_disassembler.h"
#include "register.h"
#include "etm_dummy.h"
/*
* ARM "Embedded Trace Macrocell" (ETM) support -- direct JTAG access.
*
* ETM modules collect instruction and/or data trace information, compress
* it, and transfer it to a debugging host through either a (buffered) trace
* port (often a 38-pin Mictor connector) or an Embedded Trace Buffer (ETB).
*
* There are several generations of these modules. Original versions have
* JTAG access through a dedicated scan chain. Recent versions have added
* access via coprocessor instructions, memory addressing, and the ARM Debug
* Interface v5 (ADIv5); and phased out direct JTAG access.
*
* This code supports up to the ETMv1.3 architecture, as seen in ETM9 and
* most common ARM9 systems. Note: "CoreSight ETM9" implements ETMv3.2,
* implying non-JTAG connectivity options.
*
* Relevant documentation includes:
* ARM DDI 0157G ... ETM9 (r2p2) Technical Reference Manual
* ARM DDI 0315B ... CoreSight ETM9 (r0p1) Technical Reference Manual
* ARM IHI 0014O ... Embedded Trace Macrocell, Architecture Specification
*/
enum {
RO, /* read/only */
WO, /* write/only */
RW, /* read/write */
};
struct etm_reg_info {
uint8_t addr;
uint8_t size; /* low-N of 32 bits */
uint8_t mode; /* RO, WO, RW */
uint8_t bcd_vers; /* 1.0, 2.0, etc */
const char *name;
};
/*
* Registers 0..0x7f are JTAG-addressable using scanchain 6.
* (Or on some processors, through coprocessor operations.)
* Newer versions of ETM make some W/O registers R/W, and
* provide definitions for some previously-unused bits.
*/
/* core registers used to version/configure the ETM */
static const struct etm_reg_info etm_core[] = {
/* NOTE: we "know" the order here ... */
{ ETM_CONFIG, 32, RO, 0x10, "ETM_config", },
{ ETM_ID, 32, RO, 0x20, "ETM_id", },
};
/* basic registers that are always there given the right ETM version */
static const struct etm_reg_info etm_basic[] = {
/* ETM Trace Registers */
{ ETM_CTRL, 32, RW, 0x10, "ETM_ctrl", },
{ ETM_TRIG_EVENT, 17, WO, 0x10, "ETM_trig_event", },
{ ETM_ASIC_CTRL, 8, WO, 0x10, "ETM_asic_ctrl", },
{ ETM_STATUS, 3, RO, 0x11, "ETM_status", },
{ ETM_SYS_CONFIG, 9, RO, 0x12, "ETM_sys_config", },
/* TraceEnable configuration */
{ ETM_TRACE_RESOURCE_CTRL, 32, WO, 0x12, "ETM_trace_resource_ctrl", },
{ ETM_TRACE_EN_CTRL2, 16, WO, 0x12, "ETM_trace_en_ctrl2", },
{ ETM_TRACE_EN_EVENT, 17, WO, 0x10, "ETM_trace_en_event", },
{ ETM_TRACE_EN_CTRL1, 26, WO, 0x10, "ETM_trace_en_ctrl1", },
/* ViewData configuration (data trace) */
{ ETM_VIEWDATA_EVENT, 17, WO, 0x10, "ETM_viewdata_event", },
{ ETM_VIEWDATA_CTRL1, 32, WO, 0x10, "ETM_viewdata_ctrl1", },
{ ETM_VIEWDATA_CTRL2, 32, WO, 0x10, "ETM_viewdata_ctrl2", },
{ ETM_VIEWDATA_CTRL3, 17, WO, 0x10, "ETM_viewdata_ctrl3", },
/* REVISIT exclude VIEWDATA_CTRL2 when it's not there */
{ 0x78, 12, WO, 0x20, "ETM_sync_freq", },
{ 0x7a, 22, RO, 0x31, "ETM_config_code_ext", },
{ 0x7b, 32, WO, 0x31, "ETM_ext_input_select", },
{ 0x7c, 32, WO, 0x34, "ETM_trace_start_stop", },
{ 0x7d, 8, WO, 0x34, "ETM_behavior_control", },
};
static const struct etm_reg_info etm_fifofull[] = {
/* FIFOFULL configuration */
{ ETM_FIFOFULL_REGION, 25, WO, 0x10, "ETM_fifofull_region", },
{ ETM_FIFOFULL_LEVEL, 8, WO, 0x10, "ETM_fifofull_level", },
};
static const struct etm_reg_info etm_addr_comp[] = {
/* Address comparator register pairs */
#define ADDR_COMPARATOR(i) \
{ ETM_ADDR_COMPARATOR_VALUE + (i) - 1, 32, WO, 0x10, \
"ETM_addr_" #i "_comparator_value", }, \
{ ETM_ADDR_ACCESS_TYPE + (i) - 1, 7, WO, 0x10, \
"ETM_addr_" #i "_access_type", }
ADDR_COMPARATOR(1),
ADDR_COMPARATOR(2),
ADDR_COMPARATOR(3),
ADDR_COMPARATOR(4),
ADDR_COMPARATOR(5),
ADDR_COMPARATOR(6),
ADDR_COMPARATOR(7),
ADDR_COMPARATOR(8),
ADDR_COMPARATOR(9),
ADDR_COMPARATOR(10),
ADDR_COMPARATOR(11),
ADDR_COMPARATOR(12),
ADDR_COMPARATOR(13),
ADDR_COMPARATOR(14),
ADDR_COMPARATOR(15),
ADDR_COMPARATOR(16),
{ 0, 0, 0, 0, NULL }
#undef ADDR_COMPARATOR
};
static const struct etm_reg_info etm_data_comp[] = {
/* Data Value Comparators (NOTE: odd addresses are reserved) */
#define DATA_COMPARATOR(i) \
{ ETM_DATA_COMPARATOR_VALUE + 2*(i) - 1, 32, WO, 0x10, \
"ETM_data_" #i "_comparator_value", }, \
{ ETM_DATA_COMPARATOR_MASK + 2*(i) - 1, 32, WO, 0x10, \
"ETM_data_" #i "_comparator_mask", }
DATA_COMPARATOR(1),
DATA_COMPARATOR(2),
DATA_COMPARATOR(3),
DATA_COMPARATOR(4),
DATA_COMPARATOR(5),
DATA_COMPARATOR(6),
DATA_COMPARATOR(7),
DATA_COMPARATOR(8),
{ 0, 0, 0, 0, NULL }
#undef DATA_COMPARATOR
};
static const struct etm_reg_info etm_counters[] = {
#define ETM_COUNTER(i) \
{ ETM_COUNTER_RELOAD_VALUE + (i) - 1, 16, WO, 0x10, \
"ETM_counter_" #i "_reload_value", }, \
{ ETM_COUNTER_ENABLE + (i) - 1, 18, WO, 0x10, \
"ETM_counter_" #i "_enable", }, \
{ ETM_COUNTER_RELOAD_EVENT + (i) - 1, 17, WO, 0x10, \
"ETM_counter_" #i "_reload_event", }, \
{ ETM_COUNTER_VALUE + (i) - 1, 16, RO, 0x10, \
"ETM_counter_" #i "_value", }
ETM_COUNTER(1),
ETM_COUNTER(2),
ETM_COUNTER(3),
ETM_COUNTER(4),
{ 0, 0, 0, 0, NULL }
#undef ETM_COUNTER
};
static const struct etm_reg_info etm_sequencer[] = {
#define ETM_SEQ(i) \
{ ETM_SEQUENCER_EVENT + (i), 17, WO, 0x10, \
"ETM_sequencer_event" #i, }
ETM_SEQ(0), /* 1->2 */
ETM_SEQ(1), /* 2->1 */
ETM_SEQ(2), /* 2->3 */
ETM_SEQ(3), /* 3->1 */
ETM_SEQ(4), /* 3->2 */
ETM_SEQ(5), /* 1->3 */
#undef ETM_SEQ
/* 0x66 reserved */
{ ETM_SEQUENCER_STATE, 2, RO, 0x10, "ETM_sequencer_state", },
};
static const struct etm_reg_info etm_outputs[] = {
#define ETM_OUTPUT(i) \
{ ETM_EXTERNAL_OUTPUT + (i) - 1, 17, WO, 0x10, \
"ETM_external_output" #i, }
ETM_OUTPUT(1),
ETM_OUTPUT(2),
ETM_OUTPUT(3),
ETM_OUTPUT(4),
{ 0, 0, 0, 0, NULL }
#undef ETM_OUTPUT
};
#if 0
/* registers from 0x6c..0x7f were added after ETMv1.3 */
/* Context ID Comparators */
{ 0x6c, 32, RO, 0x20, "ETM_contextid_comparator_value1", }
{ 0x6d, 32, RO, 0x20, "ETM_contextid_comparator_value2", }
{ 0x6e, 32, RO, 0x20, "ETM_contextid_comparator_value3", }
{ 0x6f, 32, RO, 0x20, "ETM_contextid_comparator_mask", }
#endif
static int etm_get_reg(struct reg *reg);
static int etm_read_reg_w_check(struct reg *reg,
uint8_t *check_value, uint8_t *check_mask);
static int etm_register_user_commands(struct command_context *cmd_ctx);
static int etm_set_reg_w_exec(struct reg *reg, uint8_t *buf);
static int etm_write_reg(struct reg *reg, uint32_t value);
static const struct reg_arch_type etm_scan6_type = {
.get = etm_get_reg,
.set = etm_set_reg_w_exec,
};
/* Look up register by ID ... most ETM instances only
* support a subset of the possible registers.
*/
static struct reg *etm_reg_lookup(struct etm_context *etm_ctx, unsigned id)
{
struct reg_cache *cache = etm_ctx->reg_cache;
unsigned i;
for (i = 0; i < cache->num_regs; i++) {
struct etm_reg *reg = cache->reg_list[i].arch_info;
if (reg->reg_info->addr == id)
return &cache->reg_list[i];
}
/* caller asking for nonexistent register is a bug!
* REVISIT say which of the N targets was involved */
LOG_ERROR("ETM: register 0x%02x not available", id);
return NULL;
}
static void etm_reg_add(unsigned bcd_vers, struct arm_jtag *jtag_info,
struct reg_cache *cache, struct etm_reg *ereg,
const struct etm_reg_info *r, unsigned nreg)
{
struct reg *reg = cache->reg_list;
reg += cache->num_regs;
ereg += cache->num_regs;
/* add up to "nreg" registers from "r", if supported by this
* version of the ETM, to the specified cache.
*/
for (; nreg--; r++) {
/* No more registers to add */
if (!r->size) {
LOG_ERROR("etm_reg_add is requested to add non-existing registers, ETM config might be bogus");
return;
}
/* this ETM may be too old to have some registers */
if (r->bcd_vers > bcd_vers)
continue;
reg->name = r->name;
reg->size = r->size;
reg->value = ereg->value;
reg->arch_info = ereg;
reg->type = &etm_scan6_type;
reg++;
cache->num_regs++;
ereg->reg_info = r;
ereg->jtag_info = jtag_info;
ereg++;
}
}
struct reg_cache *etm_build_reg_cache(struct target *target,
struct arm_jtag *jtag_info, struct etm_context *etm_ctx)
{
struct reg_cache *reg_cache = malloc(sizeof(struct reg_cache));
struct reg *reg_list = NULL;
struct etm_reg *arch_info = NULL;
unsigned bcd_vers, config;
/* the actual registers are kept in two arrays */
reg_list = calloc(128, sizeof(struct reg));
arch_info = calloc(128, sizeof(struct etm_reg));
if (!reg_cache || !reg_list || !arch_info) {
LOG_ERROR("No memory");
goto fail;
}
/* fill in values for the reg cache */
reg_cache->name = "etm registers";
reg_cache->next = NULL;
reg_cache->reg_list = reg_list;
reg_cache->num_regs = 0;
/* add ETM_CONFIG, then parse its values to see
* which other registers exist in this ETM
*/
etm_reg_add(0x10, jtag_info, reg_cache, arch_info,
etm_core, 1);
etm_get_reg(reg_list);
etm_ctx->config = buf_get_u32(arch_info->value, 0, 32);
config = etm_ctx->config;
/* figure ETM version then add base registers */
if (config & (1 << 31)) {
LOG_WARNING("ETMv2+ support is incomplete");
/* REVISIT more registers may exist; they may now be
* readable; more register bits have defined meanings;
* don't presume trace start/stop support is present;
* and include any context ID comparator registers.
*/
etm_reg_add(0x20, jtag_info, reg_cache, arch_info,
etm_core + 1, 1);
etm_get_reg(reg_list + 1);
etm_ctx->id = buf_get_u32(
arch_info[1].value, 0, 32);
LOG_DEBUG("ETM ID: %08x", (unsigned) etm_ctx->id);
bcd_vers = 0x10 + (((etm_ctx->id) >> 4) & 0xff);
} else {
switch (config >> 28) {
case 7:
case 5:
case 3:
bcd_vers = 0x13;
break;
case 4:
case 2:
bcd_vers = 0x12;
break;
case 1:
bcd_vers = 0x11;
break;
case 0:
bcd_vers = 0x10;
break;
default:
LOG_WARNING("Bad ETMv1 protocol %d", config >> 28);
goto fail;
}
}
etm_ctx->bcd_vers = bcd_vers;
LOG_INFO("ETM v%d.%d", bcd_vers >> 4, bcd_vers & 0xf);
etm_reg_add(bcd_vers, jtag_info, reg_cache, arch_info,
etm_basic, ARRAY_SIZE(etm_basic));
/* address and data comparators; counters; outputs */
etm_reg_add(bcd_vers, jtag_info, reg_cache, arch_info,
etm_addr_comp, 4 * (0x0f & (config >> 0)));
etm_reg_add(bcd_vers, jtag_info, reg_cache, arch_info,
etm_data_comp, 2 * (0x0f & (config >> 4)));
etm_reg_add(bcd_vers, jtag_info, reg_cache, arch_info,
etm_counters, 4 * (0x07 & (config >> 13)));
etm_reg_add(bcd_vers, jtag_info, reg_cache, arch_info,
etm_outputs, (0x07 & (config >> 20)));
/* FIFOFULL presence is optional
* REVISIT for ETMv1.2 and later, don't bother adding this
* unless ETM_SYS_CONFIG says it's also *supported* ...
*/
if (config & (1 << 23))
etm_reg_add(bcd_vers, jtag_info, reg_cache, arch_info,
etm_fifofull, ARRAY_SIZE(etm_fifofull));
/* sequencer is optional (for state-dependant triggering) */
if (config & (1 << 16))
etm_reg_add(bcd_vers, jtag_info, reg_cache, arch_info,
etm_sequencer, ARRAY_SIZE(etm_sequencer));
/* REVISIT could realloc and likely save half the memory
* in the two chunks we allocated...
*/
/* the ETM might have an ETB connected */
if (strcmp(etm_ctx->capture_driver->name, "etb") == 0) {
struct etb *etb = etm_ctx->capture_driver_priv;
if (!etb) {
LOG_ERROR("etb selected as etm capture driver, but no ETB configured");
goto fail;
}
reg_cache->next = etb_build_reg_cache(etb);
etb->reg_cache = reg_cache->next;
}
etm_ctx->reg_cache = reg_cache;
return reg_cache;
fail:
free(reg_cache);
free(reg_list);
free(arch_info);
return NULL;
}
static int etm_read_reg(struct reg *reg)
{
return etm_read_reg_w_check(reg, NULL, NULL);
}
static int etm_store_reg(struct reg *reg)
{
return etm_write_reg(reg, buf_get_u32(reg->value, 0, reg->size));
}
int etm_setup(struct target *target)
{
int retval;
uint32_t etm_ctrl_value;
struct arm *arm = target_to_arm(target);
struct etm_context *etm_ctx = arm->etm;
struct reg *etm_ctrl_reg;
etm_ctrl_reg = etm_reg_lookup(etm_ctx, ETM_CTRL);
if (!etm_ctrl_reg)
return ERROR_OK;
/* initialize some ETM control register settings */
etm_get_reg(etm_ctrl_reg);
etm_ctrl_value = buf_get_u32(etm_ctrl_reg->value, 0, 32);
/* clear the ETM powerdown bit (0) */
etm_ctrl_value &= ~ETM_CTRL_POWERDOWN;
/* configure port width (21,6:4), mode (13,17:16) and
* for older modules clocking (13)
*/
etm_ctrl_value = (etm_ctrl_value
& ~ETM_PORT_WIDTH_MASK
& ~ETM_PORT_MODE_MASK
& ~ETM_CTRL_DBGRQ
& ~ETM_PORT_CLOCK_MASK)
| etm_ctx->control;
buf_set_u32(etm_ctrl_reg->value, 0, 32, etm_ctrl_value);
etm_store_reg(etm_ctrl_reg);
etm_ctx->control = etm_ctrl_value;
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
/* REVISIT for ETMv3.0 and later, read ETM_sys_config to
* verify that those width and mode settings are OK ...
*/
retval = etm_ctx->capture_driver->init(etm_ctx);
if (retval != ERROR_OK) {
LOG_ERROR("ETM capture driver initialization failed");
return retval;
}
return ERROR_OK;
}
static int etm_get_reg(struct reg *reg)
{
int retval;
retval = etm_read_reg(reg);
if (retval != ERROR_OK) {
LOG_ERROR("BUG: error scheduling etm register read");
return retval;
}
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("register read failed");
return retval;
}
return ERROR_OK;
}
static int etm_read_reg_w_check(struct reg *reg,
uint8_t *check_value, uint8_t *check_mask)
{
struct etm_reg *etm_reg = reg->arch_info;
assert(etm_reg);
const struct etm_reg_info *r = etm_reg->reg_info;
uint8_t reg_addr = r->addr & 0x7f;
struct scan_field fields[3];
int retval;
if (etm_reg->reg_info->mode == WO) {
LOG_ERROR("BUG: can't read write-only register %s", r->name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
LOG_DEBUG("%s (%u)", r->name, reg_addr);
retval = arm_jtag_scann(etm_reg->jtag_info, 0x6, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
retval = arm_jtag_set_instr(etm_reg->jtag_info->tap,
etm_reg->jtag_info->intest_instr,
NULL,
TAP_IDLE);
if (retval != ERROR_OK)
return retval;
fields[0].num_bits = 32;
fields[0].out_value = reg->value;
fields[0].in_value = NULL;
fields[0].check_value = NULL;
fields[0].check_mask = NULL;
fields[1].num_bits = 7;
uint8_t temp1 = 0;
fields[1].out_value = &temp1;
buf_set_u32(&temp1, 0, 7, reg_addr);
fields[1].in_value = NULL;
fields[1].check_value = NULL;
fields[1].check_mask = NULL;
fields[2].num_bits = 1;
uint8_t temp2 = 0;
fields[2].out_value = &temp2;
buf_set_u32(&temp2, 0, 1, 0);
fields[2].in_value = NULL;
fields[2].check_value = NULL;
fields[2].check_mask = NULL;
jtag_add_dr_scan(etm_reg->jtag_info->tap, 3, fields, TAP_IDLE);
fields[0].in_value = reg->value;
fields[0].check_value = check_value;
fields[0].check_mask = check_mask;
jtag_add_dr_scan_check(etm_reg->jtag_info->tap, 3, fields, TAP_IDLE);
return ERROR_OK;
}
static int etm_set_reg(struct reg *reg, uint32_t value)
{
int retval = etm_write_reg(reg, value);
if (retval != ERROR_OK) {
LOG_ERROR("BUG: error scheduling etm register write");
return retval;
}
buf_set_u32(reg->value, 0, reg->size, value);
reg->valid = 1;
reg->dirty = 0;
return ERROR_OK;
}
static int etm_set_reg_w_exec(struct reg *reg, uint8_t *buf)
{
int retval;
etm_set_reg(reg, buf_get_u32(buf, 0, reg->size));
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("register write failed");
return retval;
}
return ERROR_OK;
}
static int etm_write_reg(struct reg *reg, uint32_t value)
{
struct etm_reg *etm_reg = reg->arch_info;
const struct etm_reg_info *r = etm_reg->reg_info;
uint8_t reg_addr = r->addr & 0x7f;
struct scan_field fields[3];
int retval;
if (etm_reg->reg_info->mode == RO) {
LOG_ERROR("BUG: can't write read--only register %s", r->name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
LOG_DEBUG("%s (%u): 0x%8.8" PRIx32 "", r->name, reg_addr, value);
retval = arm_jtag_scann(etm_reg->jtag_info, 0x6, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
retval = arm_jtag_set_instr(etm_reg->jtag_info->tap,
etm_reg->jtag_info->intest_instr,
NULL,
TAP_IDLE);
if (retval != ERROR_OK)
return retval;
fields[0].num_bits = 32;
uint8_t tmp1[4];
fields[0].out_value = tmp1;
buf_set_u32(tmp1, 0, 32, value);
fields[0].in_value = NULL;
fields[1].num_bits = 7;
uint8_t tmp2 = 0;
fields[1].out_value = &tmp2;
buf_set_u32(&tmp2, 0, 7, reg_addr);
fields[1].in_value = NULL;
fields[2].num_bits = 1;
uint8_t tmp3 = 0;
fields[2].out_value = &tmp3;
buf_set_u32(&tmp3, 0, 1, 1);
fields[2].in_value = NULL;
jtag_add_dr_scan(etm_reg->jtag_info->tap, 3, fields, TAP_IDLE);
return ERROR_OK;
}
/* ETM trace analysis functionality */
static struct etm_capture_driver *etm_capture_drivers[] = {
&etb_capture_driver,
&etm_dummy_capture_driver,
NULL
};
static int etm_read_instruction(struct etm_context *ctx, struct arm_instruction *instruction)
{
int section = -1;
size_t size_read;
uint32_t opcode;
int retval;
if (!ctx->image)
return ERROR_TRACE_IMAGE_UNAVAILABLE;
/* search for the section the current instruction belongs to */
for (unsigned int i = 0; i < ctx->image->num_sections; i++) {
if ((ctx->image->sections[i].base_address <= ctx->current_pc) &&
(ctx->image->sections[i].base_address + ctx->image->sections[i].size >
ctx->current_pc)) {
section = i;
break;
}
}
if (section == -1) {
/* current instruction couldn't be found in the image */
return ERROR_TRACE_INSTRUCTION_UNAVAILABLE;
}
if (ctx->core_state == ARM_STATE_ARM) {
uint8_t buf[4];
retval = image_read_section(ctx->image, section,
ctx->current_pc -
ctx->image->sections[section].base_address,
4, buf, &size_read);
if (retval != ERROR_OK) {
LOG_ERROR("error while reading instruction");
return ERROR_TRACE_INSTRUCTION_UNAVAILABLE;
}
opcode = target_buffer_get_u32(ctx->target, buf);
arm_evaluate_opcode(opcode, ctx->current_pc, instruction);
} else if (ctx->core_state == ARM_STATE_THUMB) {
uint8_t buf[2];
retval = image_read_section(ctx->image, section,
ctx->current_pc -
ctx->image->sections[section].base_address,
2, buf, &size_read);
if (retval != ERROR_OK) {
LOG_ERROR("error while reading instruction");
return ERROR_TRACE_INSTRUCTION_UNAVAILABLE;
}
opcode = target_buffer_get_u16(ctx->target, buf);
thumb_evaluate_opcode(opcode, ctx->current_pc, instruction);
} else if (ctx->core_state == ARM_STATE_JAZELLE) {
LOG_ERROR("BUG: tracing of jazelle code not supported");
return ERROR_FAIL;
} else {
LOG_ERROR("BUG: unknown core state encountered");
return ERROR_FAIL;
}
return ERROR_OK;
}
static int etmv1_next_packet(struct etm_context *ctx, uint8_t *packet, int apo)
{
while (ctx->data_index < ctx->trace_depth) {
/* if the caller specified an address packet offset, skip until the
* we reach the n-th cycle marked with tracesync */
if (apo > 0) {
if (ctx->trace_data[ctx->data_index].flags & ETMV1_TRACESYNC_CYCLE)
apo--;
if (apo > 0) {
ctx->data_index++;
ctx->data_half = 0;
}
continue;
}
/* no tracedata output during a TD cycle
* or in a trigger cycle */
if ((ctx->trace_data[ctx->data_index].pipestat == STAT_TD)
|| (ctx->trace_data[ctx->data_index].flags & ETMV1_TRIGGER_CYCLE)) {
ctx->data_index++;
ctx->data_half = 0;
continue;
}
/* FIXME there are more port widths than these... */
if ((ctx->control & ETM_PORT_WIDTH_MASK) == ETM_PORT_16BIT) {
if (ctx->data_half == 0) {
*packet = ctx->trace_data[ctx->data_index].packet & 0xff;
ctx->data_half = 1;
} else {
*packet = (ctx->trace_data[ctx->data_index].packet & 0xff00) >> 8;
ctx->data_half = 0;
ctx->data_index++;
}
} else if ((ctx->control & ETM_PORT_WIDTH_MASK) == ETM_PORT_8BIT) {
*packet = ctx->trace_data[ctx->data_index].packet & 0xff;
ctx->data_index++;
} else {
/* on a 4-bit port, a packet will be output during two consecutive cycles */
if (ctx->data_index > (ctx->trace_depth - 2))
return -1;
*packet = ctx->trace_data[ctx->data_index].packet & 0xf;
*packet |= (ctx->trace_data[ctx->data_index + 1].packet & 0xf) << 4;
ctx->data_index += 2;
}
return 0;
}
return -1;
}
static int etmv1_branch_address(struct etm_context *ctx)
{
int retval;
uint8_t packet;
int shift = 0;
int apo;
uint32_t i;
/* quit analysis if less than two cycles are left in the trace
* because we can't extract the APO */
if (ctx->data_index > (ctx->trace_depth - 2))
return -1;
/* a BE could be output during an APO cycle, skip the current
* and continue with the new one */
if (ctx->trace_data[ctx->pipe_index + 1].pipestat & 0x4)
return 1;
if (ctx->trace_data[ctx->pipe_index + 2].pipestat & 0x4)
return 2;
/* address packet offset encoded in the next two cycles' pipestat bits */
apo = ctx->trace_data[ctx->pipe_index + 1].pipestat & 0x3;
apo |= (ctx->trace_data[ctx->pipe_index + 2].pipestat & 0x3) << 2;
/* count number of tracesync cycles between current pipe_index and data_index
* i.e. the number of tracesyncs that data_index already passed by
* to subtract them from the APO */
for (i = ctx->pipe_index; i < ctx->data_index; i++) {
if (ctx->trace_data[ctx->pipe_index + 1].pipestat & ETMV1_TRACESYNC_CYCLE)
apo--;
}
/* extract up to four 7-bit packets */
do {
retval = etmv1_next_packet(ctx, &packet, (shift == 0) ? apo + 1 : 0);
if (retval != 0)
return -1;
ctx->last_branch &= ~(0x7f << shift);
ctx->last_branch |= (packet & 0x7f) << shift;
shift += 7;
} while ((packet & 0x80) && (shift < 28));
/* one last packet holding 4 bits of the address, plus the branch reason code */
if ((shift == 28) && (packet & 0x80)) {
retval = etmv1_next_packet(ctx, &packet, 0);
if (retval != 0)
return -1;
ctx->last_branch &= 0x0fffffff;
ctx->last_branch |= (packet & 0x0f) << 28;
ctx->last_branch_reason = (packet & 0x70) >> 4;
shift += 4;
} else
ctx->last_branch_reason = 0;
if (shift == 32)
ctx->pc_ok = 1;
/* if a full address was output, we might have branched into Jazelle state */
if ((shift == 32) && (packet & 0x80))
ctx->core_state = ARM_STATE_JAZELLE;
else {
/* if we didn't branch into Jazelle state, the current processor state is
* encoded in bit 0 of the branch target address */
if (ctx->last_branch & 0x1) {
ctx->core_state = ARM_STATE_THUMB;
ctx->last_branch &= ~0x1;
} else {
ctx->core_state = ARM_STATE_ARM;
ctx->last_branch &= ~0x3;
}
}
return 0;
}
static int etmv1_data(struct etm_context *ctx, int size, uint32_t *data)
{
int j;
uint8_t buf[4];
int retval;
for (j = 0; j < size; j++) {
retval = etmv1_next_packet(ctx, &buf[j], 0);
if (retval != 0)
return -1;
}
if (size == 8) {
LOG_ERROR("TODO: add support for 64-bit values");
return -1;
} else if (size == 4)
*data = target_buffer_get_u32(ctx->target, buf);
else if (size == 2)
*data = target_buffer_get_u16(ctx->target, buf);
else if (size == 1)
*data = buf[0];
else
return -1;
return 0;
}
static int etmv1_analyze_trace(struct etm_context *ctx, struct command_invocation *cmd)
{
int retval;
struct arm_instruction instruction;
/* read the trace data if it wasn't read already */
if (ctx->trace_depth == 0)
ctx->capture_driver->read_trace(ctx);
if (ctx->trace_depth == 0) {
command_print(cmd, "Trace is empty.");
return ERROR_OK;
}
/* start at the beginning of the captured trace */
ctx->pipe_index = 0;
ctx->data_index = 0;
ctx->data_half = 0;
/* neither the PC nor the data pointer are valid */
ctx->pc_ok = 0;
ctx->ptr_ok = 0;
while (ctx->pipe_index < ctx->trace_depth) {
uint8_t pipestat = ctx->trace_data[ctx->pipe_index].pipestat;
uint32_t next_pc = ctx->current_pc;
uint32_t old_data_index = ctx->data_index;
uint32_t old_data_half = ctx->data_half;
uint32_t old_index = ctx->pipe_index;
uint32_t last_instruction = ctx->last_instruction;
uint32_t cycles = 0;
int current_pc_ok = ctx->pc_ok;
if (ctx->trace_data[ctx->pipe_index].flags & ETMV1_TRIGGER_CYCLE)
command_print(cmd, "--- trigger ---");
/* instructions execute in IE/D or BE/D cycles */
if ((pipestat == STAT_IE) || (pipestat == STAT_ID))
ctx->last_instruction = ctx->pipe_index;
/* if we don't have a valid pc skip until we reach an indirect branch */
if ((!ctx->pc_ok) && (pipestat != STAT_BE)) {
ctx->pipe_index++;
continue;
}
/* any indirect branch could have interrupted instruction flow
* - the branch reason code could indicate a trace discontinuity
* - a branch to the exception vectors indicates an exception
*/
if ((pipestat == STAT_BE) || (pipestat == STAT_BD)) {
/* backup current data index, to be able to consume the branch address
* before examining data address and values
*/
old_data_index = ctx->data_index;
old_data_half = ctx->data_half;
ctx->last_instruction = ctx->pipe_index;
retval = etmv1_branch_address(ctx);
if (retval != 0) {
/* negative return value from etmv1_branch_address means we ran out of packets,
* quit analysing the trace */
if (retval < 0)
break;
/* a positive return values means the current branch was abandoned,
* and a new branch was encountered in cycle ctx->pipe_index + retval;
*/
LOG_WARNING(
"abandoned branch encountered, correctness of analysis uncertain");
ctx->pipe_index += retval;
continue;
}
/* skip over APO cycles */
ctx->pipe_index += 2;
switch (ctx->last_branch_reason) {
case 0x0: /* normal PC change */
next_pc = ctx->last_branch;
break;
case 0x1: /* tracing enabled */
command_print(cmd,
"--- tracing enabled at 0x%8.8" PRIx32 " ---",
ctx->last_branch);
ctx->current_pc = ctx->last_branch;
ctx->pipe_index++;
continue;
break;
case 0x2: /* trace restarted after FIFO overflow */
command_print(cmd,
"--- trace restarted after FIFO overflow at 0x%8.8" PRIx32 " ---",
ctx->last_branch);
ctx->current_pc = ctx->last_branch;
ctx->pipe_index++;
continue;
break;
case 0x3: /* exit from debug state */
command_print(cmd,
"--- exit from debug state at 0x%8.8" PRIx32 " ---",
ctx->last_branch);
ctx->current_pc = ctx->last_branch;
ctx->pipe_index++;
continue;
break;
case 0x4: /* periodic synchronization point */
next_pc = ctx->last_branch;
/* if we had no valid PC prior to this synchronization point,
* we have to move on with the next trace cycle
*/
if (!current_pc_ok) {
command_print(cmd,
"--- periodic synchronization point at 0x%8.8" PRIx32 " ---",
next_pc);
ctx->current_pc = next_pc;
ctx->pipe_index++;
continue;
}
break;
default: /* reserved */
LOG_ERROR(
"BUG: branch reason code 0x%" PRIx32 " is reserved",
ctx->last_branch_reason);
return ERROR_FAIL;
}
/* if we got here the branch was a normal PC change
* (or a periodic synchronization point, which means the same for that matter)
* if we didn't acquire a complete PC continue with the next cycle
*/
if (!ctx->pc_ok)
continue;
/* indirect branch to the exception vector means an exception occurred */
if ((ctx->last_branch <= 0x20)
|| ((ctx->last_branch >= 0xffff0000) &&
(ctx->last_branch <= 0xffff0020))) {
if ((ctx->last_branch & 0xff) == 0x10)
command_print(cmd, "data abort");
else {
command_print(cmd,
"exception vector 0x%2.2" PRIx32 "",
ctx->last_branch);
ctx->current_pc = ctx->last_branch;
ctx->pipe_index++;
continue;
}
}
}
/* an instruction was executed (or not, depending on the condition flags)
* retrieve it from the image for displaying */
if (ctx->pc_ok && (pipestat != STAT_WT) && (pipestat != STAT_TD) &&
!(((pipestat == STAT_BE) || (pipestat == STAT_BD)) &&
((ctx->last_branch_reason != 0x0) && (ctx->last_branch_reason != 0x4)))) {
retval = etm_read_instruction(ctx, &instruction);
if (retval != ERROR_OK) {
/* can't continue tracing with no image available */
if (retval == ERROR_TRACE_IMAGE_UNAVAILABLE)
return retval;
else if (retval == ERROR_TRACE_INSTRUCTION_UNAVAILABLE) {
/* TODO: handle incomplete images
* for now we just quit the analysis*/
return retval;
}
}
cycles = old_index - last_instruction;
}
if ((pipestat == STAT_ID) || (pipestat == STAT_BD)) {
uint32_t new_data_index = ctx->data_index;
uint32_t new_data_half = ctx->data_half;
/* in case of a branch with data, the branch target address was consumed before
* we temporarily go back to the saved data index */
if (pipestat == STAT_BD) {
ctx->data_index = old_data_index;
ctx->data_half = old_data_half;
}
if (ctx->control & ETM_CTRL_TRACE_ADDR) {
uint8_t packet;
int shift = 0;
do {
retval = etmv1_next_packet(ctx, &packet, 0);
if (retval != 0)
return ERROR_ETM_ANALYSIS_FAILED;
ctx->last_ptr &= ~(0x7f << shift);
ctx->last_ptr |= (packet & 0x7f) << shift;
shift += 7;
} while ((packet & 0x80) && (shift < 32));
if (shift >= 32)
ctx->ptr_ok = 1;
if (ctx->ptr_ok)
command_print(cmd,
"address: 0x%8.8" PRIx32 "",
ctx->last_ptr);
}
if (ctx->control & ETM_CTRL_TRACE_DATA) {
if ((instruction.type == ARM_LDM) ||
(instruction.type == ARM_STM)) {
int i;
for (i = 0; i < 16; i++) {
if (instruction.info.load_store_multiple.register_list
& (1 << i)) {
uint32_t data;
if (etmv1_data(ctx, 4, &data) != 0)
return ERROR_ETM_ANALYSIS_FAILED;
command_print(cmd,
"data: 0x%8.8" PRIx32 "",
data);
}
}
} else if ((instruction.type >= ARM_LDR) &&
(instruction.type <= ARM_STRH)) {
uint32_t data;
if (etmv1_data(ctx, arm_access_size(&instruction),
&data) != 0)
return ERROR_ETM_ANALYSIS_FAILED;
command_print(cmd, "data: 0x%8.8" PRIx32 "", data);
}
}
/* restore data index after consuming BD address and data */
if (pipestat == STAT_BD) {
ctx->data_index = new_data_index;
ctx->data_half = new_data_half;
}
}
/* adjust PC */
if ((pipestat == STAT_IE) || (pipestat == STAT_ID)) {
if (((instruction.type == ARM_B) ||
(instruction.type == ARM_BL) ||
(instruction.type == ARM_BLX)) &&
(instruction.info.b_bl_bx_blx.target_address != 0xffffffff))
next_pc = instruction.info.b_bl_bx_blx.target_address;
else
next_pc += (ctx->core_state == ARM_STATE_ARM) ? 4 : 2;
} else if (pipestat == STAT_IN)
next_pc += (ctx->core_state == ARM_STATE_ARM) ? 4 : 2;
if ((pipestat != STAT_TD) && (pipestat != STAT_WT)) {
char cycles_text[32] = "";
/* if the trace was captured with cycle accurate tracing enabled,
* output the number of cycles since the last executed instruction
*/
if (ctx->control & ETM_CTRL_CYCLE_ACCURATE) {
snprintf(cycles_text, 32, " (%i %s)",
(int)cycles,
(cycles == 1) ? "cycle" : "cycles");
}
command_print(cmd, "%s%s%s",
instruction.text,
(pipestat == STAT_IN) ? " (not executed)" : "",
cycles_text);
ctx->current_pc = next_pc;
/* packets for an instruction don't start on or before the preceding
* functional pipestat (i.e. other than WT or TD)
*/
if (ctx->data_index <= ctx->pipe_index) {
ctx->data_index = ctx->pipe_index + 1;
ctx->data_half = 0;
}
}
ctx->pipe_index += 1;
}
return ERROR_OK;
}
static COMMAND_HELPER(handle_etm_tracemode_command_update,
uint32_t *mode)
{
uint32_t tracemode;
/* what parts of data access are traced? */
if (strcmp(CMD_ARGV[0], "none") == 0)
tracemode = 0;
else if (strcmp(CMD_ARGV[0], "data") == 0)
tracemode = ETM_CTRL_TRACE_DATA;
else if (strcmp(CMD_ARGV[0], "address") == 0)
tracemode = ETM_CTRL_TRACE_ADDR;
else if (strcmp(CMD_ARGV[0], "all") == 0)
tracemode = ETM_CTRL_TRACE_DATA | ETM_CTRL_TRACE_ADDR;
else {
command_print(CMD, "invalid option '%s'", CMD_ARGV[0]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
uint8_t context_id;
COMMAND_PARSE_NUMBER(u8, CMD_ARGV[1], context_id);
switch (context_id) {
case 0:
tracemode |= ETM_CTRL_CONTEXTID_NONE;
break;
case 8:
tracemode |= ETM_CTRL_CONTEXTID_8;
break;
case 16:
tracemode |= ETM_CTRL_CONTEXTID_16;
break;
case 32:
tracemode |= ETM_CTRL_CONTEXTID_32;
break;
default:
command_print(CMD, "invalid option '%s'", CMD_ARGV[1]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
bool etmv1_cycle_accurate;
COMMAND_PARSE_ENABLE(CMD_ARGV[2], etmv1_cycle_accurate);
if (etmv1_cycle_accurate)
tracemode |= ETM_CTRL_CYCLE_ACCURATE;
bool etmv1_branch_output;
COMMAND_PARSE_ENABLE(CMD_ARGV[3], etmv1_branch_output);
if (etmv1_branch_output)
tracemode |= ETM_CTRL_BRANCH_OUTPUT;
/* IGNORED:
* - CPRT tracing (coprocessor register transfers)
* - debug request (causes debug entry on trigger)
* - stall on FIFOFULL (preventing tracedata loss)
*/
*mode = tracemode;
return ERROR_OK;
}
COMMAND_HANDLER(handle_etm_tracemode_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct etm_context *etm;
if (!is_arm(arm)) {
command_print(CMD, "ETM: current target isn't an ARM");
return ERROR_FAIL;
}
etm = arm->etm;
if (!etm) {
command_print(CMD, "current target doesn't have an ETM configured");
return ERROR_FAIL;
}
uint32_t tracemode = etm->control;
switch (CMD_ARGC) {
case 0:
break;
case 4:
CALL_COMMAND_HANDLER(handle_etm_tracemode_command_update,
&tracemode);
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
/**
* todo: fail if parameters were invalid for this hardware,
* or couldn't be written; display actual hardware state...
*/
command_print(CMD, "current tracemode configuration:");
switch (tracemode & ETM_CTRL_TRACE_MASK) {
default:
command_print(CMD, "data tracing: none");
break;
case ETM_CTRL_TRACE_DATA:
command_print(CMD, "data tracing: data only");
break;
case ETM_CTRL_TRACE_ADDR:
command_print(CMD, "data tracing: address only");
break;
case ETM_CTRL_TRACE_DATA | ETM_CTRL_TRACE_ADDR:
command_print(CMD, "data tracing: address and data");
break;
}
switch (tracemode & ETM_CTRL_CONTEXTID_MASK) {
case ETM_CTRL_CONTEXTID_NONE:
command_print(CMD, "contextid tracing: none");
break;
case ETM_CTRL_CONTEXTID_8:
command_print(CMD, "contextid tracing: 8 bit");
break;
case ETM_CTRL_CONTEXTID_16:
command_print(CMD, "contextid tracing: 16 bit");
break;
case ETM_CTRL_CONTEXTID_32:
command_print(CMD, "contextid tracing: 32 bit");
break;
}
if (tracemode & ETM_CTRL_CYCLE_ACCURATE)
command_print(CMD, "cycle-accurate tracing enabled");
else
command_print(CMD, "cycle-accurate tracing disabled");
if (tracemode & ETM_CTRL_BRANCH_OUTPUT)
command_print(CMD, "full branch address output enabled");
else
command_print(CMD, "full branch address output disabled");
#define TRACEMODE_MASK ( \
ETM_CTRL_CONTEXTID_MASK \
| ETM_CTRL_BRANCH_OUTPUT \
| ETM_CTRL_CYCLE_ACCURATE \
| ETM_CTRL_TRACE_MASK \
)
/* only update ETM_CTRL register if tracemode changed */
if ((etm->control & TRACEMODE_MASK) != tracemode) {
struct reg *etm_ctrl_reg;
etm_ctrl_reg = etm_reg_lookup(etm, ETM_CTRL);
if (!etm_ctrl_reg)
return ERROR_FAIL;
etm->control &= ~TRACEMODE_MASK;
etm->control |= tracemode & TRACEMODE_MASK;
buf_set_u32(etm_ctrl_reg->value, 0, 32, etm->control);
etm_store_reg(etm_ctrl_reg);
/* invalidate old trace data */
etm->capture_status = TRACE_IDLE;
if (etm->trace_depth > 0) {
free(etm->trace_data);
etm->trace_data = NULL;
}
etm->trace_depth = 0;
}
#undef TRACEMODE_MASK
return ERROR_OK;
}
COMMAND_HANDLER(handle_etm_config_command)
{
struct target *target;
struct arm *arm;
uint32_t portmode = 0x0;
struct etm_context *etm_ctx;
int i;
if (CMD_ARGC != 5)
return ERROR_COMMAND_SYNTAX_ERROR;
target = get_target(CMD_ARGV[0]);
if (!target) {
LOG_ERROR("target '%s' not defined", CMD_ARGV[0]);
return ERROR_FAIL;
}
arm = target_to_arm(target);
if (!is_arm(arm)) {
command_print(CMD, "target '%s' is '%s'; not an ARM",
target_name(target),
target_type_name(target));
return ERROR_FAIL;
}
/* FIXME for ETMv3.0 and above -- and we don't yet know what ETM
* version we'll be using!! -- so we can't know how to validate
* params yet. "etm config" should likely be *AFTER* hookup...
*
* - Many more widths might be supported ... and we can easily
* check whether our setting "took".
*
* - The "clock" and "mode" bits are interpreted differently.
* See ARM IHI 0014O table 2-17 for the old behaviour, and
* table 2-18 for the new. With ETB it's best to specify
* "normal full" ...
*/
uint8_t port_width;
COMMAND_PARSE_NUMBER(u8, CMD_ARGV[1], port_width);
switch (port_width) {
/* before ETMv3.0 */
case 4:
portmode |= ETM_PORT_4BIT;
break;
case 8:
portmode |= ETM_PORT_8BIT;
break;
case 16:
portmode |= ETM_PORT_16BIT;
break;
/* ETMv3.0 and later*/
case 24:
portmode |= ETM_PORT_24BIT;
break;
case 32:
portmode |= ETM_PORT_32BIT;
break;
case 48:
portmode |= ETM_PORT_48BIT;
break;
case 64:
portmode |= ETM_PORT_64BIT;
break;
case 1:
portmode |= ETM_PORT_1BIT;
break;
case 2:
portmode |= ETM_PORT_2BIT;
break;
default:
command_print(CMD,
"unsupported ETM port width '%s'", CMD_ARGV[1]);
return ERROR_FAIL;
}
if (strcmp("normal", CMD_ARGV[2]) == 0)
portmode |= ETM_PORT_NORMAL;
else if (strcmp("multiplexed", CMD_ARGV[2]) == 0)
portmode |= ETM_PORT_MUXED;
else if (strcmp("demultiplexed", CMD_ARGV[2]) == 0)
portmode |= ETM_PORT_DEMUXED;
else {
command_print(CMD,
"unsupported ETM port mode '%s', must be 'normal', 'multiplexed' or 'demultiplexed'",
CMD_ARGV[2]);
return ERROR_FAIL;
}
if (strcmp("half", CMD_ARGV[3]) == 0)
portmode |= ETM_PORT_HALF_CLOCK;
else if (strcmp("full", CMD_ARGV[3]) == 0)
portmode |= ETM_PORT_FULL_CLOCK;
else {
command_print(CMD,
"unsupported ETM port clocking '%s', must be 'full' or 'half'",
CMD_ARGV[3]);
return ERROR_FAIL;
}
etm_ctx = calloc(1, sizeof(struct etm_context));
if (!etm_ctx) {
LOG_DEBUG("out of memory");
return ERROR_FAIL;
}
for (i = 0; etm_capture_drivers[i]; i++) {
if (strcmp(CMD_ARGV[4], etm_capture_drivers[i]->name) == 0) {
int retval = register_commands(CMD_CTX, NULL, etm_capture_drivers[i]->commands);
if (retval != ERROR_OK) {
free(etm_ctx);
return retval;
}
etm_ctx->capture_driver = etm_capture_drivers[i];
break;
}
}
if (!etm_capture_drivers[i]) {
/* no supported capture driver found, don't register an ETM */
free(etm_ctx);
LOG_ERROR("trace capture driver '%s' not found", CMD_ARGV[4]);
return ERROR_FAIL;
}
etm_ctx->target = target;
etm_ctx->trace_data = NULL;
etm_ctx->control = portmode;
etm_ctx->core_state = ARM_STATE_ARM;
arm->etm = etm_ctx;
return etm_register_user_commands(CMD_CTX);
}
COMMAND_HANDLER(handle_etm_info_command)
{
struct target *target;
struct arm *arm;
struct etm_context *etm;
struct reg *etm_sys_config_reg;
int max_port_size;
uint32_t config;
target = get_current_target(CMD_CTX);
arm = target_to_arm(target);
if (!is_arm(arm)) {
command_print(CMD, "ETM: current target isn't an ARM");
return ERROR_FAIL;
}
etm = arm->etm;
if (!etm) {
command_print(CMD, "current target doesn't have an ETM configured");
return ERROR_FAIL;
}
command_print(CMD, "ETM v%d.%d",
etm->bcd_vers >> 4, etm->bcd_vers & 0xf);
command_print(CMD, "pairs of address comparators: %i",
(int) (etm->config >> 0) & 0x0f);
command_print(CMD, "data comparators: %i",
(int) (etm->config >> 4) & 0x0f);
command_print(CMD, "memory map decoders: %i",
(int) (etm->config >> 8) & 0x1f);
command_print(CMD, "number of counters: %i",
(int) (etm->config >> 13) & 0x07);
command_print(CMD, "sequencer %spresent",
(int) (etm->config & (1 << 16)) ? "" : "not ");
command_print(CMD, "number of ext. inputs: %i",
(int) (etm->config >> 17) & 0x07);
command_print(CMD, "number of ext. outputs: %i",
(int) (etm->config >> 20) & 0x07);
command_print(CMD, "FIFO full %spresent",
(int) (etm->config & (1 << 23)) ? "" : "not ");
if (etm->bcd_vers < 0x20)
command_print(CMD, "protocol version: %i",
(int) (etm->config >> 28) & 0x07);
else {
command_print(CMD,
"coprocessor and memory access %ssupported",
(etm->config & (1 << 26)) ? "" : "not ");
command_print(CMD, "trace start/stop %spresent",
(etm->config & (1 << 26)) ? "" : "not ");
command_print(CMD, "number of context comparators: %i",
(int) (etm->config >> 24) & 0x03);
}
/* SYS_CONFIG isn't present before ETMv1.2 */
etm_sys_config_reg = etm_reg_lookup(etm, ETM_SYS_CONFIG);
if (!etm_sys_config_reg)
return ERROR_OK;
etm_get_reg(etm_sys_config_reg);
config = buf_get_u32(etm_sys_config_reg->value, 0, 32);
LOG_DEBUG("ETM SYS CONFIG %08x", (unsigned) config);
max_port_size = config & 0x7;
if (etm->bcd_vers >= 0x30)
max_port_size |= (config >> 6) & 0x08;
switch (max_port_size) {
/* before ETMv3.0 */
case 0:
max_port_size = 4;
break;
case 1:
max_port_size = 8;
break;
case 2:
max_port_size = 16;
break;
/* ETMv3.0 and later*/
case 3:
max_port_size = 24;
break;
case 4:
max_port_size = 32;
break;
case 5:
max_port_size = 48;
break;
case 6:
max_port_size = 64;
break;
case 8:
max_port_size = 1;
break;
case 9:
max_port_size = 2;
break;
default:
LOG_ERROR("Illegal max_port_size");
return ERROR_FAIL;
}
command_print(CMD, "max. port size: %i", max_port_size);
if (etm->bcd_vers < 0x30) {
command_print(CMD, "half-rate clocking %ssupported",
(config & (1 << 3)) ? "" : "not ");
command_print(CMD, "full-rate clocking %ssupported",
(config & (1 << 4)) ? "" : "not ");
command_print(CMD, "normal trace format %ssupported",
(config & (1 << 5)) ? "" : "not ");
command_print(CMD, "multiplex trace format %ssupported",
(config & (1 << 6)) ? "" : "not ");
command_print(CMD, "demultiplex trace format %ssupported",
(config & (1 << 7)) ? "" : "not ");
} else {
/* REVISIT show which size and format are selected ... */
command_print(CMD, "current port size %ssupported",
(config & (1 << 10)) ? "" : "not ");
command_print(CMD, "current trace format %ssupported",
(config & (1 << 11)) ? "" : "not ");
}
if (etm->bcd_vers >= 0x21)
command_print(CMD, "fetch comparisons %ssupported",
(config & (1 << 17)) ? "not " : "");
command_print(CMD, "FIFO full %ssupported",
(config & (1 << 8)) ? "" : "not ");
return ERROR_OK;
}
COMMAND_HANDLER(handle_etm_status_command)
{
struct target *target;
struct arm *arm;
struct etm_context *etm;
trace_status_t trace_status;
target = get_current_target(CMD_CTX);
arm = target_to_arm(target);
if (!is_arm(arm)) {
command_print(CMD, "ETM: current target isn't an ARM");
return ERROR_FAIL;
}
etm = arm->etm;
if (!etm) {
command_print(CMD, "current target doesn't have an ETM configured");
return ERROR_FAIL;
}
/* ETM status */
if (etm->bcd_vers >= 0x11) {
struct reg *reg;
reg = etm_reg_lookup(etm, ETM_STATUS);
if (!reg)
return ERROR_FAIL;
if (etm_get_reg(reg) == ERROR_OK) {
unsigned s = buf_get_u32(reg->value, 0, reg->size);
command_print(CMD, "etm: %s%s%s%s",
/* bit(1) == progbit */
(etm->bcd_vers >= 0x12)
? ((s & (1 << 1))
? "disabled" : "enabled")
: "?",
((s & (1 << 3)) && etm->bcd_vers >= 0x31)
? " triggered" : "",
((s & (1 << 2)) && etm->bcd_vers >= 0x12)
? " start/stop" : "",
((s & (1 << 0)) && etm->bcd_vers >= 0x11)
? " untraced-overflow" : "");
} /* else ignore and try showing trace port status */
}
/* Trace Port Driver status */
trace_status = etm->capture_driver->status(etm);
if (trace_status == TRACE_IDLE)
command_print(CMD, "%s: idle", etm->capture_driver->name);
else {
static char *completed = " completed";
static char *running = " is running";
static char *overflowed = ", overflowed";
static char *triggered = ", triggered";
command_print(CMD, "%s: trace collection%s%s%s",
etm->capture_driver->name,
(trace_status & TRACE_RUNNING) ? running : completed,
(trace_status & TRACE_OVERFLOWED) ? overflowed : "",
(trace_status & TRACE_TRIGGERED) ? triggered : "");
if (etm->trace_depth > 0) {
command_print(CMD, "%i frames of trace data read",
(int)(etm->trace_depth));
}
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_etm_image_command)
{
struct target *target;
struct arm *arm;
struct etm_context *etm_ctx;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
target = get_current_target(CMD_CTX);
arm = target_to_arm(target);
if (!is_arm(arm)) {
command_print(CMD, "ETM: current target isn't an ARM");
return ERROR_FAIL;
}
etm_ctx = arm->etm;
if (!etm_ctx) {
command_print(CMD, "current target doesn't have an ETM configured");
return ERROR_FAIL;
}
if (etm_ctx->image) {
image_close(etm_ctx->image);
free(etm_ctx->image);
command_print(CMD, "previously loaded image found and closed");
}
etm_ctx->image = malloc(sizeof(struct image));
etm_ctx->image->base_address_set = false;
etm_ctx->image->start_address_set = false;
/* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
if (CMD_ARGC >= 2) {
etm_ctx->image->base_address_set = true;
COMMAND_PARSE_NUMBER(llong, CMD_ARGV[1], etm_ctx->image->base_address);
} else
etm_ctx->image->base_address_set = false;
if (image_open(etm_ctx->image, CMD_ARGV[0],
(CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK) {
free(etm_ctx->image);
etm_ctx->image = NULL;
return ERROR_FAIL;
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_etm_dump_command)
{
struct fileio *file;
struct target *target;
struct arm *arm;
struct etm_context *etm_ctx;
uint32_t i;
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
target = get_current_target(CMD_CTX);
arm = target_to_arm(target);
if (!is_arm(arm)) {
command_print(CMD, "ETM: current target isn't an ARM");
return ERROR_FAIL;
}
etm_ctx = arm->etm;
if (!etm_ctx) {
command_print(CMD, "current target doesn't have an ETM configured");
return ERROR_FAIL;
}
if (etm_ctx->capture_driver->status == TRACE_IDLE) {
command_print(CMD, "trace capture wasn't enabled, no trace data captured");
return ERROR_OK;
}
if (etm_ctx->capture_driver->status(etm_ctx) & TRACE_RUNNING) {
/* TODO: if on-the-fly capture is to be supported, this needs to be changed */
command_print(CMD, "trace capture not completed");
return ERROR_FAIL;
}
/* read the trace data if it wasn't read already */
if (etm_ctx->trace_depth == 0)
etm_ctx->capture_driver->read_trace(etm_ctx);
if (fileio_open(&file, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
return ERROR_FAIL;
fileio_write_u32(file, etm_ctx->capture_status);
fileio_write_u32(file, etm_ctx->control);
fileio_write_u32(file, etm_ctx->trace_depth);
for (i = 0; i < etm_ctx->trace_depth; i++) {
fileio_write_u32(file, etm_ctx->trace_data[i].pipestat);
fileio_write_u32(file, etm_ctx->trace_data[i].packet);
fileio_write_u32(file, etm_ctx->trace_data[i].flags);
}
fileio_close(file);
return ERROR_OK;
}
COMMAND_HANDLER(handle_etm_load_command)
{
struct fileio *file;
struct target *target;
struct arm *arm;
struct etm_context *etm_ctx;
uint32_t i;
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
target = get_current_target(CMD_CTX);
arm = target_to_arm(target);
if (!is_arm(arm)) {
command_print(CMD, "ETM: current target isn't an ARM");
return ERROR_FAIL;
}
etm_ctx = arm->etm;
if (!etm_ctx) {
command_print(CMD, "current target doesn't have an ETM configured");
return ERROR_FAIL;
}
if (etm_ctx->capture_driver->status(etm_ctx) & TRACE_RUNNING) {
command_print(CMD, "trace capture running, stop first");
return ERROR_FAIL;
}
if (fileio_open(&file, CMD_ARGV[0], FILEIO_READ, FILEIO_BINARY) != ERROR_OK)
return ERROR_FAIL;
size_t filesize;
int retval = fileio_size(file, &filesize);
if (retval != ERROR_OK) {
fileio_close(file);
return retval;
}
if (filesize % 4) {
command_print(CMD, "size isn't a multiple of 4, no valid trace data");
fileio_close(file);
return ERROR_FAIL;
}
if (etm_ctx->trace_depth > 0) {
free(etm_ctx->trace_data);
etm_ctx->trace_data = NULL;
}
{
uint32_t tmp;
fileio_read_u32(file, &tmp); etm_ctx->capture_status = tmp;
fileio_read_u32(file, &tmp); etm_ctx->control = tmp;
fileio_read_u32(file, &etm_ctx->trace_depth);
}
etm_ctx->trace_data = malloc(sizeof(struct etmv1_trace_data) * etm_ctx->trace_depth);
if (!etm_ctx->trace_data) {
command_print(CMD, "not enough memory to perform operation");
fileio_close(file);
return ERROR_FAIL;
}
for (i = 0; i < etm_ctx->trace_depth; i++) {
uint32_t pipestat, packet, flags;
fileio_read_u32(file, &pipestat);
fileio_read_u32(file, &packet);
fileio_read_u32(file, &flags);
etm_ctx->trace_data[i].pipestat = pipestat & 0xff;
etm_ctx->trace_data[i].packet = packet & 0xffff;
etm_ctx->trace_data[i].flags = flags;
}
fileio_close(file);
return ERROR_OK;
}
COMMAND_HANDLER(handle_etm_start_command)
{
struct target *target;
struct arm *arm;
struct etm_context *etm_ctx;
struct reg *etm_ctrl_reg;
target = get_current_target(CMD_CTX);
arm = target_to_arm(target);
if (!is_arm(arm)) {
command_print(CMD, "ETM: current target isn't an ARM");
return ERROR_FAIL;
}
etm_ctx = arm->etm;
if (!etm_ctx) {
command_print(CMD, "current target doesn't have an ETM configured");
return ERROR_FAIL;
}
/* invalidate old tracing data */
etm_ctx->capture_status = TRACE_IDLE;
if (etm_ctx->trace_depth > 0) {
free(etm_ctx->trace_data);
etm_ctx->trace_data = NULL;
}
etm_ctx->trace_depth = 0;
etm_ctrl_reg = etm_reg_lookup(etm_ctx, ETM_CTRL);
if (!etm_ctrl_reg)
return ERROR_FAIL;
etm_get_reg(etm_ctrl_reg);
/* Clear programming bit (10), set port selection bit (11) */
buf_set_u32(etm_ctrl_reg->value, 10, 2, 0x2);
etm_store_reg(etm_ctrl_reg);
jtag_execute_queue();
etm_ctx->capture_driver->start_capture(etm_ctx);
return ERROR_OK;
}
COMMAND_HANDLER(handle_etm_stop_command)
{
struct target *target;
struct arm *arm;
struct etm_context *etm_ctx;
struct reg *etm_ctrl_reg;
target = get_current_target(CMD_CTX);
arm = target_to_arm(target);
if (!is_arm(arm)) {
command_print(CMD, "ETM: current target isn't an ARM");
return ERROR_FAIL;
}
etm_ctx = arm->etm;
if (!etm_ctx) {
command_print(CMD, "current target doesn't have an ETM configured");
return ERROR_FAIL;
}
etm_ctrl_reg = etm_reg_lookup(etm_ctx, ETM_CTRL);
if (!etm_ctrl_reg)
return ERROR_FAIL;
etm_get_reg(etm_ctrl_reg);
/* Set programming bit (10), clear port selection bit (11) */
buf_set_u32(etm_ctrl_reg->value, 10, 2, 0x1);
etm_store_reg(etm_ctrl_reg);
jtag_execute_queue();
etm_ctx->capture_driver->stop_capture(etm_ctx);
return ERROR_OK;
}
COMMAND_HANDLER(handle_etm_trigger_debug_command)
{
struct target *target;
struct arm *arm;
struct etm_context *etm;
target = get_current_target(CMD_CTX);
arm = target_to_arm(target);
if (!is_arm(arm)) {
command_print(CMD, "ETM: %s isn't an ARM",
target_name(target));
return ERROR_FAIL;
}
etm = arm->etm;
if (!etm) {
command_print(CMD, "ETM: no ETM configured for %s",
target_name(target));
return ERROR_FAIL;
}
if (CMD_ARGC == 1) {
struct reg *etm_ctrl_reg;
bool dbgrq;
etm_ctrl_reg = etm_reg_lookup(etm, ETM_CTRL);
if (!etm_ctrl_reg)
return ERROR_FAIL;
COMMAND_PARSE_ENABLE(CMD_ARGV[0], dbgrq);
if (dbgrq)
etm->control |= ETM_CTRL_DBGRQ;
else
etm->control &= ~ETM_CTRL_DBGRQ;
/* etm->control will be written to hardware
* the next time an "etm start" is issued.
*/
buf_set_u32(etm_ctrl_reg->value, 0, 32, etm->control);
}
command_print(CMD, "ETM: %s debug halt",
(etm->control & ETM_CTRL_DBGRQ)
? "triggers"
: "does not trigger");
return ERROR_OK;
}
COMMAND_HANDLER(handle_etm_analyze_command)
{
struct target *target;
struct arm *arm;
struct etm_context *etm_ctx;
int retval;
target = get_current_target(CMD_CTX);
arm = target_to_arm(target);
if (!is_arm(arm)) {
command_print(CMD, "ETM: current target isn't an ARM");
return ERROR_FAIL;
}
etm_ctx = arm->etm;
if (!etm_ctx) {
command_print(CMD, "current target doesn't have an ETM configured");
return ERROR_FAIL;
}
retval = etmv1_analyze_trace(etm_ctx, CMD);
if (retval != ERROR_OK) {
/* FIX! error should be reported inside etmv1_analyze_trace() */
switch (retval) {
case ERROR_ETM_ANALYSIS_FAILED:
command_print(CMD,
"further analysis failed (corrupted trace data or just end of data");
break;
case ERROR_TRACE_INSTRUCTION_UNAVAILABLE:
command_print(CMD,
"no instruction for current address available, analysis aborted");
break;
case ERROR_TRACE_IMAGE_UNAVAILABLE:
command_print(CMD, "no image available for trace analysis");
break;
default:
command_print(CMD, "unknown error");
}
}
return retval;
}
static const struct command_registration etm_config_command_handlers[] = {
{
/* NOTE: with ADIv5, ETMs are accessed by DAP operations,
* possibly over SWD, not JTAG scanchain 6 of 'target'.
*
* Also, these parameters don't match ETM v3+ modules...
*/
.name = "config",
.handler = handle_etm_config_command,
.mode = COMMAND_CONFIG,
.help = "Set up ETM output port.",
.usage = "target port_width port_mode clocking capture_driver",
},
COMMAND_REGISTRATION_DONE
};
const struct command_registration etm_command_handlers[] = {
{
.name = "etm",
.mode = COMMAND_ANY,
.help = "Embedded Trace Macrocell command group",
.usage = "",
.chain = etm_config_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration etm_exec_command_handlers[] = {
{
.name = "tracemode",
.handler = handle_etm_tracemode_command,
.mode = COMMAND_EXEC,
.help = "configure/display trace mode",
.usage = "('none'|'data'|'address'|'all') "
"context_id_bits "
"['enable'|'disable'] "
"['enable'|'disable']",
},
{
.name = "info",
.handler = handle_etm_info_command,
.mode = COMMAND_EXEC,
.usage = "",
.help = "display info about the current target's ETM",
},
{
.name = "status",
.handler = handle_etm_status_command,
.mode = COMMAND_EXEC,
.usage = "",
.help = "display current target's ETM status",
},
{
.name = "start",
.handler = handle_etm_start_command,
.mode = COMMAND_EXEC,
.usage = "",
.help = "start ETM trace collection",
},
{
.name = "stop",
.handler = handle_etm_stop_command,
.mode = COMMAND_EXEC,
.usage = "",
.help = "stop ETM trace collection",
},
{
.name = "trigger_debug",
.handler = handle_etm_trigger_debug_command,
.mode = COMMAND_EXEC,
.help = "enable/disable debug entry on trigger",
.usage = "['enable'|'disable']",
},
{
.name = "analyze",
.handler = handle_etm_analyze_command,
.mode = COMMAND_EXEC,
.usage = "",
.help = "analyze collected ETM trace",
},
{
.name = "image",
.handler = handle_etm_image_command,
.mode = COMMAND_EXEC,
.help = "load image from file with optional offset",
.usage = "<file> [base address] [type]",
},
{
.name = "dump",
.handler = handle_etm_dump_command,
.mode = COMMAND_EXEC,
.help = "dump captured trace data to file",
.usage = "filename",
},
{
.name = "load",
.handler = handle_etm_load_command,
.mode = COMMAND_EXEC,
.usage = "",
.help = "load trace data for analysis <file>",
},
COMMAND_REGISTRATION_DONE
};
static int etm_register_user_commands(struct command_context *cmd_ctx)
{
return register_commands(cmd_ctx, "etm", etm_exec_command_handlers);
}